
Elucidating the role of TWIST1 in
ulcerative colitis: a
comprehensive bioinformatics
and machine learning approach

Wenjie Ou1, Zhaoxue Qi2, Ning Liu3, Junzi Zhang1, Xuguang Mi4,
Yuan Song5, Yanqiu Fang4, Baiying Cui1, Junjie Hou6* and
Zhixin Yuan7*
1School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China,
2Department of Secretory Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China,
3General Surgery of The First Clinical Hospital of Jilin Academy of Chinese Medicine Sciences,
Changchun, Jilin, China, 4Department of Central Laboratory, Jilin Provincial People’s Hospital,
Changchun, Jilin, China, 5Department of Gastroenterology, Jilin Provincial People’s Hospital,
Changchun, Jilin, China, 6Department of Comprehensive Oncology, Jilin Provincial People’s Hospital,
Changchun, Jilin, China, 7Department of Emergency Surgery, Jilin Provincial People’s Hospital,
Changchun, Jilin, China

Background: Ulcerative colitis (UC) is a common and progressive inflammatory
bowel disease primarily affecting the colon and rectum. Prolonged inflammation
can lead to colitis-associated colorectal cancer (CAC). While the exact cause of
UC remains unknown, this study aims to investigate the role of the
TWIST1 gene in UC.

Methods: Second-generation sequencing data from adult UC patients were
obtained from the Gene Expression Omnibus (GEO) database. Differentially
expressed genes (DEGs) were identified, and characteristic genes were
selected using machine learning and Lasso regression. The Receiver Operating
Characteristic (ROC) curve assessed TWIST1’s potential as a diagnostic factor
(AUC score). Enriched pathways were analyzed, including Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation
Analysis (GSVA). Functional mechanisms of marker genes were predicted,
considering immune cell infiltration and the competing endogenous RNA
(ceRNA) network.

Results: We found 530 DEGs, with 341 upregulated and 189 downregulated
genes. TWIST1 emerged as one of four potential UC biomarkers via machine
learning. TWIST1 expression significantly differed in two datasets, GSE193677 and
GSE83687, suggesting its diagnostic potential (AUC = 0.717 in GSE193677, AUC =
0.897 in GSE83687). Enrichment analysis indicated DEGs associated with
TWIST1 were involved in processes like leukocyte migration, humoral immune
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response, and cell chemotaxis. Immune cell infiltration analysis revealed higher
rates of M0macrophages and resting NK cells in the high TWIST1 expression group,
while TWIST1 expression correlated positively withM2macrophages and resting NK
cell infiltration. We constructed a ceRNA regulatory network involving 1 mRNA,
7 miRNAs, and 32 long non-coding RNAs (lncRNAs) to explore TWIST1’s
regulatory mechanism.

Conclusion: TWIST1 plays a significant role in UC and has potential as a diagnostic
marker. This study sheds light on UC’s molecular mechanisms and underscores
TWIST1’s importance in its progression. Further research is needed to validate these
findings in diverse populations and investigate TWIST1 as a therapeutic target in UC.

KEYWORDS

ulcerative colitis (UC), Twist1, bioinformatics, machine learning, gene expression omnibus
(GEO) database, differentially expressed genes (DEGs), diagnostic marker

1 Introduction

Ulcerative Colitis (UC) is a chronic form of Inflammatory Bowel
Disease (IBD) primarily affecting the colon and rectum. The exact cause
of UC remains elusive, although several factors, including genetics,
environmental triggers, and immune responses, are believed to play
pivotal roles in its onset (Kobayashi et al., 2020). While the incidence of
adult UC in Asia has historically been relatively low, there has been a
noticeable increase in recent years (Du and Ha, 2020). UC not only
significantly impairs the quality of life for affected individuals but, in
severe cases, also raises the risk of developing colitis-associated
colorectal cancer (CAC) (Yashiro, 2014). Hence, the exploration of
potential risk markers highly correlated with the occurrence and
progression of UC is of paramount importance.

