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Background: About 10% of individuals undergoing in vitro fertilization encounter
recurrent implantation failure (RIF), which represents a worldwide social and
economic concern. Nevertheless, the critical genes and genetic mechanisms
underlying RIF are largely unknown.

Methods: We first obtained three comprehensive microarray datasets “GSE58144,
GSE103465 and GSE111974”. The differentially expressed genes (DEGs) evaluation,
enrichment analysis, as well as efficient weighted gene co-expression network
analysis (WGCNA), were employed for distinguishing RIF-linked hub genes, which
were tested by RT-qPCR in our 30 independent samples. Next, we studied the
topography of infiltration of 22 immune cell subpopulations and the association
between hub genes and immune cells in RIF using the CIBERSORT algorithm. Finally,
a novel ridge plot was utilized to exhibit the potential function of core genes.

Results: The enrichment of GO/KEGG pathways reveals that Herpes simplex virus
1 infection and Salmonella infectionmay have an important role in RIF. AfterWGCNA,
the intersected geneswith the previousDEGswere obtained using both variance and
association. Notably, the subsequent nine hub genes were finally selected: ACTL6A,
BECN1, SNRPD1, POLR1B, GSK3B, PPP2CA, RBBP7, PLK4, and RFC4, based on the
PPI network and three different algorithms, whose expression patterns were also
verified by RT-qPCR. With in-depth analysis, we speculated that key genes
mentioned above might be involved in the RIF through disturbing endometrial
microflora homeostasis, impairing autophagy, and inhibiting the proliferation of
endometrium. Furthermore, the current study revealed the aberrant immune
infiltration patterns and emphasized that uterine NK cells (uNK) and CD4+ T cells
were substantially altered in RIF endometrium. Finally, the ridge plot displayed a clear
and crucial association between hub genes and other genes and key pathways.

Conclusion: We first utilized WGCNA to identify the most potential nine hub
genes which might be associated with RIF. Meanwhile, this study offers insights
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into the landscape of immune infiltration status to reveal the underlying immune
pathogenesis of RIF. This may be a direction for the next study of RIF etiology.
Further studies would be required to investigate the involved mechanisms.
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recurrent implantation failure, hub genes, immune cell infiltration, bioinformatics,
infertility

Introduction

Despite the growing application of in vitro fertilization (IVF),
success rates have remained relatively constant, and about 10% of
patients undergoing IVF treatment experience recurrent
implantation failure (RIF), which is a worldwide social and
economic concern (Busnelli et al., 2020). The pathophysiologic
process of RIF is complicated; thus, there is no consensus
guideline for its diagnosis and treatment at present. RIF is
frequently defined as failure to achieve a clinical pregnancy after
transferring at least four good-quality embryos in at least three fresh
or frozen cycles (Coughlan et al., 2014). RIF could be related to
embryonic characteristics (male or female origin), embryo transfer,
endometrial or immunological factors, or a composite of these.
Notably, recent studies highlighted that it has become apparent that
endometrial factors have an important role in RIF(Huang et al.,
2017; Zhou et al., 2019). Moreover, plenty of literature suggests that
endometrial gene expression profiles could be changed in RIF
patients (Feng et al., 2018; Ahmadi et al., 2022). Nevertheless, the
critical genes and genetic mechanisms underlying RIF are
largely unknown.

With the popularity of large-scale gene expression analysis,
emerging bioinformatics via public databases can detect
differentially expressed genes (DEGs) concurrently at the level of
transcription for numerous genes (Koot et al., 2016; Guo et al., 2018;
Bastu et al., 2019). However, traditional DEG-based screening
methods have the disadvantage of local dataset exploring, so it is
quite possible that the master molecules will be missed.
Encouragingly, weighted gene co-expression network analysis
(WGCNA) can detect co-expression modules and genes in the
entire biological system in several samples (Langfelder and
Horvath, 2008). By comparable gene expression patterns, genes
are grouped to form modules that are studied for their relevance
to certain properties, like patient clinical information. Such modules
and their main genes can be exploited to find potential biomarkers
or therapeutic targets. WGCNA is therefore anticipated to be a novel
and potent tool for revealing the RIF potential
pathological mechanism.

First, we scanned the microarrays stored in the GEO (Gene
Expression Omnibus) database for obtaining genes with differential
expression between RIF and healthy fertile controls. Second,
functional enrichment analysis was performed to determine
potential biological roles and signaling pathways implicated in
RIF. Next, functional modules associated with clinical
characteristics were scanned employing powerful WGCNA. RIF-
associated hub genes were detected and constructed a network of
protein-protein interactions (PPI). Concurrently, bioinformatics
chip analysis results were validated using quantitative real-time
polymerase chain reaction (qRT-PCR). Next, we studied the

topography of infiltration of 22 immune cell subpopulations and
the association between hub genes and immune cells in RIF using
the CIBERSORT algorithm. Finally, diagnostic value, and functional
enrichment analyses by Gene Set Enrichment Analysis (GSEA) were
sufficiently performed in succession. Thus, our objective was to
investigate RIF potential hub genes and molecular mechanism(s),
which will expand our understanding of the molecular association
between immune infiltration and RIF and propose promising
treatment options for RIF patients.

