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In this study, we delved into the comparative analysis of gene expression data
across RNA-Seq and NanoString platforms. While RNA-Seq covered 19,671 genes
andNanoString targeted 773 genes associated with immune responses to viruses,
our primary focus was on the 754 genes found in both platforms. Our experiment
involved 16 different infection conditions, with samples derived from 3D airway
organ-tissue equivalents subjected to three virus types, influenza A virus (IAV),
human metapneumovirus (MPV), and parainfluenza virus 3 (PIV3). Post-infection
measurements, after UV (inactive virus) and Non-UV (active virus) treatments,
were recorded at 24-h and 72-h intervals. Including untreated andMock-infected
OTEs as control groups enabled differentiating changes induced by the virus from
those arising due to procedural elements. Through a series of methodological
approaches (including Spearman correlation, Distance correlation, Bland-Altman
analysis, Generalized Linear Models Huber regression, the Magnitude-Altitude
Score (MAS) algorithm and Gene Ontology analysis) the study meticulously
contrasted RNA-Seq and NanoString datasets. The Magnitude-Altitude Score
algorithm, which integrates both the amplitude of gene expression changes
(magnitude) and their statistical relevance (altitude), offers a comprehensive tool
for prioritizing genes based on their differential expression profiles in specific viral
infection conditions. We observed a strong congruence between the platforms,
especially in identifying key antiviral defense genes. Both platforms consistently
highlighted genes including ISG15, MX1, RSAD2, and members of the OAS family
(OAS1, OAS2, OAS3). The IFIT proteins (IFIT1, IFIT2, IFIT3) were emphasized for
their crucial role in counteracting viral replication by both platforms. Additionally,
CXCL10 and CXCL11 were pinpointed, shedding light on the organ tissue
equivalent’s innate immune response to viral infections. While both platforms
provided invaluable insights into the genetic landscape of organoids under viral
infection, the NanoString platform often presented a more detailed picture
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in situations where RNA-Seq signals were more subtle. The combined data from
both platforms emphasize their joint value in advancing our understanding of viral
impacts on lung organoids.
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concordance analysis

1 Introduction

The human airways are a nexus of intricate relationships,
intricately binding cellular interactions, extracellular matrix
(ECM) proteins, and the biomechanical milieu. At the
forefront of replicating these complexities, our group has
innovated a 3D airway organ tissue equivalent (OTE) model
functioning at an air-liquid interface (ALI). Incorporating native
pulmonary fibroblasts, solubilized lung ECM, and a tunable
hydrogel substrate, this model stands as a revolutionary
contribution to airway biology research. By evaluating the
influence of our model on the phenotype of human bronchial
epithelial (HBE) cells over a 28-day ALI culture duration, we’ve
noted its pronounced ability in nurturing well-differentiated ALI
cultures. These cultures notably manifest barrier functionality
and mature epithelial marker expression. A unique feature of our
model is the adjustable stiffness of the hydrogel, offering
potential avenues for further phenotype modulation research.
This paper builds on foundational methodologies previously laid
down by our group, emphasizing the versatility and precision of
the 3D airway OTE model in simulating the multifarious
dimensions of the human airway’s 3D microenvironment
(Leach et al., 2023).

To enhance our understanding of the 3D airway OTE model’s
response to viral infections, we employed RNA-Seq (Wang et al.,
2009) and NanoString (Geiss et al., 2008) technologies to dissect the
complex virus-host interactions at the molecular level. We focused
on samples collected at two critical time points, 24- and 72-h post-
infection, to capture both the immediate and prolonged cellular
responses to viral invasion. This strategy aims to provide a
comprehensive view of the dynamic interactions between host
cells and infecting viruses during these pivotal infection phases.

In a recent study (Rezapour et al., 2024), we analyzed RNA-Seq
data encompassing 19,671 genes to explore gene expression
dynamics following infection with both active and UV-
inactivated viruses: Influenza A virus (IAV), Human
metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3).
We employed two algorithms, GLMQL-MAS and GLMQL-
Relaxed-MAS, which integrate Generalized Linear Models
(GLM), Quasi-Likelihood (QL) F-tests, and the Magnitude-
Altitude Score (MAS). These methodologies robustly identified
key differentially expressed genes, particularly those involved in
interferon signaling pathways such as IFIT1, IFIT2, IFIT3, and
OAS1, which play crucial roles in the innate immune response.

This paper undertakes a comparative analysis to demonstrate
the consistency of gene selection between the RNA-Seq and
NanoString platforms, with the aim of validating the
reproducibility of gene expression data across these technologies.
Our objectives are as follows:

1. Correlation analysis: We assess the consistency between RNA-
Seq and NanoString data across multiple infection conditions
using Spearman and Distance correlation metrics, providing a
comprehensive evaluation of the agreement between these
two platforms.

2. Bland-Altman analysis: This analysis aids in visualizing the
level of concordance between RNA-Seq and NanoString
measurements, highlighting any systematic biases or
discrepancies to enhance our understanding of each
platform’s reliability.

3. Generalized linear model and huber regression analysis: By
employing these robust statistical tools, we aim to evaluate the
relationship between RNA-Seq and NanoString data across
diverse infection conditions, ensuring that our findings are
resilient against potential data outliers and deviations.

4. Concordance analysis: Utilizing expression analysis and the
GLMQL-MAS algorithm (Rezapour et al., 2024), we identify
biologically meaningful changes in gene expression, ensuring
that the significant genes detected remain consistent across
both technological platforms.

5. Gene ontology (GO) analysis for common BH-significant
transcripts across two platforms: This analysis confirms the
biological relevance of the significant changes detected by
both platforms, enriching our understanding of the
molecular mechanisms underlying the response to viral
infections.

Figure 1 displays a schematic overview of the main objectives of
our comparative analysis between RNA-Seq and NanoString
platforms. By addressing these objectives, our study not only
aims to validate the agreement between RNA-Seq and
NanoString technologies but also to enhance the biological
insights derived from the 3D airway OTE model.

2 Materials and methods

In this study, we explored the 3D airway OTE model’s
interaction with three distinct viruses:

• Influenza A Virus (IAV): A/Puerto Rico/8/1934 (H1N1)
strain, featuring an EGFP-NS1 gene fusion, provided by
Adolfo Garcia-Sastre at the Mount Sinai School of Medicine.

• Human Metapneumovirus (MPV): Strain CAN97-83, with
EGFP gene upstream of the N gene (ViraTree
product #M121).

• Human Parainfluenza Virus Type III (PIV3): Strain JS,
incorporating the EGFP gene between the initial (N) and
subsequent (P/C/D/V) genes (ViraTree product #P323).
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The virus infection medium (iDMEM) was concocted using
Dulbecco-modified Eagle’s minimal essential medium,
supplemented with 0.1% heat-inactivated fetal bovine serum,
0.3% purified bovine serum albumin, 20 mM HEPES [pH 7.5],
and 0.2 mM Glutamax. The concoction was subsequently filter-
sterilized through a 0.2 µm filter and preserved at 4°C. Titers of the
Influenza virus were ascertained using Madin-Darby Canine Kidney
(MDCK) cells (ATCC, #CCL-34), while the titers for all other
viruses were determined using the LLC-MK2 rhesus monkey
kidney cell line (ATCC, #CCL-185). Each lung OTE was
calculated to encompass approximately 1.6 × 105 epithelial cells.
The nominal multiplicity of infection was calculated based on the
premise that solely the epithelial cells were vulnerable to the viral
infections. A 24-well culture plate filled with modified PneumaCult
ALI Medium (Stemcell Technologies) was permitted to reach
equilibrium at 37°C in a humidified incubator with 5% CO2 for
30 min. Inserts holding the OTEs were sterily relocated to the
balanced culture plate. The surface of each OTE slated for
infection or Mock infection was rinsed by delicately adding
0.3 mL of warm Hank’s balanced saline solution, followed by
cautious aspiration. The virus, diluted in iDMEM and brought to
ambient temperature, was then dispensed in a 40 µL volume onto
the apical surface of the OTE. Subsequently, the plate harboring the
infected OTEs was situated on a rocking table in the 37°C CO2

incubator for 1 hour before being retrieved from the rocking table
and restored to standard growth conditions for the
designated durations.

The RNA extraction from the OTEs was meticulously
performed using the Direct-zol RNA Miniprep Plus Kit. This
protocol included sample preparation, cell lysis, RNA
purification, and DNase I treatment to eliminate potential DNA
contaminants. We stored the purified RNA at −80°C to preserve it
for subsequent in-depth sequencing and gene expression analyses.
These steps were critical for accurately dissecting the complex
interplay between the OTE model and the introduced viral
pathogens, ensuring the integrity of the samples for further
molecular analysis.