TWIST1, a basic helix-loop-helix (bHLH) transcription factor, was
initially identified during embryonic development and plays a pivotal
role in cellular migration, differentiation, and morphogenesis (Murre
et al., 1989; Jan and January 1993; Kadesch, 1993). In oncological
research, the Twist1 gene has garnered significant attention due to its
cardinal role in tumor invasion and metastasis (Ren et al., 2016;
Ghafouri-Fard et al., 2021). However, the implications of the
Twist1 gene in UC remain largely uncharted. A study from June
2018 highlighted that the expression of TWIST1 protein was
markedly elevated in tissues from both UC and CAC, and it was
closely associated with tissue cellular apoptosis (Anonymous, 2023).
Limitations of this study include the exclusive use of
immunohistochemistry techniques to investigate gene expression
levels within tissues. As a result, it did not explore the correlation
between TWIST1 expression and immune factors closely associated
with the occurrence and development of UC and CAC. Furthermore, it
did not investigate the relationship between TWIST1 expression and
the activity of UC. The search for transcriptional regulators of
TWIST1 and the exploration of its regulatory targets were also
omitted, although these aspects are considered indispensable.

With the advent of bioinformatics and high-throughput
sequencing technologies, researchers have pinpointed several
genes and pathways intrinsically linked to UC, offering fresh
insights into its intricate pathophysiological mechanisms
(Kakiuchi et al., 2020; Tong et al., 2021; Xu et al., 2022).
Bioinformatics provides a robust analytical framework for
identifying pivotal genes associated with UC and analyzing their
expression significance. This study harnesses the second-generation

sequencing data of adult UC from the Gene Expression Omnibus
(GEO) database to probe potential aberrations in the expression
levels of the TWIST1 gene. Additionally, the burgeoning field of
machine learning bestows capabilities in predictive modeling and
pattern discernment, proving indispensable in the interpretation of
multifaceted biological datasets. Functional enrichment analysis
further facilitates a profound comprehension of the biological
intricacies of genes. By juxtaposing differentially expressed genes
(DEGs) with functional databases, we endeavor to unveil the
biological pathways and processes in which TWIST1 partakes,
thereby delving into its prospective role in UC pathogenesis. This
research aspires to elucidate the nexus between the TWIST1 gene
and UC, fortifying our understanding of its disease mechanisms and
informing future therapeutic paradigms.

2 Materials and methods

2.1 Selection and download of the
UC dataset

We retrieved matrix files from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/) that contained samples of normal human
intestinal mucosal tissue and intestinal mucosal tissue from adult
patients with UC. Our selection process followed specific criteria: (1)
The data pertained to high-throughput sequencing expression
profiles of Homo sapiens; (2) The samples included biopsied
intestinal mucosal tissue from both healthy adults and UC
patients; (3) Samples were taken from patients with active clinical
disease; (4) Each dataset contained over 6 samples; (5) All the
included samples had not been subjected to drug treatment; (6)
The dataset provided comprehensive information about each
sample. As a result, we identified two datasets for our study. The
first, GSE193677 (Argmann et al., 2023), encompassed a total of
461 samples from healthy human subjects (control group) and
126 samples from patients with UC (treatment group).
Furthermore, for subsequent validation, we opted for the
GSE83687 (Peters et al., 2017) datasets, consisting of 60 samples
from healthy human colon tissue and 32 samples from UC-affected
colon tissue, as depicted in Table 1. It is worth noting that data from
the GEO database is readily accessible to the public, obviating the
need for local ethics committee approval.
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2.2 Correction, screening and visualization
of differentially expressed genes

After downloading the matrix files from the GEO database, we
proceeded to process and annotate them utilizing both Perl language
(version 32), R language (version 4.30), and Excel. DEGs were
derived by subjecting the sample data to filtration through the R
limma package. Our filtration criteria encompassed |Log Fold
Change (FC)| > 1, and the ensuing p-values underwent
correction while controlling the false discovery rate (FDR),
resulting in an adjusted p-value (Q value) < 0.05. Subsequently,
the chosen DEGs were subject to visualization and analysis, and the
outcome was the generation of heat maps and volcano plots.

2.3 Utilizing machine learning for the
identification of disease-related genes

We proceeded to employ machine learning techniques for the
additional screening of the acquired DEGs, with the objective of
pinpointing genes with a high degree of association with UC. TWO
distinct machine learning algorithms, namely, the Least Absolute
Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) and
the Support Vector Machine with Recursive Feature Elimination
(SVM-RFE) (Suykens and Vandewalle, 1999), were employed to
effectively sift through the pool of DEGs. Finally, R venn package
was use to obtain their intersection genes. This enabled us to
pinpoint potential disease biomarkers with remarkable precision.