Materials and methods

Microarray datasets

Figure 1 displays this research flowchart. The comprehensive
profiles of mRNA expression of GSE58144 (Koot et al., 2016),
GSE103465 (Guo et al., 2018) and GSE111974 (Bastu et al.,
2019) were collected from the GEO (Gene Expression Omnibus)
repository (https://www.ncbi.nlm.nih.gov/geo/). All three gene chip
profiles were obtained from human mid-luteal phase endometrial
biopsies. Dataset GSE58144 was performed according to the
platform GPL15789 (A-UMCU-HS44K-2.0), which includes
43 repeated implantation failure (RIF) samples and 72 healthy
controls. Series GSE103465 was carried out by GPL16043
(GeneChip® PrimeView™ Human Gene Expression Array) and
included three RIF samples and three normal control samples.
GSE111974, according to the GPL17077 platform (Agilent-

FIGURE 1
The flow diagram of our study.
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039494 SurePrint G3 Human GE v2 8x60K Microarray 039381),
included 24 RIF as well as 24 healthy fertile control samples.
Supplementary Table S1 provides detailed information about
these three datasets.

Data pre-processing and DEG screening

The raw expression matrix of three datasets was first performed
quantile normalization to ensure the columns have the same
distribution utilizing the “preprocessCore” package in R tool
program (R Foundation for Statistical Computing version 4.1.2). We
performed log2-transformation and background correction on
GSE58144, GSE103465, and GSE111974 expression profiles utilizing
the R package “linear models for microarray data” (limma). Using the
annotation file as a basis, probe IDswere converted to gene symbols. For
numerous probes mapping to a single gene, the mean expression value
of each probe was utilized. The adjusted p-value was utilized to regulate
the false discovery rate induced by repeated testing. The “limma”
program screened DEGs between RIF and fertile control samples.
Different datasets have different situations, so it is not feasible to use
|log2 fold-change (FC)| > 1 uniformly, which will miss many useful
genes. As we use three datasets, we use adjusted p-value < 0.05 and |
log2 fold-change (FC)|>0 to filter genes and then take the intersection.
Moreover, the DEGs were shown as a volcano plot and heatmap using
the R packages “ggplot2” as well as “pheatmap.”

Functional enrichment analysis

Further, DEGs functional enrichment analysis was conducted,
which were upregulated or downregulated in at least two datasets by
the “VennDiagram” and “RColorBrewer” packages in R. The Gene
Ontology-Biological Process (GO-BP) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were then investigated using
the “clusterProfiler” and “enrichplot” packages to find potential
biological roles.

WGCNA to identify RIF-related key
gene modules

Weighted gene co-expression network analysis (WGCNA) is an
algorithm for constructing a co-expression network, which reveals the
correlation patterns across genes and provides the biologically
functional interpretations of network modules (Yuan et al., 2020).
As mentioned before, the intersections of gene lists in
GSE58144 were selected to build a co-expression network employing
“WGCNA” package (version 1.60). After assessing the existence of
apparent outliers through cluster analysis, the one-step network
building tool was utilized for co-expression network construction as
well as the detection of main modules. Furthermore, to determine the
relevance of every module, the module eigengene (ME) was summed
according to the initial major element of module expression, and based
on the relationship between MEs and clinical features, module-trait
associations were evaluated. Then, the correlation strength was assessed
usingmodule significance (MS), which refers to the mean absolute gene
significance (GS) of each gene inside a module. Relevantly, the GS value

was derived by log10-transforming the p-value from the linear
regression between expression and clinical characteristics. Generally,
the modules with the highest MS values were deemed to be the
key modules.

Enrichment analysis of genes in keymodules

Using the “clusterprofiler” and “enrichplot” packages, we executed
KEGG pathway enrichment analysis to comprehend the biological
significance of genes in key modules (Top 20). Moreover, to
illustrate the gene-corresponding relationship between the terms, a
sub-cluster of terms (the Top 5 in KEGG) was chosen and presented as
a network plot (with a similarity of >0.3). Every node depicted a term
that has been enriched and colored based on its cluster-ID.

PPI network construction and hub genes
identification

In WGCNA, key genes were determined from key modules with |
module membership (MM)|≥ 0.8 and |GS|≥ 0.2. Following overlapping
the DEGs and key genes from WGCNA, we inserted these genes into
the STRING (http://string-db.org) database to gather target proteins
interactions with a medium confidence score of >0.4 [12] and built a
PPI network via Cytoscape program (v3.7.2).

Moreover, Hub genes were determined as the central genes for
our study employing the Cytoscape plug-in program “cytoHubba”
depending on “Closeness,” “Radiality,” as well as “Stress” character
calculation.

Diagnostic effectiveness of hub genes

The functional correlation analysis was conducted among the above
hub genes from GSE58144. Moreover, the differentially expressed hub
genes were shown regarding adjusted p-value and logFC by the
heatmap from GSE58144, GSE103465, and GSE111974.

Notably, ROC analysis was conducted to anticipate the
biomarkers diagnostic effectiveness. The area under the ROC
curve (AUC) value was used to measure the diagnostic
effectiveness of GSE58144 dataset in distinguishing RIF from
control samples.

Immune infiltration analysis

The “CIBERSORT” tool in R from GSE58144 was employed to
assess the level of immune infiltration in RIF. We investigated the
connection between hub genes and immune cell infiltration utilizing
correlation analysis as well as the “ggplot2” tool in R.