Following RNA extraction, we conducted RNA sequencing to
delve deeper into the molecular underpinnings of virus-host
interactions. We crafted cDNA libraries from 50 ng of the
extracted RNA using the NEXTFLEX® Combo-Seq™ mRNA/
miRNA Kit. The processing was performed on a Sciclone®
G3 NGSx Workstation, with libraries quantified using a KAPA
Library Quantification Kit and evaluated for average fragment size
using a 4,200 TapeStation System. After library normalization, we
performed high-throughput sequencing on an Illumina® NovaSeq
6000 System, producing 76-bp single-end reads. This setup laid the
groundwork for comprehensive sequence analysis.

FIGURE 1
A visual representation illustrating the main objectives of the comparative analysis between RNA-Seq and NanoString platforms. The figure
highlights the five key objectives: 1) Correlation Analysis, 2) Bland-Altman Analysis, 3) Regression and Residual Analysis, 4) Concordance Analysis and 5)
Gene Ontology Analysis.
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For data analysis, we utilized the Partek® Flow® software. The
raw sequence data underwent meticulous processing that included
adaptor trimming and quality base filtering with Cutadapt (Martin,
2011), alignment against the hg38 GENCODE reference database
using the STAR algorithm, and transcript quantification using an
expectation/maximization (E/M) algorithm (Xing et al., 2006). We
normalized transcript-level counts to gene-level data employing the
median-of-ratios method from DESeq2 (Love et al., 2014), with
results log2-transformed for enhanced clarity.

Additionally, we leveraged the NanoString nCounter® Analysis
System to perform highly multiplexed detection of mRNA targets
relevant to our study of viral infections. This technology is
particularly suited for samples like those derived from our OTE
model where RNA integrity is variable, as it does not rely on
amplification or fluorescence intensity for target detection.
Instead, detection is based on barcoded sample processing, which
yields precise and reproducible gene expression data. We ensured
data quality at every analysis stage, beginning with general assay
performance and followed by background correction, data
normalization, and comprehensive quality control checks on the
resultant expression metrics.

Two distinct normalization methods were applied to the RNA-Seq
and NanoString data. The RNA-Seq data were normalized using the
Trimmed Mean of M-values (TMM) method. This method scales the
library sizes by a normalization factor, thus allowing for more accurate
comparisons by mitigating the influence of highly expressed genes. For
theNanoString data, a two-step normalization process was used. Firstly,
a Positive Control Normalization factor was calculated using the
positive controls added to each sample. This step helps to adjust for
technical variations across samples, lanes, cartridges, and different days
of experimentation. Secondly, a CodeSet Content Normalization factor
was computed using housekeeping genes.

In our study, special emphasis is placed on Non-UV (active)
samples, where active viral infections are facilitated, allowing the
viruses to replicate and dynamically interact with the host cells
within the OTEs. This condition is pivotal as it most accurately
simulates the natural infection environment, providing critical
insights into the host’s cellular and molecular responses under
active viral attack. To ensure the accuracy of our findings and
clearly delineate the effects of viral infections, our study utilized a
robust set of control conditions, including Mock, UV-treated, and
naïve (untreated) samples. UV-treated samples, exposed to
ultraviolet light to inactivate the viruses, served as crucial
controls for examining the impact of viral components without
active replication. Naïve samples, which are untreated OTEs, acted
as internal controls to set a baseline for gene expression across our
experiments. Mock-infected samples, treated with a vehicle or sham
procedure, offered comparative data to underscore the specific gene
expression responses triggered by active viral infections in the Non-
UV (active) samples, where viruses capable of replication were used.

Our analyses covered 773 immune response genes identified in
the NanoString dataset and a broader spectrum of 19,671 genes
covered by RNA-Seq. These genes were evaluated across 16 distinct
infection conditions, each involving six replicates of OTEs, as
detailed in Supplementary Table S1 (where “S” stands for
Supplementary Material). The conditions were categorized by
virus type (IAV, MPV, or PIV3), treatment type (UV or Non-
UV/active/None), and post-infection times (24-h and 72-h post

infection), which is denoted as Virus-Treatment-Time. This
comprehensive setup allowed us to rigorously test and validate
the biological significance and reproducibility of our data across
different experimental and control conditions, as detailed in
Supplementary Table S2, which illustrates the distribution of data
across these groups. From the available data, we identified 754 genes
that were common to both the RNA-Seq and NanoString platforms,
facilitating a consistent and comparative analysis of gene expression
dynamics in response to viral challenges, particularly focusing on the
critical role of Non-UV (active) samples in our study.

2.1 Correlation analysis

In this section, we outline the correlation-based methodology
adopted to assess the congruence between gene expression data
obtained from the RNA-Seq and NanoString platforms across
16 diverse infection conditions. Our approach leveraged two
correlation-based metrics: Spearman correlation (Hauke and
Kossowski, 2011), and Distance correlation (Székely and Rizzo,
2009) with the aim of providing a comprehensive analysis of the
consistency between the two platforms.

Spearman’s correlation is advantageous as it captures not only
linear relationships but also non-linear associations. This is
particularly useful when gene expression values do not follow a
strict linear pattern. Additionally, Spearman’s correlation is less
sensitive to outliers, making it a robust choice when dealing with
potential noise or extreme values in gene expression data. By
assessing the rank-order relationships between gene expression
profiles, Spearman’s correlation can provide a holistic view of the
agreement between RNA-Seq and NanoString data without being
overly influenced by individual data points.

Distance correlation (Székely and Rizzo, 2009) is a measure of
statistical dependence that quantifies both linear and non-linear
relationships between variables. It offers an advantage in assessing
agreement between gene expression profiles of two platforms by
accounting for complex associations that may not be adequately
captured by linear methods. Distance correlation can detect non-
linear patterns and is applicable to high-dimensional data, which
makes it suitable for comparing gene expression profiles.

Examination of infection conditions: We delved into the
examination of individual infection conditions to examine the
variation in gene expression data between RNA-Seq and NanoString
technologies within each condition. For this purpose, we created 754-
dimensional vectors encompassing the gene expression profiles of all
common genes associated with a particular infection condition on both
platforms. Spearman and Distance correlation coefficients were chosen
as our analytical tools. The selection of these measures was driven by
their ability to comprehensively capture various aspects of the
relationship between gene expression profiles, facilitating a thorough
examination of agreement while considering both parametric and non-
parametric aspects of the data (see Figure 1 (objective 1)).

2.2 Bland-Altman analysis

Bland-Altman analysis (Giavarina, 2015) is an appropriate
technique to assess the agreement between RNA-Seq and
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NanoString platforms because it provides a visual and statistical
approach to evaluating the level of agreement and potential biases
between twomeasurement methods. This method allows us to assess
the degree of agreement by plotting the differences between paired
measurements against their means, revealing any systematic biases
or trends. By identifying potential patterns in the differences and
calculating metrics such as mean difference and limits of agreement,
Bland-Altman analysis offers valuable insights into the level of
concordance and consistency between the two platforms, making
it a suitable tool to assess the agreement in gene expression
measurements across different infection conditions (see Figure 1
(objective 2)).

2.3 Generalized linear model and Huber
regression analysis

Using Generalized Linear Models (GLMs) (Nelder and
Wedderburn, 1972) and Huber regression (Maronna et al., 2019)
to assess the agreement between RNA-Seq and NanoString
platforms is astute. The combination offers resilience against
outliers and data deviations, ensuring accurate outcomes even in
the face of non-standard data assumptions. GLMs provide a flexible
framework, specifically designed to evaluate the relationship
between platforms such as RNA-Seq and NanoString. Each
model is characterized by a Gaussian family with an identity
link function.

R2, or the coefficient of determination, is traditionally used in
Ordinary Least Squares (OLS) regression models (Dismuke and
Lindrooth, 2006) to quantify how well the linear model captures the
variance in the dependent variable based on the independent
variables. However, when using Generalized Linear Models
(GLMs), which can handle various types of distributions and do
not necessarily assume a linear relationship between variables. In
this case, we adapt the concept to GLMs by using what is termed
Pseudo R2 (see Eq. 1).

Huber regression (Maronna et al., 2019) was also utilized to
bolster the assessment of RNA-Seq and NanoString agreement,
focusing on diverse infection conditions. Given sixteen distinctive
infection conditions defined by variables like virus type, treatment,
and post-infection time, RNA-Seq and NanoString data were paired
to form datasets. By fitting a GLM and Huber regression models to
this data, we aim to discern a relationship between the two platforms
that stands robust even amidst potential outliers. The metrics used
for measuring Huber regression model fit are defined as follows:

PseudoR2 � 1 − ∑i yi − ŷi( )2

∑i yi −Mean y( )( )2
, (1)

RobustR2 � 1 − ∑i yi − ŷi( )2( )
∑i yi −Median y( )( )2( )

, (2)

where yi represents the ith observed value, ŷi represents the ith

predicted value from the model, y is the vector containing all the
observed values, Median is the median function for the Robust R2

formula, and Mean is the mean function for the Pseudo R2 formula.
While the Pseudo R2 value gauges the model’s aptitude in

explaining NanoString variability based on RNA-Seq inputs, the

intercept and slope shed light on the fundamental relationship
dynamics between the two platforms. Furthermore, the p-values
linked to RNA-Seq coefficients are crucial. They spring from a
hypothesis testing mechanism used in regression. The null
hypothesis (H0) proposes no tangible relationship between RNA-
Seq and NanoString for an infection condition, implying the RNA-
Seq model coefficient is zero. Contrarily, the alternative hypothesis
(Ha) underscores a significant relationship (Huber, 1996) (see
Figure 1 (objective 3)).