2.4 Validation of TWIST1 expression and
diagnostic value

In the GSE193677 and GSE83687 datasets, t-test was employed
to compare the expression levels of TWIST1 between the UC
experimental group and the control group. Sensitivity and
specificity of TWIST1 were determined through Receiver

TABLE 1 Information for selected microarray datasets.

GEO accession Samples Country Attribute

Con UC

GSE193677 461 126 United States Test set

GSE83687 60 32 United States Validation set

FIGURE 1
The flowchart of the analysis.
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Operating Characteristic (ROC) (Kumar and Indrayan, 2011) curve
analysis using the R pROC package. These results were visually
depicted using the R ggplot2 package.

Furthermore, Clinical information data for the
GSE193677 dataset were obtained, and clinical disease activity
was categorized as active or inactive. Kruskal–Wallis tests were

FIGURE 2
The heatmap and a volcano plots. (A) The heatmap of DEGs distribution; (B) The volcano plots of DEGs. Red represented a high expression of DEG,
while blue represented a low expression of DEG.
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FIGURE 3
Screening of disease-related genes by machine learning. (A, B) Regression coefficient path diagram and cross-validation curves in LASSO logistic
regression algorithm.; (C, D) The curve of change in the predicted true and error value of each gene in SVM-RFE algorithm.; (E) Venn diagram
demonstrates the intersection of diagnostic markers obtained from the three algorithms.
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FIGURE 4
Receiver operating characteristic (ROC) curve, expression difference of TWIST1 gene and correlation between TWIST expression and disease activity
in UC. (A, B) ROC curve and differential expression in GSE193677; (C, D) ROC curve and differential expression in GSE83687; (E) Boxplot of correlation
between TWIST and UC clinical manifestation activity.
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conducted to assess the association between clinical disease
activity and TWIST1 expression levels in both the UC
experimental group and the control group. Statistical
significance was defined when the p-values from both tests
were below 0.05.

2.5 Difference analysis based on the median
value of TWIST1 gene expression

Within GSE193677, division into two distinct groups was
undertaken based on the distinct levels of TWIST1 expression.

FIGURE 5
Heat map and volcano map based on the high and low expression groups of TWIST1 gene. (A) The heatmap of DEGs; (B) The volcano plots of DEGs.
Red represented a high expression of DEG, while blue represented a low expression of DEG.
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Employing identical methods and parameters outlined earlier, DEGs
were filtered within these two groups, categorized as TWIST1 high-
and low-expression groups. Analysis of DEGs between these
groupings was executed via the R “Limma” package, and
differential expression was visualized utilizing the R “ggplot2″
package through the creation of volcano plots (p-values below
0.05 and |log2FC| exceeding 1).

2.6 Functional enrichment and gene
regulatory networks analysis

Utilizing the R “clusterProfiler” package (Yu et al., 2012), Gene
Ontology (GO) (Ashburner et al., 2000) analysis was conducted
between elevated and diminished TWIST1 expression levels within
UC samples to elucidate the implicated biological processes (BP),
molecular functions (MF), and cellular components (CC). The
identification of signaling pathways linked to TWIST1-associated
DEGs was accomplished through Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Ogata et al., 1999) pathway analysis. Utilizing
the “GSVA” package in R (Hänzelmann et al., 2013), the UC dataset
was transformed into a gene set expression matrix. Gene Set
Variation Analysis (GSVA) was then employed to meticulously
examine the variations in GO and KEGG enrichment between
the TWIST1 high-expression and low-expression groups.

Notably, to achieve significant enrichment, the |t| value was
mandated to exceed 5 for the Hallmark genome.

Adhering to the ceRNA hypothesis, predictions of TWIST1-
boundmiRNAs were derived using the TargetScan database (https://
www.targetscan.org/vert_80/), miRDB database (http://www.mirdb.
org/), and the Miranda database (https://cbio.mskcc.org/
miRNA2003/miranda. html). Simultaneously, the spongeScan
database (https://bioinformaticshome. com/index. html) was
employed for the prediction of associated lncRNAs. The resultant
networks were subsequently fine-tuned and visually represented
using Cytoscape 3.92 software (Otasek et al., 2019).