Functional correlation and enrichment
analyses by GSEA against the Reactome

Applying GSE58144, a functional correlation study was
conducted between hub genes and other mRNAs in RIF, and the
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Pearson correlation coefficient was determined. The top 50 most
positively correlated genes with hub genes were chosen for
enrichment analysis to indicate the possible function of hub
genes. GSEA was conducted on the Reactome pathways utilizing
“gsePathway” R tool of the “clusterProfiler.”

qRT-PCR verification

15 RIF women and 15 healthy fertile controls were recruited
between October 2020 and June 2021 in the Yantai Yuhuangding
Hospital, a Qingdao University Affiliate. Their mid-luteal phase
endometrial tissues were collected to snap-frozen and stored
at −80°C until use in the qRT-PCR experiments. Briefly, Trizol
(TaKaRa, Dalian, China) was used to isolate total RNA from
tissues above the endometrium. The RNA purity was evaluated
utilizing a NanoDrop 2000 (Thermo Scientific-USA). cDNA
synthesis was performed using the HiScript III RT SuperMix
(Vazyme Biotech Co., Ltd., Nangjing, China). The qRT-PCR was

conducted with ChamQ universal SYBR qPCR master mix
(Vazyme Biotech Co., Ltd., Nangjing, China). Supplementary
Table S2 displays the primers (Sangon Biotechnology Company,
Shanghai, China) utilized in this work. The 2−ΔΔCt method
assessed the relative gene expressions using GAPDH as the
reference gene. The complete experimental process was
performed for each sample in triplicate. All patients provided
informed permission in writing. Ethical approval for the study
was granted by the ethical committee of Yantai Yuhuangding
Hospital (20221208).

Statistical analysis

The RT-qPCR results were analyzed by using SPSS (version 24.0,
Chicago, IL) and GraphPad Prism (version 8, San Diego, CA)
software. Continuous variables were expressed as mean ±
standard deviation (SD), and differences between the two groups
were compared using Student’s t-test for normally distributed

FIGURE 2
The quantile normalization. Before normalization for GSE58144, GSE111974 and GSE103465 datasets (A, C, E), respectively. After normalization for
GSE58144, GSE111974 and GSE103465 datasets (B, D, F), respectively.
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variables. Nonparametric tests were applied for non-normal
distribution data. The difference was deemed statistically
significant if the p-value < 0.05. All microarray data analysis and
visualization in this work were conducted with R software (version
4.1.2; https://www.r-project.org/) with the proper packages which
are listed in detail in “Materials and methods” individually. All the
related raw data and R code are provided in the
“Supplementary Material”.

Results

DEGs identification in patients with RIF and
fertile controls

Three raw microarray datasets, including a total of 99 RIF and
70 normal endometrial tissues, were chosen for the research.
Figure 2 displays the data before (A, C, E) and after (B, D, F)

FIGURE 3
Detection of differentially expressed genes (DEGs) in the GSE58144, GSE111974 and GSE103465 datasets. The expression volcano plots in the
GSE58144 (A), GSE111974 (C) and GSE103465 (E) datasets, respectively. The heatmap of the top 21 DEGs corresponding to the GSE58144 (B),
GSE111974 (D) and GSE103465 (F) datasets.
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quantile normalization, indicating that the normalizing of raw
datasets was successful. Following performing data pre-processing
on the GSE58144, GSE103465, and GSE111974 datasets, we
screened DEGs using the cutoff criteria of adjusted
p-value <0.05 and |log2 FC| ≥ 0. In GSE58144, we detected
704 upregulated and 1085 downregulated genes. The top
21 DEGs are shown in Figures 3A, B by the volcanic diagram
and the expression heatmap. Similarly, a sum of 4807 overexpressed
genes and 5174 downregulated genes were identified in GSE111974
(Figures 3C, D). In GSE103465, 690 genes were overexpressed,
whereas 740 were downregulated (Figures 3E, F).

Finally, 8 upregulated DEGs (Figure 4A) and 20 downregulated
DEGs (Figure 4B) were shared among the three datasets, which were
displayed through Venn diagram analyses (Figure 4).

Pathway enrichment analyses

Functional enrichment on the above DEG, which was
upregulated or downregulated in at least two datasets, was
conducted to discover potential biological roles. GO-BP analysis
indicated that RIF was mostly associated with negative control of

FIGURE 4
Identification of shared DEGs. (A) DEGs upregulated among the GSE58144, GSE111974 and GSE103465 datasets. (B) DEGs downregulated among
the GSE58144, GSE111974 and GSE103465 datasets.

FIGURE 5
Enrichment of DEGs using Gene Ontology (GO)-BP (A) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (B) analysis. The larger the circle in
the figure, the more genes it contains; lower p values are indicated with a stronger red color.
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transport and regulation of mitotic cell cycle phase transition,
intracellular transport regulation, post−translational protein
modification, nucleocytoplasmic transport, and nuclear transport
(Figure 5A). Such DEGs were also enriched in KEGG pathways,
including Herpes simplex virus 1 infection, Amyotrophic lateral
sclerosis, Huntington’s disease, Salmonella infection, Hippo
signaling pathway, and Tight junction, which seemed to be
associated with RIF (Figure 5B). Supplementary Table S3
demonstrated a list of detailed genes from the datasets that
contribute to the identified pathways.

