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Background:Moebius Syndrome (MBS) is a rare congenital neurological disorder
characterized by paralysis of facial nerves, impairment of ocular abduction and
other variable abnormalities. MBS has been attributed to both environmental and
genetic factors as potential causes. Until now only two genes, PLXND1 and REV3L
have been identified to cause MBS.

Results:We present a 9-year-old male clinically diagnosed with MBS, presenting
facial palsy, altered ocular mobility, microglossia, dental anomalies and
congenital torticollis. Radiologically, he lacks both abducens nerves and shows
altered symmetry of both facial and vestibulocochlear nerves. Whole-exome
sequence identified a de novo missense variant c.643G>A; p.Gly215Arg in CHN1,
encoding the α2-chimaerin protein. The p.Gly215Arg variant is located in the
C1 domain of CHN1 where other pathogenic gain of function variants have been
reported. Bioinformatic analysis and molecular structural modelling predict a
deleterious effect of the missense variant on the protein function.

Conclusion:Our findings support that pathogenic variants in theCHN1 genemay
be responsible for different cranial congenital dysinnervation syndromes,
including Moebius and Duane retraction syndromes. We propose to include
CHN1 in the genetic diagnoses of MBS.
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Introduction

Moebius syndrome (MBS) is a rare congenital neurological disease characterized by
non-progressive facial palsy and impairment of ocular abduction, due to uni or bilateral
paralysis or weakness of the facial (VII) and abducens (VI) cranial nerves. It can also be
associated to paralysis of other cranial nerves (most notably cranial nerves V, IX, X, and
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XII). Other abnormalities include lingual hypoplasia,
sensorineural hearing loss, craniofacial malformations
(epicanthic folds, micrognathia), and abnormalities of the
extremities (syndactyly, pes planus, valgus femur) (Terzis and
Noah, 2002). Face and mouth functional anomalies implicate
facial weakness, difficulties in speaking, eating, sucking and
swallowing.

MBS is classified as a congenital cranial dysinnervation
disorder (CCDD). These are disorders caused by developmental
abnormalities of cranial nerves/nuclei resulting in primary or
secondary dysinnervation. The CCDDs include Duane
retraction syndrome (DRS), congenital fibrosis of the external
ocular muscles (CFEOM), hereditary congenital facial palsy
(HCFP), horizontal gaze palsy with progressive scoliosis
(HGPPS) and MBS (Gutowski and Chilton, 2015; Oystreck,
2018; Jia et al., 2022).

The prevalence of MBS is estimated to be 1 in 10,000 to 1 in
2,500 live births with equal incidence in both sexes. Most patients
present normal intelligence, while rare cases of autistic-like
behaviours (0%–5%) and mild intellectual disability (9%–15%)
have been reported (Picciolini et al., 2016).

Since the initial descriptions by von Graefe in 1880 (von
Graefe, 1880) and by Moebius in 1888 (Möbius, 2008) it has been
debated whether MBS has a genetic or a non-genetic aetiology.
Most patients have a sporadic occurrence with a limited number
of atypical familial cases (Tischfield et al., 2005; Schröder et al.,
2013). Both intrauterine environmental factors and genetic
causes have been proposed. Prenatal exposure to misoprostol
or cocaine can lead to disruption of blood vessel migration during
development and hindbrain hypoxia, resulting in cranial nerve
dysfunction.

In 2015, de novo pathogenic variants affecting two genes,
PLXND1 and REV3L were reported in six unrelated sporadic
Moebius patients from a cohort of 110 patients. PLXND1 and
REV3L are both involved in hindbrain development. Analysis
of Plxnd1 and Rev3l mutant mice shows that disruption of
these genes converge at the facial branchiomotor nucleus,
affecting either motoneuron migration or proliferation
(Tomas-Roca et al., 2015). The low frequency of pathogenic
variants detected in these two genes as a cause of MBS
suggests that de novo mutations in other genes may be
responsible for MBS.

Here, we identified, using whole exome sequencing, a de novo
novel heterozygous variant in the CHN1 gene in a patient diagnosed
with MBS. Gain of function variants in the CHN1 gene have been
previously shown to cause DRS, which is a congenital eye movement
disorder characterised by variable horizontal duction deficits, with
palpebral fissure narrowing and globe retraction on
attempted adduction.

Material and methods

Patients and subjects

Patient genomic DNA was extracted from peripheral blood
leukocytes from the patient and patient’s parents. Written
informed consent was obtained from the patient’s parents.