2.7 Immune cell infiltrates and correlation
between TWIST1

The quantification of 22 immune cell types within UC samples
was accomplished through the utilization of the “CIBERSORT”
software package (Newman et al., 2015). For a more in-depth
analysis, exclusively data with a CIBERSORT value below p <
0.05 were retained. This selective process yielded a matrix
detailing the fractions of immune cells present. The evaluation of
immune infiltration disparity between the TWIST1 high expression
and low expression groups was conducted via the Wilcoxon rank
sum test. Employing the “boxplot” function within the R software

FIGURE 6
GO enrichment and KEGG analysis of DEGs. (A) Bubble plot of enriched GO terms. (B) Circos diagram of enriched GO terms. (C) Bubble plot of
enriched KEGG terms. (D) Circos diagram of enriched GO terms. BP, biological process; CC, cellular component; MF, molecular function.
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package, we visually depicted the contrast in immune cell infiltration
levels between the two TWIST1 expression groups.

Moreover, we conducted Spearman correlation analysis to
investigate the potential linkage between TWIST1 expression and
immune cell infiltration. For visualization purposes, the R
ggplot2 package was harnessed, allowing us to graphically
represent these associations.

3 Results

3.1 Findings from genes exhibiting
differential expression

The schematic portrayal of our study’s methodology is depicted
(Figure 1). Inclusion comprised of 461 samples obtained from healthy
human intestinal mucosal biopsies (con group) and 126 samples from
patients with active colonic mucosal tissue affected by UC (treat group),
all sourced from the GSE193677 datasets. A comprehensive screening
yielded a tally of 530 DEGs, encompassing 341 genes exhibiting

upregulation and 189 genes manifesting downregulation, as
highlighted (Figures 2A, B).

3.2 Machine learning to screen potential
biomarkers and its diagnostic value

The LASSO logistic regression method pinpointed 87 genes as
potential UC biomarkers (Figures 3A, B). Subsequently, we selected
features and identified 4 optimal UC candidate genes through SVM-
RFE (Figures 3C, D). The overlap between the two algorithms yielded a
set of 4 genes: S100 Calcium Binding Protein P (S100P), The G protein-
coupled receptor 15 (GPR15), Twist Family BHLH Transcription
Factor 1 (TWIST1), and Rho Family GTPase 1 (RND1) (Figure 3E).

TWIST1 displayed significant expression differences in both
GSE193677 and GSE83687 (Figures 4A, B). ROC curves were
generated using data from GSE193677 and GSE83687, revealing
TWIST1’s AUC to be 0.717 (95% confidence interval: 0.658–0.774)
and 0.897 (95% confidence interval: 0.804–0.970) in GSE193677 and
GSE83687, respectively (Figures 4C, D). In the GSE193677 dataset, a

FIGURE 7
The analysis of GSVA indicates functional and pathway differences between high- and low-risk subgroups. (A, B) Variations in the terms of GO and
KEGG pathways evaluated by GSVA between the TWIST1 high- and low-expression groups. The T values are shown using a linear model. The red column
represents high enrichment in high expression groups, whereas the green column represents high enrichment in low expression groups.
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significant correlation was observed between high expression levels
of TWIST1 and active clinical manifestations of UC (Figure 4E).

3.3 Identification of DEGs and
enrichment analysis

Within the UC sample of the GSE193677 dataset, a total of
1,518 DEGs were observed between the TWIST1 high expression
and TWIST1 low expression groups, comprising 837 upregulated
and 681 downregulated DEGs (Figure 5A, B).

The GO enrichment analysis demonstrated that DEGs associated
with BP were predominantly linked to activities such as leukocyte
migration, humoral immune response, response to molecules of
bacterial origin, response to lipopolysaccharide, and cell chemotaxis.
For MF, DEGs were primarily engaged in receptor-ligand activity,
channel activity, metal ion transmembrane transporter activity, and
cytokine activity. Concerning CC, the distribution of DEGs was
prominently observed in the collagen-containing extracellular matrix,
apical part of the cell, and apical plasmamembrane (Figures 6A, B). The
KEGG pathway enrichment analysis unveiled the enrichment of DEGs
in pathways including Cytokine-cytokine receptor interaction, Viral
protein interaction with cytokine and cytokine receptor, as well as
Complement and IL-17 signaling (Figures 6C, D).

GSVA was conducted to further explore the terms of GO and
KEGG pathways between the TWIST1 high- and low-expression
groups. Top 20 upregulated terms of GO and KEGG pathways were
shown (Figures 7A, B). The results of the most significant
enrichment of the two groups were shown in Table 2.