WGCNA and key modules identification

To study the relation between the aforementioned DEGs and RIF
clinical characteristics, we performed a molecular clustering analysis on
the GSE58144 dataset using the WGCNA algorithm. On the basis of a
dynamic hybrid cut and a scale-free network with topological overlaps,
a hierarchical clustering tree was constructed (Figure 6A). The
GSE58144 series comprised seven kinds of clinical characteristics:
control, RIF, previous implantation, smoking, embryo implantations,
age, and BMI. Based on an initial assessment of the data, we determined
that a power value of 8 (scale-free R2 = 0.82) was an adequate soft
threshold for continued investigation (Figure 6B). As a consequence, we
acquired four connected modules colored differently: blue (191 genes),
brown (405 genes), green (81), and grey (59) (Figure 6C).

We investigated the link between the aforementioned four
modules as well as clinical parameters to assess the clinical
significance of modules. Figure 6 displays that none of the
modules had a statistically significant association with prior
implantation, smoking, embryo implantations, age, or BMI (p >
0.01). In contrast, the brown and grey modules had a high positive
association with the control group, but both modules demonstrated
a significant negative correlation with RIF (Figure 7). Therefore,
subsequent analyses were carried out on genes from the brown and
grey modules.

Enrichment analysis of key modules

We utilized KEGG analysis for a better understanding of the
potential biological role of two key modules related to RIF. Figure 8A
displays that KEGG pathway analysis (top 20) indicates that Herpes
simplex virus 1 infection and Amyotrophic lateral sclerosis were the
highest enriched pathways, followed by Huntington’s disease, Hippo
signaling pathway, nucleocytoplasmic transport, as well as Fanconi
anemia pathway.

Besides that, we executed gene corresponding relationship
analysis between the genes and top 5 pathways (Amyotrophic
lateral sclerosis, autophagy–other, Fanconi anemia pathway,
Herpes simplex virus 1 infection, and Mismatch repair) enriched
by KEGG in key modules (Figure 8B).

FIGURE 6
Sample clustering and network construction of the weighted gene co-expression network analysis. (A) Clustering dendrogram of 43 RIF and
72 control samples. The color intensity was proportional to disease status (control or RIF) or clinical traits (previous implantation, smoking, embryo
implantations, age and BMI). (B) Analysis of the scale-free fit index and themean connectivity for various soft-thresholding powers. The soft-thresholding
power of 8 was selected based on the scale-free topology criterion. (C) Dendrogram clustered based on a dissimilarity measure (1-TOM). Gene
expression similarity is assessed by a pair-wise weighted correlationmetric and clustered based on a topological overlap metric intomodules. Each color
below represents one co-expression module, and every branch stands for one gene.
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PPI network Construction and hub gene
identification in the key modules

To study in further depth the interaction between genes in the
aforementioned brown and grey modules, a PPI network was

formed using the STRING database tool, and 464 nodes were
displayed using the Cytoscape program (Figure 9A). Further, we
used the Cytoscape plug-in “cytoHubba” to screen the hub genes
based on their degree of connectivity scores using three algorithms,
“Closeness,” “Radiality,” and “Stress” (Figures 9B–D), respectively.

FIGURE 7
The identification of key modules via weighted gene co-expression network analysis. Heatmap of the correlation between module eigengenes and
the clinical traits. The corresponding correlation coefficient along with p-value is given in each cell, and each cell is color-coded by correlation according
to the color (legend at right).

FIGURE 8
Enrichment analysis of key modules. (A) Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in brown and grey modules (top
20). The significance of enrichment gradually increases from blue to red, and the size of the dots indicates the number of genes contained in the
corresponding pathway. (B) Gene-Concept Network: Gene corresponding relationship analysis on the top 5 pathways.
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After overlapping the above three algorithms by integrating an
intersection of genes (top 12), a sum of 9 hub genes were
screened out (Figure 10A), which include: actin like 6A
(ACTL6A), beclin1 (BECN1), small nuclear ribonucleoprotein
D1 polypeptide (SNRPD1), RNA polymerase I subunit B
(POLR1B), glycogen synthase kinase 3 beta (GSK3B), protein
phosphatase 2 catalytic subunit alpha (PPP2CA), RB binding
protein 7 (RBBP7), polo-like kinase 4 (PLK4) and replication
factor C subunit 4 (RFC4). We showed the detailed results of all
the above hub genes in Table 1.

Correlation and expression of hub genes

Correlation analysis of the nine core genes in
GSE58144 indicated that: ACTL6A expression is positively
correlated with SNRPD1, POLR1B, PPP2CA, RBBP7, PLK4, and
RFC4, and negatively correlated with GSK3B. Notably, the gene
expression of GSK3B exhibited a significant negative correlation to
all other genes (Figure 10B).

Moreover, the expression levels of ACTL6A, BECN1, SNRPD1,
POLR1B, GSK3B, PPP2CA, RBBP7, PLK4, and RFC4 were presented
in the heatmap from all three datasets (Figure 10C). Specifically,
GSK3B and BECN1 had significantly enhanced expression in RIF in
dataset GSE111974 (p < 0.05). However, the levels of expression of
POLR1B, SNRPD1, PPP2CA, PLK4, RBBP7, and RFC4 were
substantially lower in RIF (p < 0.05). Compatible with the above
findings, the expression of GSK3B was also markedly elevated in RIF

versus control in dataset GSE103465, but SNRPD1 and PPP2CA had
lower expression in RIF (p < 0.05). BECN1 exhibited higher gene
expression in GSE58144 (p < 0.05), while ACTL6A, PLK4, RBBP7,
and RFC4 displayed lower expression levels in the RIF group.