2.4 Concordance analysis

The Magnitude-Altitude Score (MAS) algorithm (Rezapour
et al., 2024) offers an integral solution to identify statistically and
biologically meaningful changes in gene expression across various
experimental conditions. The significance of MAS lies in its
integrated approach, encompassing two critical aspects of gene
expression analysis: Firstly, it captures statistical significance
through adjusted p-values, which measure the strength of
evidence supporting a null hypothesis during hypothesis testing.
Secondly, the MAS algorithm considers the magnitude of changes in
gene expression, emphasizing its biological significance.

Definition. Magnitude-Altitude Score (MAS): To find genes that
have the optimal balance between | log2 (FCl)| and |log10 (pBH

l )|, we
define Magnitude-Altitude Score (MAS) by

MASl � | log2 (FCl)|M|log10 (pBH
l )|A

for l � 1, 2, . . . , s, where s is the number of rejected null hypotheses
rejected based BH adjusted method, M and A are hyper-parameters
(for this study, M � A � 1).

When testing multiple hypotheses simultaneously, such as when
assessing thousands of genes, there is a risk of false positives or Type
I errors. The MAS algorithm addresses this challenge by employing
the Benjamini–Hochberg (BH) procedure (Benjamini and
Hochberg, 1995; Benjamini et al., 2009), which adjusts p-values
to control the false discovery rate (FDR) and mitigate the issue of
multiple comparisons. While statistical significance is essential, it
does not provide insights into the size or direction of gene
expression changes. This is where log2(FC) comes into play. It
quantifies the effect size or the extent of a gene’s expression
alteration from one condition to another, adding biological
meaning to statistically significant changes.

The novelty of the MAS algorithm lies in combining these two
dimensions, altitude (captured by BH-adjusted p-values) and
magnitude (captured by log2(FC)), into a unified score. This
approach offers a comprehensive understanding of gene
expression changes, balancing both statistical and biological
significance. Genes with high MAS scores demonstrate both high
statistical significance and substantial gene expression alterations,
making them biologically relevant in the context of the experiment.

RNA-Seq data, which are count-based, present unique
challenges due to their non-normal, often overdispersed
distribution where the variance exceeds the mean (Law et al.,
2014). Traditional tests like the two-sample t-test assume
normality and equal variances, conditions not typically met by
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RNA-Seq data. To overcome these issues, we used Generalized
Linear Models (GLMs) (Nelder and Wedderburn, 1972), which
are well-suited for non-normal data types such as counts from
RNA-Seq, allowing for modeling with error distributions from the
exponential family, like negative binomial, ideal for addressing the
discrete and overdispersed nature of the data. Within this
framework, we employed the Quasi-Likelihood F-test
(Wedderburn, 1974), a robust method for evaluating gene
expression differences between conditions without the stringent
assumptions of parametric tests. This approach directly estimates
the variance-mean relationship from the data, enhancing the
accuracy and reliability of inferences in complex RNA-Seq
datasets and enabling the identification of differentially expressed
genes by effectively handling the data’s unique distributional traits
and variability.

In contrast, NanoString technology produces data that aligns
with the assumptions required for the two-sample t-test, allowing
direct application of multiple hypothesis testing using t-tests.
However, for both technologies, after calculating p-values and
log-fold changes, we applied the MAS algorithm to prioritize
genes, ensuring that our analytical approach remains
comprehensive and robust across different data types.

In this section, we aim to contrast the genes identified as BH-
significant by the MAS algorithm in both the RNA-Seq and
NanoString datasets. Initially, we apply the Generalized Linear
Models with Quasi-Likelihood approach (GLMQL) to the curated
RNA-Seq dataset, which includes 754 shared genes, followed by the
MAS algorithm. For the NanoString data, which comprises
754 common genes, we initially conduct multiple hypothesis
testing using t-tests. Subsequently, we apply the MAS algorithm
to prioritize the significant findings, bypassing the use of the
GLMQL framework for this dataset. Throughout the paper, the
significance level (α) for the Benjamini–Hochberg adjusted p-value
is set at 0.05. Our primary focus is to assess the concordance between
RNA-Seq and NanoString data, with a particular emphasis on
crucial infection conditions: Mock-24/72 and/or Virus-UV-24/72
(control) versus Virus-None-24/72 (experimental) (see Figure 1
(objective 4)).

Note that the MAS algorithm enables us not only to compare the
number of BH-significant genes but also to assess how these genes
are prioritized within each technology, enhancing our
understanding of their agreement and relevance across different
experimental settings.

2.5 Gene ontology (GO) analysis for
common BH-significant transcripts across
two platforms

Following the identification of common BH-significant genes
across the RNA-Seq and NanoString platforms, we proceeded to
conduct a Gene Ontology (GO) analysis (Young et al., 2010). This
analysis was crucial for biological interpretation, especially when
comparing active (Non-UV) infected samples against Mock samples
at 24- and 72-h post-infection. We utilized the clusterProfiler (Wu
et al., 2021) and org.Hs.eg.db (Carlson et al., 2019) packages within
the R programming environment to execute the GO analysis. These
tools allowed us to categorize the identified genes into groups

associated with biological processes (BP), cellular components
(CC), and molecular functions (MF).

The GO analysis of common BH-significant genes, which
exhibit the same direction of log-fold change (LogFC) across
both RNA-Seq and NanoString platforms, plays a critical role in
confirming the concordance and reliability of these two distinct gene
expression profiling methods. By conducting a GO analysis on this
subset of genes, we focus on understanding the functional
characteristics that are consistently observed regardless of the
platform used. This is pivotal for several reasons:

• Validation of data consistency: The GO analysis allows us to
verify that both platforms not only identify the same genes as
significant under similar experimental conditions but also
attribute similar biological functions to these genes. This
alignment in functional attribution strengthens the validity
of the results obtained from each platform and supports their
use as complementary tools in gene expression analysis.

• Biological relevance: Analyzing the GO terms associated with
the common significant genes helps to ensure that the
significant changes in gene expression detected by both
platforms are biologically meaningful. This analysis
provides insight into the core biological processes and
pathways that are genuinely affected by the experimental
conditions, rather than being platform-specific artifacts.

• Enhanced understanding of disease mechanisms: By examining
the GO processes enriched in the common significant genes, we
can gain a deeper understanding of the molecular mechanisms
underlying the response to viral infections.

Therefore, the GO analysis of common BH-significant genes is
not just a methodological step but a fundamental part of validating
the biological significance and technical consistency of the findings
from our study (see Figure 1 (objective 5)).

3 Results

3.1 Correlation analysis

To assess the agreement between RNA-Seq and NanoString
platforms, Spearman and Distance correlation coefficients were
computed for various infection conditions. The analysis of
correlation coefficients across all conditions revealed that the
Spearman correlation values ranged from a minimum of 0.86 to
a maximum of 0.90, while Distance correlation values varied slightly
less, with a minimum of 0.86 and a maximum of 0.88. The average
Spearman correlation across all conditions was approximately 0.88,
indicative of a strong positive agreement. Similarly, the average
Distance correlation was also around 0.87, confirming a consistent
high-level agreement between the two platforms.

The maximum Spearman correlation was observed in the IAV-
none-24 condition, indicating the strongest agreement under these
specific experimental settings. Conversely, the minimum values for
both metrics occurred in the 72-h post-infection conditions,
suggesting a slight decrease in correlation as the infection
progresses. Figure 2 visually represents these correlation metrics,
highlighting their robust performance across different infection
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conditions, thereby supporting the reliability of gene expression
profiling with both platforms in the study of viral infections.

3.2 Bland-Altman analysis

The Bland-Altman analysis was performed to evaluate the
agreement between RNA-Seq and NanoString measurements of
gene expression across various infection conditions. By analyzing
the differences versus the averages of the two methods, we observed
that the vast majority of measurements typically fell within the
established limits of agreement, indicating strong concordance
between the two methodologies.

In general, more than 96.6% of themeasurements in each condition
were within the limits, demonstrating reliable agreement across all
tested scenarios. For example, in the IAV-none-24 condition, about
97.3% of the measurements were within limits, while only a small
percentage were outliers. Notable genes that frequently appeared
outside the limits of agreement across various conditions included
TXNIP, CXCL8, and LCN2, among others. These outliers provide
insight into potential areas of variability that may warrant further
investigation due to biological differences or measurement
discrepancies. In conditions such as IAV-none-24, MPV-none-24,
and PIV3-none-24, genes like HSP90AB1, and MT2A were
identified as significant outliers.