3.4 CeRNA network construction of
TWIST1 gene

The Supplementary Table S1 showcased the outcomes of
mRNA-miRNA and lncRNA-miRNA analyses. We recognized
11 lncRNAs and 8 miRNAs, establishing their interactions
through predictions and validations across databases like
starBase, miRcode, Miranda, and TargetScan. The intricate
interactions were graphically depicted using Cytoscape (Figure 8).

3.5 Infiltration of immune cells results

The infiltrated immune cells in different samples were analyzed
using CIBERSORT and the overall relative abundances of 22 types of
immune cells were shown (Figure 9A). The analysis results of
infiltration degree of 22 immune cell showed that the infiltration

TABLE 2 The results of Gene Set Variation Analysis.

KEGG term t P-value Sig

KEGG_MELANOMA −11.2803 <0.001 Down

KEGG_PATHWAYS_IN_CANCER −11.1048 <0.001 Down

KEGG_FOCAL_ADHESION −10.4825 <0.001 Down

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE −10.3610 <0.001 Down

KEGG_ECM_RECEPTOR_INTERACTION −10.3503 <0.001 Down

KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 10.5423 <0.001 Up

KEGG_FATTY_ACID_METABOLISM 10.5470 <0.001 Up

KEGG_STARCH_AND_SUCROSE_METABOLISM 11.0846 <0.001 Up

KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 11.1238 <0.001 Up

KEGG_PEROXISOME 11.2410 <0.001 Up

GO term t P-value Sig

GOBP_NEGATIVE_REGULATION_OF_GONADOTROPIN_SECRETION −15.0196 <0.001 Down

GOBP_REGULATION_OF_ENDOCRINE_PROCESS −14.7294 <0.001 Down

GOBP_REGULATION_OF_GONADOTROPIN_SECRETION −14.6998 <0.001 Down

GOCC_LAMELLIPODIUM_MEMBRANE −14.6394 <0.001 Down

GOBP_WOUND_HEALING −14.5080 <0.001 Down

GOMF_PHOSPHATIDYLINOSITOL_PHOSPHATE_5_PHOSPHATASE_ACTIVITY 12.5935 <0.001 Up

GOBP_G1_TO_G0_TRANSITION_INVOLVED_IN_CELL_DIFFERENTIATION 12.7338 <0.001 Up

GOBP_SHORT_CHAIN_FATTY_ACID_CATABOLIC_PROCESS 12.7530 <0.001 Up

GOBP_CDP_CHOLINE_PATHWAY 12.8006 <0.001 Up

GOMF_PHOSPHATIDYLINOSITOL_4_5_BISPHOSPHATE_5_PHOSPHATASE_ACTIVITY 12.8234 <0.001 Up
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of NK cells resting and Macrophages M0 was significantly different
between TWIST1 high expression group and TWIST1 low
expression group (Figure 9B). Further validation of the
correlation study indicated that the expression level of
S100A8 was correlated positively with NK cells resting and
Macrophages M0 infiltration (r = 0.51, r = 0.48, all p < 0.05)
(Figures 9C, D).

4 Discussion

UC, as one of the primary forms of IBD, is a chronic
inflammatory intestinal disorder characterized by ulcers and
inflammation within the intestinal tract (Kobayashi et al., 2020).
The rise in Western dietary habits, improved socioeconomic status,
enhanced sanitation, and advancements in vaccination have

FIGURE 8
The ceRNA regulation network of 5 lncRNAs, 2 miRNAs, and 1 mRNA in patients. The blue circle indicates lncRNAs; the green rectangle indicates
miRNAs; the red diamond indicates mRNA. lncRNA, long non-coding RNA; miRNA, microRNA.
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contributed to an increased incidence and prevalence of IBD in
Asian countries (Park and Cheon, 2021). This surge is concomitant
with a heightened occurrence of CAC. UC presents a significant
clinical challenge, with its etiology and pathogenic mechanisms
remaining largely elusive (De Souza and Fiocchi, 2016). This
study aims to elucidate the potential role of the TWIST1 gene in
UC through bioinformatics, machine learning, and functional

enrichment analyses. Our findings offer invaluable insights into
the molecular mechanisms of UC and underscore the potential of
TWIST1 as a diagnostic and therapeutic target.