We further confirmed the expression of nine hub genes via qRT-
PCR in our mid-luteal phase endometrial samples. The results were
in accordance with the above-described heatmap, i.e., BECN1 and
GSK3B were overexpressed in RIF compared to normal endometrial
tissues. Meanwhile, ACTL6A, POLR1B, SNRPD1, PPP2CA, PLK4,
RBBP7, and RFC4 were significantly lower expressed (Figure 11).

Diagnostic value of hub genes

ROC analysis was employed for the validation of diagnostic
effectiveness of the hub genes for RIF using the GSE58144 dataset.
Figure 10D depicts the AUC values for RFC4, ACTL6A, and RBBP7
were 0.669 (95% CI 0.564–0.763), 0.634 (95% CI 0.529–0.733), and
0.626 (95% CI 0.518–0.729), respectively. Consequently, it appears
that these key genes from the PPI subgroups do not perform well in
the diagnosis of RIF (Figure 10D).

Infiltration of immune cells in RIF

Using “cibersoft” package in R, we identified the infiltration
landscape of 22 immune cell subpopulations in RIF by evaluating the
GSE58144 dataset (72 RIF VS 43 Control). Figure 12A presents that

FIGURE 9
PPI network construction and identification of hub genes. (A) The protein–protein interaction network of the overlapped genes. Key genes identified
by “cytoHubba” according to three algorithms “Closeness,” “Radiality” and “Stress” (B–D), respectively. The significance of key genes (top 12) gradually
increases from yellow to red.
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FIGURE 10
(A) The Venn diagram of Hub genes based on three-character calculations from the key modules. (B) Correlation analysis between the nine core
target genes from GSE58144, where red represents positive correlation, green represents negative correlation, the darker the color, the higher the
correlation. (C) Heatmap of the nine Hub genes that are differentially expressed in the GSE58144, GSE103465 and GSE111974 datasets. (D) The
GSE58144 dataset was used to validate the diagnostic effectiveness of the Hub genes for RIF by ROC analysis.

TABLE 1 Basic information of hub genes.

Name Ensembl ID Entrez
ID

Description Location GSE58144 logFC GSE103465 logFC GSE111974 logFC

ACTL6A ENSG00000136518 86 actin like 6A 3q26.33 −0.066958543 −0.700489152 −0.141454232

BECN1 ENSG00000126581 8678 beclin1 17q21.31 0.055723909 −0.10473403 0.284900327

SNRPD1 ENSG00000167088 6632 small nuclear
ribonucleoprotein
D1 polypeptide

18q11.2 0.041244512 −0.916550697 −0.360648972

POLR1B ENSG00000125630 84172 RNA polymerase I
subunit B

2q14.1 0.001156466 −0.703161264 −0.364147815

GSK3B ENSG00000082701 2932 glycogen synthase
kinase 3 beta

3q13.33 0.028225035 0.683436005 0.276002608

PPP2CA ENSG00000113575 5515 protein
phosphatase
2 catalytic subunit
alpha

5q31.1 −0.0092738 −0.822149207 −0.323529476

RBBP7 ENSG00000102054 5931 RB binding
protein 7

Xp22.2 −0.127488827 −0.091099307 −0.425808395

PLK4 ENSG00000142731 10733 polo like kinase 4 4q28.1 −0.101203559 0.088755112 −0.899178805

RFC4 ENSG00000163918 5984 replication factor
C subunit 4

3q27.3 −0.085060137 −0.512679937 −0.458995653
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every sample composed of 22 types of immune cells was presented in
a histogram. In the histogram, the color indicates the proportion of
various immune cells in all samples, and the sum equals 1. Results
indicated that T cells CD4 memory resting, T cells CD4 memory
activated, NK cells stimulated, macrophages M1, macrophages M2,
dendritic cells stimulated, and mast cells resting were the
predominant infiltrating immune cells, suggesting that memory
CD4 T cells and NK cells were the two most abundant immune
cells in the RIF group.

Hub genes Association with differential
immune cells

We further investigated the relationship between nine hub genes
and immune cell infiltration. Correlation analysis results are
presented in the following (Figure 12).

BECN1 showed positive correlation with macrophages M0
(cor = 0.347636451, p = 0.022), but adversely with eosinophils
(cor = −0.327840586, p = 0.032) and macrophages M2
(cor = −0.334793114, p = 0.028) (Figure 12B). GSK3B was
positively associated with B cells naive (cor = 0.341707789, p =

0.025) and negatively associated with gamma delta T cells
(cor = −0.448673168, p = 0.003) (Figure 12C). PPP2CA
presented a positive correlation with macrophages M0 (cor =
0.435657589, p = 0.003) and T cells regulatory Tregs (cor =
0.334876257, p = 0.028) but adversely with macrophages M2
(cor = −0.382965871, p = 0.011) (Figure 12D). RBBP7 presented a
negative association with B cells naive (cor = −0.409504551, p =
0.006) (Figure 12E). RFC4 presented a positive association with
monocytes (cor = 0.306495744, p = 0.046) (Figure 12F). SNRPD1
was adversely associated with macrophage M1
(cor = −0.326801828, p = 0.032) (Figure 12G).