Exome sequencing and data analysis

Exome capture was performed using the KAPA HyperExome
probes (Roche) and sequenced on an Illumina Novaseq platform
(Illumina, San Diego, CA, United States) at the National Centre of
Genomic Analysis (CNAG-CRG, Barcelona, Spain), producing 2 ×
150 nucleotides paired-end reads. Bioinformatics analysis was
performed as described in Spataro et al., 2023. Sanger direct
sequencing of candidate variants was done in the patient and
parents to determine the inheritance pattern. Finally, variants
were classified following the American College of Medical
Genetics and Genomics and the Association for Molecular
Pathology (ACMG/AMP) guidelines (Richards et al., 2015) and
the recommendations provided by the Sequence Variant
Interpretation working group at ClinGen (https://clinicalgenome.
org/working-groups/sequence-variant-interpretation/).

Magnetic resonance imaging

Magnetic Resonance (MR) examination was performed using a
1.5 T Magnetic Resonance Imaging (MRI) scanner (Aera; Siemens
Medical Solutions, Erlangen, Germany).

Structural modelling of the
CHN1 p. Gly215Arg missense variant

The p. Gly215Arg variant was modelled using the published
CHN1 crystal structure (3CXL) as a template using PyMOL, a
molecular graphics program (The PyMOL Molecular Graphics
System, Version 1.2r3pre, Schrödinger, LLC).

Results

Case clinical description

The proband is a 9-year-old male clinically diagnosed withMBS,
son of healthy non-consanguineous parents.

He was born at term after uneventful pregnancy and delivery.
After birth, he had significant difficulties in sucking, presenting
microglossia, and remaining in hospital for a month. He was
referred to a clinical genetics service at 2 months of age due to
the microglossia (Figure 1A), limited tongue movements, left-
winged scapula, and altered ocular mobility (Figure 1B). He
presented bilateral convergent strabismus, bilateral abduction
limitation and congenital torticollis (face to the right). He
presented significant feeding and swallowing difficulties during
his first 6 months, which improved later in life. Lack of facial
expression was detected before 1 year of age.

At present, his cranial circumference, weight and height are
within the normal range. He has been operated twice on both eyes to
correct convergent strabismus (2.5 and 6 years) improving the
torticollis. His left eye position has been centred but remains
with limited abduction and his right eye remains with limited
abduction and mild esotropia (Figures 1C–E). There is no
limitation in his upper gaze (Figure 1F).
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He presents hypomimia with reduced movements of the
lower part of the forehead (Figure 2A). He also presents mild
facial palsy and limited mouth movements. He cannot fully smile
and when he smiles there is a mild asymmetry (Figure 2B) and he

cannot blow (Figure 2C). According to family reports and
medical health record, his facial expression has improved over
the years. He still has a marked microglossia with altered
movements, which limits language articulation (not

FIGURE 2
(A), Patient at 4 years 10 month old. Movements of the lower part of the forehead are reduced. (B,C), Patient at 9 years old showingmild facial palsy.
(B), the patient cannot fully smile and when he smiles there is a mild asymmetry. (C), Limited mouth movements (he cannot blow). (D), Patient at 9 years
old. Microglossia and dental anomalies.

FIGURE 1
(A), Patient at 3 years 10 month old. Microglossia and dental anomalies. (B), Patient at 10 months of age showing limited outward gaze (abduction) of
the right eye. (C–F). Patient at 9 years old. Ocular motility patterns. (C), Straight gaze showing mild esotropia of the right eye. (D), Horizontal left gaze
showing limited abduction on the left eye. (E), Horizontal right gaze showing limited abduction on the right eye. (F), Full vertical eyemovement. Exotropia
in upper gaze.
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swallowing). He presents malposition of the teeth (requiring
orthodontics) and alterations of the dental enamel (presenting
multiple cavities and needing corrective interventions since early
childhood) (Figure 2D). Finally, his left winged scapula persists
limiting abduction, with atrophy of the supraspinatus and
dorsalis muscle on the same side.

Psychomotor development showed mild delay in the main items
(crawling at around 14 months and autonomous walking at
20 months, due to hypotonia). Language development was slow
because of difficulties in articulation, due to microglossia, which
persist today. The patient showed no problems with receptive
language. Social and learning development is within the normal
range, with mild attentional symptoms that do not meet the
diagnostic criteria for ADHD. Cognitive capacity is normal and
there are no difficulties in acquiring basic and instrumental daily
activities (such as dressing, eating, personal hygiene,
transportation).