Figure 3 and Supplementary Figure S1 illustrate these Bland-
Altman plots, providing a visual representation of the overall
agreement and clearly marking the outliers. These figures help in
understanding both the consistency of measurement between RNA-
Seq and NanoString technologies and the specific cases where
deviations occur.

3.3 Generalized linear model (GLM) and
Huber regression analysis

We conducted Generalized Linear Models (GLM) and Huber
regression to quantify the agreement between RNA-Seq and

NanoString data across 16 infection conditions. These analyses
provided insights into the concordance metrics such as Pseudo
R2 values, intercepts, slopes, and p-values.

In the GLM analysis, the Pseudo R2 values showed a range from
0.69 in the IAV-none-72 condition to 0.89 in the Mock-24
condition, suggesting a variability in model fit that reflects the
complexity of biological responses under different viral
challenges. The average Pseudo R2 value across all conditions
was about 0.80, indicative of a generally good model fit. The
variability was further highlighted in intercepts and slopes;
intercepts varied, with the lowest being 78.54 in the IAV-UV-
72 condition and the highest at 251.78 in the MPV-UV-
24 condition. This variation in intercepts illustrates baseline
differences in gene expression measurements between the two
platforms. Slope values, which indicate the rate of change in
NanoString measurements relative to RNA-Seq data, also showed
substantial variation with themaximum slope observed at 8.62 in the
PIV3-none-24 condition.

Huber regression reinforced these findings, with Pseudo R2

values closely aligning with those from the GLM, affirming the
robustness of the data against outliers. The consistency between the
Pseudo R2 and Robust R2 values across the analyses emphasizes the
stability of the agreement between the two platforms, even when
considering the potential impact of outliers. The detailed insights
into intercepts and slopes from both analyses corroborate the overall
reliability and consistency of the findings, highlighting specific
conditions where discrepancies were more pronounced. Tables 1,
2 compile these results comprehensively. Table 1 presents the results
from the GLM analysis, including all metrics for each infection
condition, while Table 2 details the outcomes from the Huber
regression, highlighting how each model accommodates the
outlier effects.

3.4 Concordance analysis

The concordance analysis revealed varied results across different
experimental conditions, highlighting the unique response profiles

FIGURE 2
Comparison of spearman and distance correlation coefficients across infection conditions: This bar graph displays the Spearman and Distance
correlation coefficients for 16 different viral infection conditions at two time points (24 and 72 h) with and without UV treatment, alongside controls. The
graph emphasizes the consistently high correlation between RNA-Seq and NanoString platforms, demonstrating their robustness in capturing gene
expression dynamics within the 3D airway OTE model. Correlation values range from 0.86 to 0.90 for Spearman and 0.86 to 0.88 for Distance
correlation, highlighting the strong agreement across varying experimental conditions.
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under various viral challenges and controls. For example, the
comparison between the IAV-UV-24 (as baseline) and IAV-
none-24 conditions identified a significant number of genes by
both RNA-Seq (357 genes) and NanoString (333 genes), with
169 genes common to both datasets. However, in contrasts such
as MPV-none-24 against MPV-UV-24 and Mock-24, the RNA-Seq
analysis did not identify any significant genes, resulting in no
common significant genes between the RNA-Seq and NanoString

platforms. This suggests either a minimal gene expression response
to MPV or limitations in the sensitivity of RNA-Seq under these
experimental settings.

Contrasts like IAV-none-72 against Mock-72 showed a
substantial overlap with 273 common genes, reflecting a strong
and consistent gene expression response to IAV across different
controls at 72 h, which was the highest number of common
significant genes observed among all comparisons. The contrast

FIGURE 3
Bland-Altman plots for RNA-Seq and NanoString gene expression comparisons: This series of plots evaluates the agreement between RNA-Seq and
NanoString platforms across three different conditions. Each plot visualizes the difference between the twomeasurement methods against their average
value, facilitating a clear depiction of concordance and discrepancies. The x-axis represents the average of the normalized counts from both methods,
while the y-axis displays the differences (NanoString—RNA-Seq). A dashed red line in each plot denotes the mean difference, providing an estimate
of the overall bias between themethods. Dashed grey lines indicate the limits of agreement, calculated as themean difference ± 1.96 standard deviations,
representing the range within which 95% of future differences are expected to lie, assuming a normal distribution. Points are color-coded: within the
limits are shown in blue, and those beyond are in red. Genes that fall outside these limits are specifically highlighted and labeled to show significant
deviations. The title within each plot specifies the condition, counts the total number of genes, and notes the proportion of genes within and outside the
limits of agreement, offering a succinct yet comprehensive overview of the data consistency and variation.
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PIV3-none-72 against PIV3-UV-72 demonstrated that the RNA-
Seq identified 361 significant genes, while NanoString identified 216,
with 136 genes common between them. This notable difference
highlights the specific sensitivity of each platform under varying
experimental conditions. Figure 4 presents a comparison of
significant genes identified using the MAS algorithm in both
RNA-Seq and NanoString datasets across various infection
conditions.

Volcano plots illustrating gene expression contrasts between
multiple control and experimental groups within the RNA-Seq
and NanoString datasets are provided in Supplementary Figure
S2, with a specific case showcased in Figure 5A. Moreover,
Supplementary Figure S3 displays the top 50 differentially
expressed genes identified using the MAS algorithm,
highlighting the common genes between the RNA-Seq and
NanoString platforms within this top-50 list. A specific
example of this is showcased in Figure 5B. This figure presents
the top 50 differentially expressed genes, emphasizing the
overlapping genes identified by both RNA-Seq and NanoString
platforms when comparing the control condition (Mock-24) to
the experimental condition (IAV-None-24). The diagram
categorizes genes that are unique to each platform and those
that are common between them, providing a clear visual
representation of the concordance in gene expression
detection across these two technologies. This overlap
underscores the reliability of the identified significant genes
and highlights the strengths of integrating data from multiple
platforms to achieve a comprehensive understanding of gene
expression changes.

3.5 Gene ontology (GO) analysis for
common BH-significant transcripts across
two platforms

Figure 6 presents the top 10 out of 567 significant Gene
Ontology (GO) processes based on q-values for BH-significantly
upregulated genes in the IAV-None-24 versus Mock-24 comparison
across both platforms. Key processes related to IAV infection
include the response to the virus, defense response to the virus,
type I interferon signaling pathway, regulation of cytokine-mediated
signaling pathway, and cellular response to interferon-gamma. This
analysis aims to answer how the gene expression changes observed
align with known biological processes and whether these changes are
statistically and biologically significant. For example, the process
“response to virus” includes 45 genes such as IFIT2, RSAD2, and
IFIT3, indicating a robust antiviral response. Similarly, the “defense
response to virus” process, which shares many genes with the
“response to virus” process, highlights the immune system’s
multifaceted approach to combating viral infections.

Processes like the “negative regulation of viral process” and
“regulation of viral process,” which include genes such as RSAD2,
IFIT1, and ISG15, suggest mechanisms by which the host cells
attempt to limit viral replication and spread. Moreover, pathways
like “type I interferon signaling” and “response to interferon-
gamma” underscore the critical role of interferons in the antiviral
defense, involving key signaling molecules such as STAT1 and
IFIH1. Figure 7 shows the top 10 of 92 significant GO processes
for BH-significantly upregulated genes in the PIV3-None-24 versus
Mock-24 comparison across both platforms, highlighting processes
relevant to PIV3 infection such as defense response to virus,
regulation of viral genome replication, and positive regulation of
interferon-beta production (Supplementary Table S4 provides the
top 20 significant GO processes).

Figure 8 displays the top 10 of 573 significant GO processes, based
on q-values for BH-significantly upregulated genes in the IAV-None-
72 versus Mock-72 comparison across both platforms (Supplementary
Table S5 provides the top 20 significant GO processes). Supplementary
Table S6 provides the top 20 significant GO processes, based on
q-values for BH-significantly upregulated genes in the MPV-None-
72 versus Mock-72 comparison across both platforms. Figure 9
illustrates the top 10 of 464 significant GO processes for BH-
significantly upregulated genes in the PIV3-None-72 versus Mock-
72 comparison across both platforms (Supplementary Table S7
provides the top 20 significant GO processes).

The comparison of GO processes across Figures 6–9, based on
common significant genes identified by both RNA-Seq and
NanoString platforms, provides a nuanced understanding of the
host’s immune response to various viral infections. In Figure 6, for
IAV-None-24 versus Mock-24, the predominant processes include
“response to virus” and “defense response to virus,” highlighting a
robust early immune reaction. This pattern is consistent in Figure 8
for the IAV-None-72 versus Mock-72 comparison, suggesting a
sustained antiviral response over a longer period. Conversely,
Figure 7, which compares PIV3-None-24 to Mock-24, shows a
similar but less pronounced response, with fewer genes involved
in the “defense response to virus” process, indicating a less intense
early response compared to IAV. In Figure 9, the PIV3-None-
72 versus Mock-72 comparison reveals an increased involvement

TABLE 1 Results of Generalized linear model (GLM) analysis conducted to
assess the concordance between RNA-Seq and NanoString measurements
across a range of infection conditions.