The function of nine hub genes in RIF

To further elucidate the nine hub genes function, correlation
analysis between hub genes and all other genes was performed in RIF
using the GSE58144 database. As shown in the heatmap (Figures
13A–I), the top 50 most positively associated genes with ACTL6A,
BECN1, GSK3B, PLK4, POLR1B, PPP2CA, RBBP7, RFC4, and
SNRPD1, respectively, were selected for subsequent
enrichment analysis.

FIGURE 11
qRT-PCR analysis of the 9 hub genes expression in the indicated groups. Validation of the expression of these 9 hub genes in our study sample. (A)
BECN1, (B) GSK3B, (C) ACTL6A, (D) POLR1B, (E) SNRPD1, (F) PPP2CA (G), PLK4 (H) RBBP7, (I) RFC4.
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In accordance with the above correlation analysis findings, the
functional pathways enrichment analysis of nine hub genes was
conducted using GSEA against the Reactome database. Ridge plot
(Figures 14A–I) indicated that the processing of rRNA in the
nucleus and cytosol, Influenza Viral RNA transcription and
replication, and processing of rRNA were significantly
enriched in ACTL6A. The situation of other genes can be
easily identified in the ridge plot, which is not shown in
detail here.

Discussion

Up to now, RIF is still not well understood and is an unsolved
issue in the field of assisted reproduction, causing significant mental
stress, economic strain for families, also several societal issues. Thus,
it is vital to examine the potential genetic basis of aberrant
endometrial gene expression profiles in patients with RIF to
identify better and more accurate biomarkers for diagnosis
and treatment.

FIGURE 12
Immune cell infiltration in RIF and Control tissues. (A) The composition of 22 kinds of immune cells in each sample was showed in a histogram. (B–G)
Correlation of the expression of 9 hub genes with the infiltration of immune cells from GSE58144.
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First, we identified DEGs in the endometrium during the
implantation period between RIF and healthy fertile control,
which yielded 8 upregulated and 20 downregulated overlapping
genes with stable differences in the three-chip datasets. In the further
functional exploration of these DEGs, the GO-BP analysis revealed
that mitotic cell cycle phase transition, negative control of transport,
control of intracellular transport, post−translational protein
modification, nucleocytoplasmic transport, and nuclear transport
were significantly enriched, which are closely related to the
maintenance of body homeostasis. Maintaining cellular
homeostasis in the endometrium under oxidative stress is
thought to be essential for pregnancy (Qin et al., 2016). A recent
study found that downregulation of Sirtuin1 (SIRT1) disrupted the
intracellular reactive oxygen species (ROS) homeostasis during the
decidualization of human endometrial stromal cells (ESCs) in RIF
patients (Li et al., 2021). Although there is no report on the
relationship between the above functions and RIF, any imbalance

in cellular and molecular endometrial homeostasis may lead to
reproductive diseases (Kolanska et al., 2021), raising the
possibility that they may cause embryo implantation failure in
RIF. This warrants clarification with further studies.

Moreover, the enrichment of KEGG pathways for prevalent
DEGs demonstrates that Herpes simplex virus 1 infection and
Salmonella infection could contribute significantly to RIF.
Throughout the human body, microbial communities assemble
into distinguishing and stable ecological systems, usually referred
to as the “another human genome,” which participates in the
internal environment and homeostasis of human body. The
female reproductive tract contains different bacterial
communities, forming a continuous microbial population from
the vagina to the ovary (Chen et al., 2017). It has been shown
previously that the abundance of Lactobacillus in the vagina has been
positively associated with pregnancy outcomes. Compared to
individuals who attained clinical pregnancy during the first

FIGURE 13
The heatmap of the correlation analysis between the 9 hub genes and other all genes in RIF tissues from GSE58144, where red represents positive
correlation, blue represents negative correlation; the deeper the color, the stronger the correlation. Each column of the heatmap represents one sample
and each row represents one gene. The heatmaps showed the top 50most positively associated significant genes with (A) ACTL6A, (B) BECN1, (C)GSK3B,
(D) PLK4, (E) POLR1B, (F) PPP2CA, (G) RBBP7, (H) RFC4 and (I) SNRPD1, respectively.

Frontiers in Genetics frontiersin.org13

Liu et al. 10.3389/fgene.2024.1292757

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1292757


frozen embryo transfer cycle, patients with unexplained RIF
exhibited significantly reduced Lactobacillus spp in vaginal canals,
and the α-diversity of microbial communities from unexplained RIF
was higher than control samples. Moreover, altered Lactobacillus-
dominated endometrial microbiota has been reported to cause
endometritis (Moreno et al., 2016), and some studies suggested
an association of chronic endometritis (CE) with miscarriage and
implantation failure (Cicinelli et al., 2015). A prospective cohort
study (n = 241) reported that the prevalence of CE in the RIF

population was up to 33.7% (Kitaya et al., 2017). In combination
with the findings of present investigation, we conclude that an
imbalance of Lactobacillus-dominated endometrial microbiota
can contribute to implantation failure.