Imaging analysis

Radiologically, MS is characterised by bilateral absent or
hypoplasic cisternal and canalicular portion of the facial
nerve, and cisternal portion of the abducens nerve (Razek
et al., 2021). Patient’s MRI performed at 1 year of age did not
identify the intracanicular and cisternal segments of the
abducens nerves (VI) and showed an asymmetry in the
normal position of the right VII and VIII nerves into the
internal auditory channel (Figures 3A,B). However, the
cisternal segment of bilateral facial nerve was present
(Figure 3C). There was also microglossia (as seen clinically),
but it was not possible to evaluate the lower cranial nerves. The
trigeminal nerve was normal.

Genetic analysis

Using whole-exome sequencing (WES) a novel missense variant
c.643G>A was detected in the CHN1 gene (NM_001822.7), which
encodes the RacGAP signalling protein α2-chimaerin. The variant
was confirmed by Sanger sequencing in the patient and was absent in
both parents indicating that it has raised de novo (Figure 4A).

This c.643G>A variant replaces a glycine residue for an arginine
in the C1 domain of the protein (p.Gly215Arg) (Figure 4B). The
amino acid sequence alignment analysis indicated that Gly215 in the
CHN1 protein is highly conserved throughout evolution
(Figure 4C). The p.Gly215Arg variant is considered damaging or
potentially disease-causing by most in silico predictors used
(Supplementary Table S1) and is not present in the population
databases gnomAD (Karczewski et al., 2020). In addition, prediction
of protein stability determined by different software showed protein
destabilisation indicated by a decrease in Gibbs free energy
(Supplementary Table S2).

The α2-chimaerin longest isoform has an N-terminal
SH2 domain (50-117aa), a C1 domain (207-255aa) that binds to
diacylglycerol and a RacGAP domain (266-456aa) that interacts and
downregulates Rac activity. α2-chimaerin is located in the cytoplasm
in an inactive closed conformation. It unfolds and translocates to the
membrane in response to DAG signalling, exposing the RacGAP
domain and inactivating Rac. Previously identified variants have
been shown to hyper-activate α2-chimaerin RacGAP activity either
by destabilizing its closed conformation or by directly altering DAG
or Rac binding (Miyake et al., 2008).

Gly 215 is located within the C1 domain in a loop that forms the
interaction interface with the Rac GAP domain. Structural
modelling of the p.Gly215Arg substitution showed steric clashes
between amino acid Arg215 and RacGAP domain residues
Thr272 and Asp269. This suggests that the p.Gly215Arg might

FIGURE 3
(A), 3D-constructive interference in steady State (CISS) sequences. Note the absence of bilateral VI nerves (yellow arrows). (B), 3D-CISS sequences
with reconstructions perpendicular to the bilateral internal auditory channel show an asymmetry in the position of VII (blue arrows) and VIII nerves (orange
arrows). The left side is normal. (C), 3D-CISS sequences in the axial plane with reconstructions in the coronal plane demonstrate the presence of a
cisternal segment of bilateral facial (VII) (blue arrows) and vestibulocochlear nerve (VIII).
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alter the interface between the C1 and the RacGAP binding domain,
changing their relative orientation and leading to an ‘open’
conformation, facilitating its translocation to the
membrane (Figure 4D).

The c.643G>A (p. Gly215Arg) in the CHN1 gene was classified
as likely pathogenic according to the American College of Medical
Genetics (ACMG) guidelines, meeting the following criteria: 1)
PM1, located in a functional domain of the protein; 2) PM6, de
novo; 3) PM2_supporting, absent in population databases; 4) PP2;
Missense variant in a gene with low rate of benign missense
mutations and for which missense mutation is a common
mechanism of a disease and 5) PP3, computational evidence
shows a deleterious effect. The variant has been submitted to the
ClinVar (Landrum et al., 2018) database (ref. VCV001708248.1).

Discussion

Pathogenic variants in the CHN1 gene have been mostly
associated with Duane retraction syndrome (Miyake et al., 2008).
Although Duane syndrome is commonly a sporadic disorder, 10% of
cases are familial inherited cases. At least two other genes have been
associated to Duane syndrome:MAFB (Park et al., 2016) and SALL4
(Al-Baradie et al., 2002).