Condition Pseudo R2 Intercept Slope p-value

IAV-none-24 0.74 224.04 7.65 <0.0001

IAV-UV-24 0.85 172.46 7.97 <0.0001

MPV-none-24 0.87 158.64 7.81 <0.0001

MPV-UV-24 0.80 251.78 5.45 <0.0001

PIV3-none-24 0.86 203.44 8.62 <0.0001

PIV3-UV-24 0.86 228.40 7.77 <0.0001

Mock-24 0.89 178.85 8.02 <0.0001

Untreated-24 0.81 201.10 6.95 <0.0001

IAV-none-72 0.69 162.95 5.50 <0.0001

IAV-UV-72 0.82 78.54 6.93 <0.0001

MPV-none-72 0.82 84.24 6.15 <0.0001

MPV-UV-72 0.83 93.82 6.26 <0.0001

PIV3-none-72 0.77 130.11 5.58 <0.0001

PIV3-UV-72 0.80 91.64 5.57 <0.0001

Mock-72 0.79 119.34 7.87 <0.0001

Untreated-72 0.83 168.43 7.03 <0.0001
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FIGURE 4
Comparison of MAS significant genes between RNA-Seq and NanoString platforms across various infection conditions.

TABLE 2 Results of Huber regression analysis conducted to assess the concordance between RNA-Seq and NanoString measurements across a range of
infection conditions.

Condition PseudoR2 RobustR2 Intercept Slope p-value

IAV-none-24 0.73 0.80 49.80 6.93 <0.0001

IAV-UV-24 0.84 0.71 32.54 7.60 <0.0001

MPV-none-24 0.86 0.73 41.58 7.20 <0.0001

MPV-UV-24 0.73 0.75 38.53 7.07 <0.0001

PIV3-none-24 0.86 0.80 36.05 8.88 <0.0001

PIV3-UV-24 0.85 0.78 38.25 8.09 <0.0001

Mock-24 0.89 0.76 46.80 7.71 <0.0001

Untreated-24 0.79 0.79 41.08 7.94 <0.0001

IAV-none-72 0.69 0.78 35.49 6.00 <0.0001

IAV-UV-72 0.80 0.80 27.03 6.12 <0.0001

MPV-none-72 0.82 0.78 28.90 6.07 <0.0001

MPV-UV-72 0.82 0.70 30.78 6.01 <0.0001

PIV3-none-72 0.76 0.75 29.70 5.81 <0.0001

PIV3-UV-72 0.80 0.74 21.37 5.52 <0.0001

Mock-72 0.79 0.73 38.69 7.50 <0.0001

Untreated-72 0.83 0.75 45.11 6.86 <0.0001
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of genes in the “defense response to virus” process, such as IFIT1 and
OAS3, indicating an amplified immune response as the infection
progresses.

4 Discussion

4.1 Correlation analysis

The results of the correlation analysis underscore the strong
agreement between RNA-Seq and NanoString technologies in
capturing gene expression profiles within a 3D airway OTE

model under various viral infection conditions. Both platforms
exhibited high correlation coefficients, with Spearman and
Distance correlations consistently ranging from 0.86 to
0.90 across different experimental setups and time points (see
Figure 2). This robust consistency validates the use of these
technologies as reliable tools for detailed and accurate gene
expression analysis, suitable for both broad and targeted studies.

The consistency observed in both UV-treated and non-UV-
treated samples further highlights the platforms’ capacity to
accurately reflect the impact of viral infections on cellular
machinery, independent of viral replication. This insight is
critical for understanding the mechanisms of viral entry and the

FIGURE 5
(A) Volcano plot comparing gene expression between Mock-24 and IAV-None-24 in RNA-seq and NanoString datasets (Control: Mock-24,
Experimental: IAV-None-24). (B) Top 50 differentially expressed genes identified using the MAS algorithm, emphasizing the overlapping genes between
RNA-Seq and NanoString platforms (Control: Mock-24, Experimental: IAV-None-24).
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subsequent activation of innate immune responses, as seen with the
upregulation of specific interferon-stimulated genes.

Overall, the correlation analysis study not only demonstrates the
technical reliability and complementarity of RNA-Seq and
NanoString in a 3D model but also reinforces the utility of these
platforms in advancing our understanding of viral pathogenesis and
host response. This contributes significantly to the field of virology
and respiratory biology, providing a robust foundation for future
research into therapeutic interventions and the biological
underpinnings of disease.

4.1.1 Findings based on correlation analysis
The correlation analysis study conclusively demonstrates that both

RNA-Seq and NanoString are robust and reliable platforms for gene

expression analysis, showing strong correlation across various
conditions in a 3D airway OTE model. These findings affirm the
applicability of these technologies in capturing detailed and accurate
gene expressions during viral infections, making them valuable tools for
virology research and beyond. This consistency, evident in bothUV and
non-UV treated samples across critical time points, highlights their
potential in a wide array of biomedical applications, enhancing our
understanding of complex biological responses to viral challenges.

4.2 Bland-Altman analysis

Bland-Altman plots showed (see Figure 3; Supplementary Figure
S1) that more than 96.6% of genes had differences within acceptable

FIGURE 6
Top 10 Significant Gene Ontology (GO) Processes for Upregulated Genes in IAV-None-24 versus Mock-24 Comparison: This bar graph ranks the
top 10 out of 567 significant GO processes based on q-values for BH-significantly upregulated genes identified in the IAV-None-24 versus Mock-24
comparison across both RNA-Seq and NanoString platforms. Each bar represents a GO process, with its length corresponding to the -log10 (q-value),
indicating the statistical significance. The processes include “response to virus,” “defense response to virus,” and “type I interferon signaling pathway,”
among others. The descriptions highlight the number of genes involved and key genes associated with each process, such as IFIT2, RSAD2, IFIT3, IFNL1,
and ISG15, demonstrating the robust antiviral and immune response elicited by IAV infection.

FIGURE 7
Top 10 Significant Gene Ontology (GO) Processes for Upregulated Genes in PIV3-None-24 versus Mock-24 Comparison: This bar graph ranks the
top 10 out of 92 significant GO processes based on q-values for BH-significantly upregulated genes identified in the PIV3-None-24 versus Mock-24
comparison across both RNA-Seq and NanoString platforms.
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limits between NanoString and RNA-Seq data, indicating good
agreement between the two techniques. However, a positive
linear trend was observed, meaning that the difference between
the two measurements increased with the average of the
measurements, and NanoString measurements were higher than
RNA-Seq for genes with higher expression levels.

This trend is due to different normalization techniques used for
each dataset. RNA-Seq data were normalized using the TMM
method, which scales library sizes based on the assumption that
most genes are not differentially expressed. This method effectively
handles RNA composition bias. In contrast, NanoString data were

normalized through a two-step process: a positive control
normalization factor that adjusts for variations across samples,
lanes, cartridges, and days due to various factors, and a CodeSet
content normalization factor using reference genes to adjust for
differences in analyte abundance or quality.

Despite the observed trend, the level of agreement between the
two platforms was high, with a maximum of 3.4% of genes falling
outside the limits of agreement across all conditions. Both RNA-Seq
and NanoString technologies provide broadly consistent gene
expression measurements, despite their differences in detection
and normalization techniques.

FIGURE 8
Top 10 Significant GeneOntology (GO) Processes for Upregulated Genes in IAV-None-72 versus Mock-72 Comparison: This bar graph ranks the top
10 out of 573 significant GO processes based on q-values for BH-significantly upregulated genes identified in the IAV-None-72 versus Mock-72
comparison across both RNA-Seq and NanoString platforms. Each bar represents a GO process, with its length corresponding to the -log10 (q-value),
indicating the statistical significance. The descriptions highlight the number of genes involved and key genes associated with each process, such as
IFIT1, CXCL10, and RSAD2, demonstrating the host’s robust antiviral and immune response.

FIGURE 9
Top 10 Significant Gene Ontology (GO) Processes for Upregulated Genes in PIV3-None-72 versus Mock-72 Comparison. This bar graph ranks the
top 10 out of 464 significant GO processes based on q-values for BH-significantly upregulated genes identified in the PIV3-None-72 versus Mock-72
comparison across both RNA-Seq and NanoString platforms.
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4.2.1 Findings based on Bland-Altman Analysis
He Bland-Altman analysis conducted across various infection

conditions and time points substantiates a high level of agreement
between RNA-Seq and NanoString platforms, with the vast majority
of gene expression measurements falling within the agreed limits of
concordance. Specifically, over 96.6% of genes for the paired
measurements in each condition are within the limits, indicating
minimal bias and confirming the reliability of these methods for
comparative gene expression studies. The small percentage of
measurements outside the limits suggests only minor
discrepancies, likely due to the inherent differences in the
technologies. This high degree of concordance underpins the
robustness of the 3D airway OTE model as a reliable system for
studying complex biological interactions, such as those involved in
viral infections, using either of these gene expression platforms.