Traditional DEG-based screening methods have the
disadvantage of locally exploring the dataset, which is most likely
to lack master molecules. Encouragingly, WGCNA can effectively
detect co-expression modules and genes in the biological system as a
whole, which has been widely utilized to discover potential

FIGURE 14
The ridge plot of gene set enrichment analysis (GSEA) against the Reactome pathways (top 20) for the 9 hub genes. Significant GSEA results of the
top 50 genes most positively or negatively associated with (A) ACTL6A, (B) BECN1, (C)GSK3B, (D) PLK4, (E) POLR1B, (F) PPP2CA, (G) RBBP7, (H) RFC4 and
(I) SNRPD1, respectively.
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biomarkers or treatment targets. The current result revealed that
infection with Herpes simplex virus 1, Amyotrophic lateral sclerosis,
and the Hippo signaling pathway were significantly associated with
genes in the brown and grey modules, while the genes in the two
above modules were a significant negative association with RIF. The
Hippo signaling pathway is a signaling mechanism with high
conservation that regulates endometrial physiology in a
substantial way (Zhu et al., 2017). Previous research uncovered
that the upregulation of LATS1 and MOB kinase activator 1A is
implicated in RIF patients’ Hippo signaling pathway (Bastu et al.,
2019). However, there is no research on the genes related to
amyotrophic lateral sclerosis. We hypothesized that dysregulated
genes contribute to the progression of RIF via these
potential pathways.

According to genes that exhibited a strong association with
RIF recognized via WGCNA, the intersected genes with the
previous DEGs were obtained with both variance and
association. Notably, the nine hub genes listed below were
ultimately chosen: ACTL6A, BECN1, SNRPD1, POLR1B,
GSK3B, PPP2CA, RBBP7, PLK4, and RFC4, based on the PPI
network and three algorithms (“Closeness,” “Radiality,” and
“Stress”). The levels of expression of the nine hub genes were
significantly varied between RIF versus control tissues.
Particularly, the expressions of BECN1 and GSK3B were
significantly elevated, whereas ACTL6A, POLR1B, SNRPD1,
PPP2CA, PLK4, RBBP7, and RFC4 exhibited remarkably
decreased expression levels in RIF tissues, which were also
verified by RT-qPCR in our independent samples containing
RIF patients and control. Nevertheless, the diagnostic
effectiveness of aforementioned genes for RIF was low. Based
on ROC analysis, suggesting on this hand that RIF is a clinical
difficulty with heterogeneous etiologic factors and complicated
pathogenesis. On the other hand, its diagnosis mainly depends on
the special clinical manifestations, and it is currently hard to
predict by genetic testing.

BECN1 and LC3B expressions are widely used as autophagic
markers. A previous study found that autophagy is drastically
enhanced in RIF endometrial tissues and could be implicated in
the pathogenesis of RIF(Zhu et al., 2022). Similarly, our result
showed that endometrial BECN1 is upregulated in the RIF
patient compared to normal endometrium. Mehdinejadiani, S.
et al. discovered that the GSK3B abnormal expression was
negatively impacted in the endometrium of women stimulated
by clomiphene citrate in comparison with letrozole in polycystic
ovary syndrome, primarily liable for the thin
endometrium(Mehdinejadiani et al., 2019). This result was
consistent with our study, which demonstrated that GSK3B
had considerably enhanced expression in RIF. Besides,
SNRPD1, one of the key genes encoding core spliceosome
constituents, and its elevated protein expression in somatic
cells was associated with kidney injury and pulmonary
hypertension in systemic lupus erythematosus (SLE) patients
(Hu et al., 2017). It has been reported that SNRPD1 could be
an oncogene that affects the development of hepatocellular
carcinoma by controlling the mTOR pathway and autophagy
(Wang et al., 2022). Moreover, PLK4, an essential member of the
polo-like serine-threonine kinase family, is required for centriole
duplication regulation. The aberrant expression of PLK4 resulted

in tripolar mitosis and aneuploidy in human preimplantation
embryos [25], which led to RIF. ACTL6A is an ATP-dependent
SWI/SNF regulatory complex protein with chromatin-
remodeling components (Mani et al., 2017). Recent studies
revealed that follicle-stimulating hormone (FSH)-stimulated
glycolysis in ovarian malignancy comprised a higher level of
the poor prognostic factor ACTL6A, which forecasted metastasis
and prognosis of ovarian cancer patients (Chen et al., 2023).
POLR1B, which encodes DNA-directed RNA polymerase I
subunit RPA2, has been linked to Treacher Collins and may
be involved in cluster headaches (Harder et al., 2021). PP2A
catalytic subunit (PP2Aca) was encoded by the PPP2CA gene. A
recent investigation revealed that PPP2CA variant alleles are
significantly correlated with susceptibility to SLE (Zhang et al.,
2018). RBBP7 is a key element of several complexes for
chromatin remodeling and histone modification, that is
upregulated in numerous types of cancer and plays
contradictory roles in tumors development (Wang et al.,
2022). The RFC4 gene, which encodes the fourth biggest
subunit of RFC complex, has been found to be dysregulated in
a variety of cancers, including head-and-neck squamous cell,
hepatocellular, colonic, prostate, and cervical carcinomas (van
Dam et al., 2018). However, little relevant studies have been
performed to decipher the role of above core genes in
endometrial implantation. Hypothetically speaking, key genes
mentioned above might be involved in the RIF through impairing
autophagy and disturbing proliferation of endometrium, which
needs to be further explored.