Here, we describe a patient diagnosed with Moebius syndrome,
carrier of a novel de novo missense variant in the CHN1 gene.
CHN1 encodes the signalling protein alpha2-chimaerin, a crucial

regulator of axon guidance in the ocular motor system (Miyake et al.,
2008; Chilton and Guthrie, 2017). Pathogenic variants in the CHN1
gene have been shown to hyperactivate a2-chimerin RacGAP
activity by either destabilizing the protein inactive closed
conformation or by directly altering DAG or Rac binding
resulting in aberrant cranial motor neuron development (Miyake
et al., 2008). Moreover, both heterozygous and homozygous knockin
mice harbouring a Duane syndrome gain-of-function missense
mutation show eye movement abnormalities and unilateral or
bilateral globe retraction. α2-chimaerin mutation alter the
primary development of the abducens, trochlear, and C1 nerves.
Mechanistically, these three different motor neuron populations use
ephrin/EphA4-mediated signaling pathways upstream of mutant
α2-chimaerin in distinct manners to guide developing axons
(Nugent et al., 2017).

Bioinformatic analysis and structural modelling of the
p.Gly215Arg variant supports a putative gain of function effect,
where the p.Gly215Arg substitution will result in the destabilization
of the closed conformation of the CHN1 protein, increasing its
RacGAP activity as has been observed for other variants in the
C1 domain of the CHN1 gene. Variants located in the C1 domain
such as Phe213Val, Ala223Val, and Pro252/Gln/Ser have been
shown to enhance Rac-GAP activity by destabilizing the closed
conformation of α2-chimaerin and enhancing membrane
translocation (Miyake et al., 2008).

Here we show that the novel p.Gly215Arg variant in the CHN1
gene is associated with MBS. The patient presents facial palsy,

FIGURE 4
Molecular characterisation of the c.643G>A; p. Gly215Arg variant. (A),De novo inheritance pattern ofCHN1 c.643G>A variant. A red asterisk indicates
the variant. (B), Schematic structure of the human CHN1 protein. The upper black arrows indicate previously reported pathogenic variants in the
C1 domain. (C), Multiple-sequence alignment showing the conservation of Gly215 residue in CHN1 across evolution. (D), Cartoon representation of the
protein structure CHN1. Insets show close-up views of (left) the interaction mediated by CHN1 Gly215 with nearby amino acid residues in stick
representation.
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altered ocular mobility, microglossia and congenital torticollis.
Radiologically, he lacks both abducens nerves and shows altered
symmetry of both facial and vestibulocochlear nerves. Variants in
CHN1 have been postulated to be mainly associated with bilateral
DRS, often with some abnormalities in vertical gaze and other rare
somatic disturbances (Miyake et al., 2011). However, a recent report
describes a missense variant in the CHN1 gene (p.Tyr221His) in a
child and his father with DRS, associated with swallowing difficulties
and unilateral trapeze aplasia (Angelini et al., 2021). All symptoms
are related to anomalies in different cranial nerves: VI, IX, X, XI, and
XII suggesting that variants in the CHN1 gene affect the
development of other cranial nerves in addition to the
oculomotor system (Angelini et al., 2021). It has been shown that
α2-chimaerin is expressed in all developing cranial motor neurons,
including the abducens, trochlear and oculomotor, as well as in most
developing neurons throughout the central and peripheral nervous
system. Our data support that the gain of function variants in the
CHN1 gene may be responsible for a spectrum of phenotypes, from
DRS to MBS, affecting the normal development of cranial motor
neurons. Further analyses are needed to show whether variants in
CHN1 may cause other congenital cranial dysinnervation
syndromes and to characterize their degree of variability in
clinical expressivity.

To date, only two genes have been proposed to cause MBS
(PLXND1 and REV3L). Animal models indicate that PLXND1 and
REV3L cause hypoplasia of the facial motor nucleus while
CHN1 knock-in mice present alteration in the primary
development of the abducens, trochlear, and C1 nerves (Tomas-
Roca et al., 2015; Nugent et al., 2017). Apparently, the three genes act
by different molecular pathways converging in defects of
motoneuron migration, proliferation and axon guidance (Tomas-
Roca et al., 2015; Nugent et al., 2017).

We propose that CHN1 should be included in the genetic
diagnoses of MBS as well as other CCDDs. CCDDs represent a
group of developmental disorders that commonly involve
disturbances to ocular motility. There is phenotypic variability
between CCDDs subtypes with overlap between entities. Some
conditions can be distinguished by the presence of other
associated features. For instance, HGPPS individuals are expected
to have scoliosis while patients with MBS have facial weakness.
While it can be difficult to a clinician to distinguish the type and
degree of the ocular phenotype, genetic diagnosis may contribute to
diagnosis confirmation.
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