4.3 Generalized linear model and huber
regression analysis

Across all infection conditions, both the GLM and Huber
regression analyses consistently indicated high Pseudo R2 values,
ranging between 0.69 and 0.89 (see Tables 1, 2). The PseudoR2

values signify the proportion of variability in NanoString
measurements that can be explained by RNA-Seq data. A Pseudo
R2 value above 0.70 generally indicates a strong linear
relationship. Therefore, it is evident that the RNA-Seq readings
significantly explain the variation observed in the NanoString
measurements across the variety of infection conditions tested.

In the Huber Regression, the Robust R2 values, which provide
insight in the presence of outliers by focusing on median deviations,
predominantly range between 0.70 and 0.80. This suggests that the
Huber model consistently captures the central tendencies of the data
across various conditions. However, the disparity between Robust
R2 and Pseudo R2 in certain conditions underscores the subtle
differences in data distribution and the potential presence
of outliers.

For all conditions, the p-values are less than 0.0001. This
reaffirms the statistical significance of the relationship between
RNA-Seq and NanoString across all infection conditions. This
small p-value contradicts the null hypothesis that posits no
tangible relationship between RNA-Seq and NanoString
measurements. Instead, the data strongly supports the alternative
hypothesis, asserting a significant relationship between the two
platforms across different infection conditions. The intercepts
and slopes between the two methods vary, but not drastically,
which might be attributed to the robustness offered by the Huber
regression against outliers.

4.3.1 Findings based on regression analysis
The comprehensive analysis utilizing GLMs and Huber

regression has effectively demonstrated a high degree of
agreement between RNA-Seq and NanoString platforms across
various infection conditions. Both analytical approaches reveal
significant consistency, with high Pseudo R2 values indicating
strong model fits and minimal variation unexplained by the
models. The remarkably low p-values across all conditions
confirm the statistical significance of the relationship between the

datasets. These results highlight the robustness of both RNA-Seq
and NanoString in capturing and reflecting gene expression
dynamics in a biologically relevant model, underscoring their
reliability and interchangeability in genomic studies focused on
viral infections. The use of GLMs and Huber regression not only
enhances confidence in these findings by addressing potential
outliers and non-standard data distributions but also solidifies
the foundational analytical framework for future comparative
studies in molecular biology.

4.4 Concordance analysis

The efficacy of the MAS algorithm is prominently reflected in
the comparative analysis between RNA-Seq and NanoString
datasets across various infection conditions (see Figures 4, 5, as
well as Supplementary Figures S3, S4). The most prominent
outcome observed was for the (IAV-UV-24, IAV-none-24) and
(IAV-UV-72, IAV-none-72) conditions with IAV-UV-24 and IAV-
UV-72 serving as baselines, and IAV-none-24 and IAV-none-72 as
the corresponding experimental conditions. In these instances, both
datasets presented a substantial number of significant genes, with a
significant overlap in the findings. This suggests a reliable detection
and agreement between both methods, emphasizing the robustness
of the MAS algorithm. Contrastingly, for the condition (MPV-UV-
24, MPV-none-24), while the RNA-Seq dataset showed no
significant genes, the NanoString dataset detected 12. The
absence of common genes further accentuates the distinct
sensitivities or potential discrepancies between the two platforms.
This may warrant further investigation into the nature of these
discrepancies (see Figure 4).

Interestingly, under conditions (Mock-24, MPV-None-24) and
(Mock-24, PIV3-None-24), the NanoString dataset identified a
notably higher number of genes compared to RNA-Seq. This
may suggest a heightened sensitivity of the NanoString platform
or potential false discoveries, emphasizing the necessity of integrated
analysis using MAS. A similar trend was observed under the
conditions (Mock-72, IAV-None-72), (Mock-72, MPV-None-72),
and (Mock-72, PIV3-none-72). The NanoString consistently
identified more genes, yet there was a significant overlap in
findings, particularly for the IAV and PIV3 conditions. This
suggests that while both platforms have unique sensitivities, there
is still substantial concordance in their findings when analyzing
complex infection conditions (see Figure 4).

Supplementary Figures S3, S4 and Figure 5 underscore the
strong alignment between the RNA-Seq and NanoString
platforms in identifying significant genes. This congruence is
evident across most instances, with the exception of the MPV
virus. The set of genes discerned by both platforms offers an
extensive overview of immune regulation and cellular defense
processes. At the heart of the antiviral response lie genes such as
ISG15, MX1, RSAD2, and the OAS family members (OAS1, OAS2,
OAS3, and OASL). These genes are instrumental in recognizing viral
infiltration, marshaling antiviral defenses, and orchestrating RNA
degradation in affected cells. Concurrently, DDX58 and
IFIH1 emerge as sentinel detectors of viral RNA, activating
cellular defense mechanisms. Meanwhile, the IFIT proteins
(IFIT1, IFIT2, IFIT3), as products of interferon stimulation, are
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recognized for curtailing viral replication. CXCL10 and
CXCL11 highlight the proactive immune response by drawing
immune cells to infection or inflammation sites.

4.4.1 Findings based on concordance analysis
The Concordance Analysis using the Magnitude-Altitude Score

(MAS) algorithm effectively demonstrated the agreement and
discrepancies between RNA-Seq and NanoString datasets across a
variety of infection conditions. Notably, significant gene overlap in
conditions like (IAV-UV-24, IAV-none-24) and (IAV-UV-72, IAV-
none-72) confirmed the MAS algorithm’s reliability in identifying
biologically relevant changes. However, distinct outcomes such as in
(Mock-24, MPV-none-24), where RNA-Seq identified no significant
genes while NanoString detected several, underscore the differences
in sensitivity between the two platforms. This variation, along with
NanoString’s consistently higher gene detection in other conditions,
points to its increased sensitivity or potential for false positives,
highlighting the importance of using MAS to integrate findings
comprehensively. These results not only affirm the strengths and
limitations of each platform but also reinforce the value of a
combined analytical approach to ensure thorough and
meaningful insights into gene expression changes in the context
of infectious diseases.

4.5 Gene ontology (GO) analysis for
common BH-significant transcripts across
two platforms

4.5.1 GO processes for IAV at 24 h post-infection
In analyzing the top 30 (out of 567) significant Gene Ontology

(GO) processes at 24 h post-infection with IAV (see Figure 6 for the
top 10 GO processes), we observed several crucial biological
responses. These findings underscore the robustness of our
experimental design and the concordance between RNA-Seq and
NanoString platforms. Predominantly, processes such as “response
to virus” and “defense response to virus” were notably upregulated,
involving key antiviral genes like IFIT2, RSAD2, and MX1, among
others. These genes play critical roles in the antiviral response,
illustrating a broad and dynamic regulatory network activated upon
viral infection.

Furthermore, processes like “negative regulation of viral
process” and “regulation of viral genome replication” were also
prominent, featuring genes such as OAS1 and EIF2AK2, which are
essential for inhibiting viral replication and modulating the immune
response. This not only confirms the biological impact of IAV
infection on cellular machinery but also highlights the
effectiveness of our normalization and analytical approaches in
capturing these subtle yet significant changes.

The presence of genes across multiple related GO categories,
such as IFNB1 and STAT1 in both the “type I interferon signaling
pathway” and “response to interferon-gamma,” validates the
consistency across data platforms and underscores the
interconnected nature of immune responses. These findings are
crucial for understanding the mechanism of action of IAV and
potentially guiding therapeutic interventions.

The involvement of these specific pathways and genes across
different categories supports the reliability of our data and

underscores the biological relevance of our findings. Such
consistency in data across different technological platforms not
only strengthens the validity of the results but also demonstrates
the robust nature of the experimental design and analysis, thus
enhancing our confidence in these platforms’ ability to accurately
reflect biological realities under infection conditions.

4.5.2 GO processes for PIV3 at 24 h post-infection
The analysis of the top 30 (out of 92) significant GO processes

for PIV3 at 24 h post-infection (see Figure 7 for the top 10 GO
processes) reveals a robust activation of antiviral immune responses,
underlining the concordance between the RNA-Seq and NanoString
platforms. Notably, processes like “defense response to virus” and
“response to virus” prominently feature genes such as IFIT1, MX1,
and RSAD2, which are critical in mediating cellular defenses against
viral replication and propagation.

Further analysis shows significant upregulation in “negative
regulation of viral genome replication” and related processes like
“regulation of viral genome replication” and “viral genome
replication” itself, indicating a strong cellular attempt to control
and mitigate viral replication. This is underscored by the
involvement of OAS2 and EIF2AK2, which are known to play
key roles in the viral defense mechanism by degrading viral RNA
and inhibiting viral protein synthesis.