Embryo quality, embryo endometrium interaction, and
endometrial receptivity are essential for successful
implantation, and about two-thirds of implantation failures
are attributable to insufficient endometrial receptivity (Koler
et al., 2009). In particular, well-balanced immune status in the
endometrium has been documented as an important determinant
of endometrial receptivity. Benefiting from the edge of
CIBERSORT to conduct a thorough evaluation of immune cell
infiltration, the current study revealed that CD4+ T cells and NK
cells were the significantly altered cell types in the RIF
endometrium. Around the period of embryo implantation, the
maternal immune system undergoes significant immunological
changes, including enrichment in the different immune cells in
peripheral circulation and the uterine microenvironment. These
modifications provide an immunologically tolerant environment
protecting embryos expressing paternal antigen from maternal
antigen-specific T cells and promote successful implantation
(Ledee et al., 2016). During embryo implantation, the
maternal immune system is comprised of a unique imbalance
of subtypes of T lymphocytes (CD4+ T cells and killer T cells)
which are emerging as a prevalent cause of infertility (Lee et al.,
2011). An increasing number of studies showed that in RIF,
dysregulation of involved immune cells, including uterine NK
(uNK), regulatory T (Tregs), and T-helper cells, have been
identified [35-37]. While they interacted during the maternal
hemodynamic response to embryo implantation, the changed
presence of T cells is also related to lower uNK effectiveness in
decidual vessel remodeling (Kieckbusch et al., 2014). Throughout
trophoblast invasion, abnormal uNK activity may result in
unfavorable effects, including vascular remodeling, local
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ischemia, and oxidative stress, which are damaging to
implantation (Donoghue et al., 2019). Moreover, one report
suggested that RIF patients with CE exhibited a substantial
overexpression of uterine CD68(+) macrophages, CD83(+)
mature dendritic cells, CD8(+) T cells, and Foxp3(+)
regulatory T cells, which may contribute to decreased
endometrial receptivity and repeated pregnancy failures (Li
et al., 2020). Compared to healthy controls, the fraction of
CD56+ uNK was significantly higher in individuals with RIF,
indicating that the intrauterine immunological state of patients
with RIF has altered (Von Woon et al., 2022). Consequently, the
current findings are in line with earlier reports and demonstrate
the significance of these immune cells in RIF pathogenesis,
whereas the accurate molecular mechanism needs
further research.

Considering the significance of immune infiltration cells and
hub genes in RIF, more research reveals that the role of six hub genes
(BECN1, GSK3B, PPP2CA, RBBP7, RFC4, and SNRPD1) was
considerably associated with immune cells. For example, both
BECN1 and PPP2CA exhibited a positive correlation with
macrophage M0 and a negative correlation with macrophage M2.
The BECN1 can promote the autophagy process of macrophages
and regulate the immune response of macrophages. A recent study
has reported that PPP2CA downregulation improved NF-κB
signaling and stimulated macrophage expression of IL-1b, IL-6,
and TNF-α (Guo et al., 2020). The outcomes of correlation analysis
revealed that hub genes were primarily enhanced in macrophages,
eosinophils, B cells, monocytes, and T cells regulatory Tregs,
suggesting that the above hub genes may have a function in the
incidence and progression of RIF through controlling corresponding
immune cells; this hypothesis should be validated in future studies.
Last but not least, according to our understanding, this work
describes a previously unreported approach through which the
ridge plot can display a clear and crucial association between hub
genes and other genes and key pathways. This may be a direction for
the next study of RIF mechanism.

Compared to previous studies (Wang and Liu, 2020; Dong et al.,
2023; Lai et al., 2023), we first used three comprehensive microarray
datasets GSE58144 (Koot et al., 2016), GSE103465 (Guo et al., 2018),
and GSE111974 (Bastu et al., 2019) comprising 99 RIF and
70 normal endometrial tissues, and both enrichment analysis and
WGCNA were conducted to distinguish hub genes associated with
RIF. The WGCNA has made the greatest contribution to finding
association patterns among genes across samples and interpreting
the direct biological role of gene network modules, which makes our
results more effective and reliable. In particular, we have
validated this study’s results through RT-qPCR in our
30 independent samples. However, some limitations should be
acknowledged in the current study. First, since the GEO datasets
were exploited retrospectively, no additional clinical information
about the patients is available, which could cause some deviations
in the analysis of our results. Second, the three datasets come
from multiple, heterogeneous studies with different populations,
these discrepancies might be related to ethnic differences. Third,
although the RNA expression patterns of nine key genes were
validated in the present study through laboratory experiments,
we did not evaluate their expression profiles on the protein level.
Last but not least, exploring the expression profiles of the hub

genes in previously published single-cell endometrial datasets
could unveil specific cell types or state that play a role in the
pathogenesis of RIF. We will collect more endometrial samples
and single-cell endometrial datasets for more in-depth study in
the future.

Conclusion

In conclusion, we first utilized WGCNA to identify the most
potential hub genes (ACTL6A, BECN1, SNRPD1, POLR1B, GSK3B,
PPP2CA, RBBP7, PLK4, and RFC4), which might be associated with
RIF. Meanwhile, this study offers insights into the landscape of
immune infiltration status to reveal the underlying immune
pathogenesis of RIF. This may be a direction for the next study
of RIF etiology. Further studies would be required to investigate the
involved mechanisms.
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