The Twist1 gene encodes a transcription factor encompassing a
bHLH structural domain and is part of a protein family involved in
organogenesis regulation (Thisse et al., 1988; Jan and January 1993;
Kadesch, 1993). Recently, Twist1 has been established to play pivotal

FIGURE 9
Analysis of TWIST1 and Immune Cell Infiltrates in different UC samples. (A) The relative percent of 22 kinds of immune cells in different lung samples.
Differences in the levels of immune cells between the TWIST1 high- and low-expression groups in GSE193677. (B) Correlation analysis between
TWIST1 and infiltrating immune cells in AS samples where red represented the positive correlation with a significant difference. (C) Scatter diagram
indicating the correlation between TWIST1 expression and NK cells resting. (D) Scatter diagram indicating the correlation between
TWIST1 expression and Macrophages M0 infiltration. Correlation analysis was assessed using Pearson correlation.
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roles not only in the development of various organs and systems but
also in cancer metastasis (Yang et al., 2004; Kwok et al., 2005;
Puisieux et al., 2006; Cheng et al., 2008a; Cheng et al., 2008b; Li et al.,
2009; Fu et al., 2011). Studies have indicated a pronounced elevation
of TWIST1 protein in tissues from UC and UC-associated colorectal
cancer, with the expression intensity being greater in the latter
(Anonymous, 2023). Emerging perspectives suggest that histological
inflammation and its severity are among the strongest drivers of
CAC risk (Shah and Itzkowitz, 2022). The bHLH transcriptional
repressor - TWIST1, acting as an antagonist for NF-κB-dependent
cytokine expression, partakes in the modulation of inflammation-
induced immunopathology (Niesner et al., 2008; Li et al., 2009).
Additionally, Twist1 may also regulate Hand proteins (Hand 1 and
2) (Firulli and Conway, 2008) and Runx2 (Rice et al., 2000; Bialek
et al., 2004). These downstream targets or interacting proteins of
Twist1 are known to be involved in the development of various
mesenchymal derivatives and multiple physiological functions.

Existing research has demonstrated the diagnostic value of elevated
TWIST1 expression in UC through immunohistochemical techniques
(Anonymous, 2023). Similarly, upon acquiring high-throughput
sequencing data for UC, we categorized UC samples into high and
low TWIST1 expression groups. Through machine learning, lasso
regression, and ROC curve analysis, we validated the diagnostic
significance of elevated TWIST1 expression in UC. It is widely
recognized that immune homeostasis relies on immune cells and
molecules, such as innate immune cells like NK cells and
macrophages M0. In the UC mucosa, metabolic abnormalities in NK
cells lead to secondary infections and increased cancer risk (Zaiatz
Bittencourt et al., 2021), while macrophagesM0 play a role in promoting
mucosal immunity and inflammatory responses in UC (Peng et al.,
2023). In our study, the upregulated expression of TWIST1 in UC also
increased their impact on pro-immune and pro-inflammatory cells,
providing immunological support for the role of TWIST1 in the
progression of UC. We also conducted GO, KEGG, and GSVA
analyses on the high and low TWIST1 expression groups to explore
the pathways related to TWIST1 promoting UC development.

Upon identifying TWIST1 as a biomarker, we further predicted its
associated miRNA and lncRNA using databases. Notably, a study in
2022 postulated a close association between miR-9-5p and the
expression of NF-κB in UC tissues (Xu et al., 2022). NF-κB plays a
pivotal role in regulating immune cells and cytokines (Mantovani et al.,
2004; Wang et al., 2014), and animal studies have indicated that genetic
defects in the negative regulators of the canonical NF-κB pathway
heighten susceptibility to colonic inflammation (Zhang et al., 2006;
Vereecke et al., 2014). This regulatory axis is crucial in the onset and
progression of UC. Unfortunately, other regulatory axes identified in
our study have been scarcely researched in the context of UC,
warranting further exploration by the scientific community.

In this study, TWIST1 is highly correlated with UC, and
previous research has also indicated a strong association between
TWIST1 and UC-associated colorectal cancer (Kaz et al., 2010).
Given that UC serves as a precancerous lesion for UC-associated
colorectal cancer (Bopanna et al., 2017), our research provides
valuable clues for investigating TWIST1 as a potential risk
marker in the onset, development, and transformation of UC
into UC-associated colorectal cancer. This offers research
directions for the future prediction and treatment of UC and
UC-associated colorectal cancer. However, it is important to

acknowledge certain limitations in our study. Firstly, all the data
analyzed through bioinformatics methods were directly obtained
from US public databases, which may not fully represent the clinical
scenarios in Asian populations. Secondly, the absence of sequencing
data for CAC prevented us from concurrently evaluating the
diagnostic significance of TWIST1 in both UC and CAC.
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