Moreover, pathways such as “positive regulation of interferon-
beta production” and the broader “type I interferon production”
pathway highlight the cellular response to PIV3 infection. The
presence of genes like OAS2 and DDX58 in these pathways
reflects the cell’s efforts to activate and propagate antiviral
signaling cascades that enhance the immune response.

This comprehensive engagement of antiviral response genes
across multiple GO categories not only confirms the biological
impact of PIV3 infection on cellular functions but also
demonstrates the technical consistency and reliability of our
experimental platforms. By capturing these gene expression
changes across both RNA-Seq and NanoString technologies, our
findings reinforce the validity of the data and the biological insights
they provide.

Such detailed mapping of antiviral responses at the molecular
level is crucial for understanding the dynamics of PIV3 infection and
potentially guiding the development of targeted therapeutic
strategies. The alignment of significant gene responses across
different technological platforms further supports the robustness
of our study and the biological relevance of the observed changes in
gene expression.

4.5.3 GO processes for IAV at 72 h post-infection
The analysis of the top 30 (out of 573) significant Gene Ontology

(GO) processes at 72 h post-infection with IAV (see Figure 8 for the
top 10 GO processes) provides a comprehensive view of the ongoing
immune responses and adaptations to prolonged viral exposure. Key
processes such as “defense response to virus” and “response to virus”
prominently feature an array of genes including IFIT1, MX1, and
STAT1, which are integral to antiviral defenses, showcasing a
sustained immune activation over time.

Significant upregulation in processes like “negative regulation of
viral process” and “regulation of viral genome replication” highlights
the ongoing cellular efforts to control and mitigate viral replication.
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This includes the action of genes such as OAS1 and EIF2AK2,
crucial for breaking down viral RNA and inhibiting the viral
replication machinery, demonstrating the cells’ adaptive
responses to continued viral presence.

Additionally, the “cytokine-mediated signaling pathway”
remains a critical component of the immune response, with
genes such as CXCL10 and IFNB1 playing roles in signaling
cascades that regulate inflammation and immune cell
recruitment. The persistence of this pathway at 72 h illustrates
the body’s continued effort to mobilize and coordinate immune
defenses against IAV.

Moreover, the involvement of the “type I interferon signaling
pathway” with genes like IRF7 and STAT2 highlights the role of
interferon responses in modulating the immune landscape during
the later stages of infection. The sustained expression of these genes
indicates a robust antiviral state that extends well beyond the initial
infection phase.

This rich data not only underscores the complexity of the
immune response to IAV but also demonstrates the depth of
biological insights gleaned from high-throughput gene expression
platforms. The overlap in significant genes across both RNA-Seq
and NanoString platforms lends high confidence to these
observations, affirming the reliability of our methodologies in
capturing biologically relevant changes. These insights are crucial
for understanding the dynamics of IAV infection over time and
could be pivotal in designing strategies for intervention and therapy.

4.5.4 GO processes for PIV3 at 72 h post-infection
The examination of the top 30 (out of 464) significant Gene

Ontology (GO) processes at 72 h post-infection with Parainfluenza
virus 3 (PIV3) (see Figure 9 for the top 10 GO processes) illustrates a
persistent and complex immune response. Key processes such as
“defense response to virus” and “response to virus” continue to
feature prominently, with a broad array of immune response genes
including IFIT1, MX1, and STAT1. These genes are crucial for
continuing the antiviral response, highlighting the body’s ongoing
efforts to combat viral persistence.

Significantly, processes like “negative regulation of viral process”
and “regulation of viral genome replication” indicate an active
cellular mechanism to suppress viral replication. This involves
genes such as RSAD2 and EIF2AK2, which are vital for
inhibiting viral proliferation and mitigating viral impacts at
cellular levels.

Moreover, the “type I interferon signaling pathway” and
“response to type I interferon” are notably active, involving genes
like IRF7 and STAT2. These pathways play a critical role in
orchestrating a broad antiviral state, which is essential for
controlling and possibly resolving the viral infection. The
sustained activation of these pathways suggests a robust antiviral
signaling that adapts over the course of the infection.

Additionally, the “cytokine-mediated signaling pathway”
underscores the ongoing communication between immune cells,
with cytokines like CXCL10 and IFNB1 playing pivotal roles in
modulating the immune landscape. This continued cytokine
signaling is crucial for maintaining an effective immune response
and potentially initiating recovery processes.

The persistence of these immune processes over 72 h
demonstrates not only the dynamic nature of the host response

to PIV3 but also validates the reliability of our data across RNA-Seq
and NanoString platforms. This consistency provides confidence in
the biological relevance of the observed gene expressions and
supports the robustness of the experimental and analytical
methodologies used. Understanding these dynamics is essential
for developing therapeutic strategies that can effectively target the
later stages of viral infections, providing insights into potential
interventions to modulate or enhance the immune response.

4.5.5 Changes in GO processes over time
4.5.5.1 Changes in GO processes over time for IAV

From the 24-h to the 72-h time points, we observe a notable
expansion in the number of genes involved in significant GO
processes, such as “defense response to virus,” which increases
from 41 to 43 genes, and “response to virus,” which grows from
45 to 46 genes. This suggests a broadening and intensification of the
immune response as the infection progresses.

Key processes like “negative regulation of viral process” and
“regulation of viral genome replication” maintain their importance
over time, demonstrating the body’s ongoing efforts to control viral
replication and activity. The “cytokine-mediated signaling pathway”
expands from 33 to 34 genes, highlighting the increased
communication within the immune system to coordinate a
comprehensive response to the viral infection.

The “response to type I interferon” and “type I interferon
signaling pathway” show increased gene involvement, indicating
a sustained focus on interferon-driven defense mechanisms crucial
for antiviral defense. By 72 h, there’s a marked engagement in
“response to interferon-gamma” and “response to interferon-
beta,” pointing to a robust activation of various interferon
responses essential for modulating the broader immune reaction.

The transition from immediate, targeted antiviral actions to a
broader, more systemic immune response is characterized by the
increased involvement of genes in cytokine signaling and interferon
responses. This evolution suggests that while the immediate
response aims to contain the virus, the prolonged response
prepares the body for sustained defense, potentially against
ongoing or secondary viral attacks. The significant involvement
of Interferon-Stimulated Genes (ISGs) like ISG15, OAS1, and
MX1 throughout the infection period underscores the critical role
of interferon responses. Understanding these dynamic changes in
gene expression and immune pathway activation can guide the
development of antiviral therapies, enhancing their effectiveness by
timing administration to coincide with peak expressions of key
immune responses.

4.5.5.2 Changes in GO processes over time for MPV
For MPV, RNA-Seq technology did not reveal any BH

significant genes at 24 h post-infection, despite the utilization of
stringent multiple hypothesis testing that was confined to common
genes rather than the entire gene dataset. This outcome highlights a
possible limitation of RNA-Seq in detecting early gene expressions
in response to MPV infection, potentially due to the low abundance
or subtle expression changes of these genes that fall below the
detection sensitivity of RNA-Seq. By 72 h post-infection,
although only five common genes (IFI44, OASL, OAS3, IRF9,
IRF7) are identified, these genes contribute significantly to a
range of crucial GO processes, emphasizing the depth of the

Frontiers in Genetics frontiersin.org16

Rezapour et al. 10.3389/fgene.2024.1327984

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1327984


immune response despite the limited number of genes involved. The
top processes identified include:

• Response to virus and defense mechanisms: All five genes are
involved in the “response to virus” process, with four
contributing to “defense response to virus.” This shows a
targeted activation of antiviral defense mechanisms.

• Pattern recognition receptor signaling pathways: Multiple
processes such as “cytoplasmic pattern recognition receptor
signaling pathway in response to virus” and “pattern
recognition receptor signaling pathway” are notably
activated, indicating a sophisticated cellular recognition of
viral components.

• Regulation of interferon and viral replication: Significant
involvement in “regulation of type I interferon-mediated
signaling pathway” and “negative regulation of viral
genome replication” demonstrates the cellular strategies to
enhance antiviral defenses and inhibit viral propagation.

Note that when the BH adjustment was applied across the entire
set of 19,671 genes tested by RNA-Seq for both 24- and 72-h post-
infection, all genes failed to pass the BH significance threshold. This
outcome indicates that when considering the broader and more
variable context of the full gene set, the individual p-values did not
achieve statistical significance after adjusting for the large number of
comparisons.

The case of MPV illustrates the potential superiority of
NanoString over RNA-Seq for certain viral infections where
early and accurate detection of a small number of genes is
critical. NanoString’s methodology allows for a more direct
and quantifiable approach, making it exceptionally useful in
cases where the virus may evade early detection or suppress
initial immune responses, as observed with MPV. This
technology enhances the ability to detect subtle yet significant
changes in gene expression that are pivotal in the early stages of
viral infection.

4.5.5.3 Changes in GO processes over time for PIV3
Between the 24-h and 72-h time points, there is a notable

increase in the number of genes involved in significant GO
processes. For instance, “defense response to virus” initially
involves 14 genes at 24 h, which significantly expands to
45 genes by 72 h. This suggests a more robust and diversified
immune response as the infection progresses.

At 24 h, processes like “negative regulation of viral genome
replication” and “regulation of viral genome replication” are
primarily focused on immediate viral suppression, involving
8 genes. By 72 h, these processes see increased gene participation,
indicating an intensified effort to control viral replication as the
infection advances. The “Type I interferon signaling pathway,”
essential for antiviral defense, shows an increase in gene count
from 4 at 24 h to 17 at 72 h, underscoring its growing importance in
orchestrating the immune response over time.

Initially, the focus is on direct antiviral responses (“response to
virus,” “viral genome replication”), which are relatively narrow in
scope. As time progresses, there is a shift towards a broader
engagement of the immune system, as seen in the increased gene
counts in processes like “regulation of innate immune response” and

“positive regulation of cytokine production,” reflecting a systemic
activation of immune defenses.

The data reflects a typical immune response trajectory where the
initial reaction involves rapid activation of antiviral genes and
pathways that directly inhibit viral processes. Over time, as the
infection persists or evolves, the immune system ramps up broader
and more systemic processes, involving a larger set of genes and
pathways that not only target the virus directly but also prepare the
body for a sustained defensive effort. Many of the genes listed, such
as IFIT1, MX1, and OASL, are well-known ISGs. Their increased
participation from 24 to 72 h post-infection highlights the pivotal
role of interferon-driven responses in shaping the antiviral defense
over the course of a PIV3 infection.

In summary, the evolution of GO processes from 24 to 72 h
post-infection underscores the dynamic nature of the host
immune response to PIV3, characterized by an initial focus on
direct antiviral actions which broadens into a comprehensive
immune activation involving an array of cytokines and
signaling pathways.

4.5.6 Findings based on GO analysis
The GO analysis of common BH-significant transcripts across

RNA-Seq and NanoString platforms has revealed substantial
concordance in the identification and characterization of immune
response genes following infections with IAV, MPV, and PIV3. This
analysis underscores the robustness and reliability of both platforms
in capturing biologically relevant changes across multiple time
points and virus types.

For IAV and PIV3, both platforms consistently highlighted
key processes such as “defense response to virus” and “response
to virus” at both 24- and 72-h post-infection, demonstrating a
sustained and evolving immune response. This included a
notable activation of pathways like “negative regulation of
viral process” and “type I interferon signaling pathway,” with
significant contributions from genes such as IFIT1, MX1, RSAD2,
and STAT1. The alignment of these results across both platforms
not only reinforces the validity of the data but also highlights the
dynamic and complex nature of the host defense mechanisms
over the course of viral infections.

Moreover, the analysis detailed how specific pathways were
intensified over time, particularly for IAV and PIV3, where an
expansion in the number of genes involved in crucial immune
processes was observed from 24 to 72 h. This transition from
immediate antiviral responses to a broader, systemic immune
engagement illustrates the platforms’ capability to accurately
reflect the progression of the immune response to viral
infections.

In contrast, the case of MPV demonstrated certain limitations
of RNA-Seq in early detection, which were not observed with the
NanoString platform. Despite this, by 72 h post-infection, some
key genes were identified involved in critical immune processes,
underscoring its utility in capturing significant gene expressions
even when the initial immune response is subtle or slow
to manifest.

This GO analysis not only confirms the technical consistency
and biological relevance of the findings from both RNA-Seq and
NanoString but also enhances our understanding of the
molecular mechanisms underlying the response to viral
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infections. These insights are invaluable for developing targeted
therapeutic strategies and for future research combining data
from these robust platforms. The concordance observed here
supports the complementary use of RNA-Seq and NanoString in
comprehensive genomic studies, ensuring a deeper and more
accurate exploration of gene expression dynamics in health
and disease.

5 Conclusion

In this study, we conducted an extensive comparative analysis of
RNA-Seq and NanoString technologies to assess gene expression in
human lung organ-tissue equivalents (OTEs) during viral infections.
Our investigation covered a substantial spectrum of 19,671 genes
through RNA-Seq and 773 immune-related genes via NanoString,
focusing on their expression in the context of Influenza A virus
(IAV), Human metapneumovirus (MPV), and Parainfluenza virus 3
(PIV3) under various infection scenarios including UV-inactivated
and active viral states. Our analysis employed various methods such
as Spearman correlation, Distance correlation, Bland-Altman
analysis, GLMs, Huber regression, the Magnitude-Altitude Score
(MAS) algorithm, and Gene Ontology (GO) analysis to compare the
RNA-Seq and NanoString data comprehensively. The MAS
algorithm, which integrates both the amplitude of gene
expression changes (magnitude) and their statistical relevance
(altitude), provides a holistic method to rank genes according to
their distinct expression patterns during particular viral infection
conditions.

The correlation analysis, employing Spearman and Distance
correlation methods, conclusively demonstrates that both RNA-Seq
and NanoString are robust and reliable platforms for gene
expression analysis. These methods showed strong correlations,
consistently ranging from 0.86 to 0.90, across various
experimental setups and time points in an OTE model.

The Bland-Altman analysis conducted across various
infection conditions and time points substantiates a high level
of agreement between RNA-Seq and NanoString platforms,
with the vast majority of gene expression measurements
falling within the agreed limits of concordance. Specifically,
over 96.6% of genes for the paired measurements in each
condition are within the limits, indicating minimal bias and
confirming the reliability of these methods for comparative gene
expression studies.

The comprehensive analysis utilizing GLMs, and Huber
regression has effectively demonstrated a high degree of
agreement between RNA-Seq and NanoString platforms across
various infection conditions. Both analytical approaches reveal
significant consistency, with high Pseudo R2 values indicating
strong model fits and minimal variation unexplained by the
models. The remarkably low p-values across all conditions
confirm the statistical significance of the relationship between
the datasets.

The Concordance Analysis using the Magnitude-Altitude
Score (MAS) algorithm effectively demonstrated the
agreement and discrepancies between RNA-Seq and
NanoString datasets across a variety of infection conditions. A
robust alignment between the platforms was evident, particularly

in the identification of crucial antiviral defense genes. Genes like
ISG15, MX1, RSAD2, as well as members of the OAS family
(OAS1, OAS2, OAS3, OASL), consistently emerged as key
players. The IFIT proteins (IFIT1, IFIT2, IFIT3) were
highlighted for their role in countering viral replication, while
CXCL10 and CXCL11 shed light on the OTEs’ innate immune
response against viral challenges.

The GO analysis of common BH-significant transcripts across
RNA-Seq and NanoString platforms has revealed substantial
concordance in the identification and characterization of
immune response genes following infections with IAV, MPV,
and PIV3. This analysis underscores the robustness and reliability
of both platforms in capturing biologically relevant changes across
multiple time points and virus types. For IAV and PIV3, both
platforms consistently highlighted key processes such as “defense
response to virus” and “response to virus” at both 24- and 72-h
post-infection, demonstrating a sustained and evolving immune
response. This included a notable activation of pathways like
“negative regulation of viral process” and “type I interferon
signaling pathway,” with significant contributions from genes
such as IFIT1, MX1, RSAD2, and STAT1. The alignment of
these results across both platforms not only reinforces the
validity of the data but also highlights the dynamic and
complex nature of the host defense mechanisms over the
course of viral infections. Moreover, the analysis detailed how
specific pathways were intensified over time, particularly for IAV
and PIV3, where an expansion in the number of genes involved in
crucial immune processes was observed from 24 to 72 h. This
transition from immediate antiviral responses to a broader,
systemic immune engagement illustrates the platforms’
capability to accurately reflect the progression of the immune
response to viral infections.

In summary, the study demonstrated a high level of agreement
between RNA-Seq and NanoString technologies in analyzing gene
expression within OTEs during viral infections.

6 Limitations of the study

• Sensitivity differences between platforms: While both
RNA-Seq and NanoString were generally consistent,
discrepancies in sensitivity were observed, particularly in
the early detection of viral responses, as noted with the
MPV infection. This suggests that each platform may have
unique strengths and limitations that could influence the
detection and analysis of low-abundance transcripts or
subtle gene expression changes.

• Inherent technological biases: Each platform comes with
inherent biases, such as the normalization techniques and
data processing strategies, which could affect the
interpretation of results. For example, different
normalization methods used in RNA-Seq and NanoString
might have contributed to the observed discrepancies and
trends in the Bland-Altman plots.

• Scope of gene analysis: The study focused on a set of common
genes identified across both platforms, which might not
represent the entire transcriptomic landscape. Important
regulatory or low-abundance genes uniquely detected by
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only one platform might have been overlooked, potentially
omitting significant biological insights.

• Generalizability of findings: The conclusions drawn from this
study are based on a specific 3D airway OTE model and
certain viral infections. Extending these findings to other
models or infections might require additional validation to
ensure that the observed gene expression dynamics and
immune responses are broadly applicable.
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