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Background: In breast cancer oncogenesis, the precise role of cell apoptosis
holds untapped potential for prognostic and therapeutic insights. Thus, it is
important to develop a model predicated for breast cancer patients’ prognosis
and immunotherapy response based on apoptosis-related signature.

Methods: Our approach involved leveraging a training dataset from The Cancer
Genome Atlas (TCGA) to construct an apoptosis-related gene prognostic model.
Themodel’s validity was then tested across several cohorts, including METABRIC,
Sun Yat-sen Memorial Hospital Sun Yat-sen University (SYSMH), and IMvigor210,
to ensure its applicability and robustness across different patient demographics
and treatment scenarios. Furthermore, we utilized Quantitative Polymerase
Chain Reaction (qPCR) analysis to explore the expression patterns of these
model genes in breast cancer cell lines compared to immortalized mammary
epithelial cell lines, aiming to confirm their differential expression and underline
their significance in the context of breast cancer.

Results: Through the development and validation of our prognostic model based
on seven apoptosis-related genes, we have demonstrated its substantial
predictive power for the survival outcomes of breast cancer patients. The
model effectively stratified patients into high and low-risk categories, with
high-risk patients showing significantly poorer overall survival in the training
cohort and across all validation cohorts. Importantly, qPCR analysis confirmed
that the genes constituting our model indeed exhibit differential expression in
breast cancer cell lines when contrasted with immortalized mammary epithelial
cell lines.
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Conclusion: Our study establishes a groundbreaking prognostic model using
apoptosis-related genes to enhance the precision of breast cancer prognosis
and treatment, particularly in predicting immunotherapy response.
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Introduction

Given the high incidence and mortality associated with breast
cancer, it remains a critical health concern for women. Despite
advances in diverse therapeutic modalities (Harbeck and Gnant,
2017; Sung et al., 2021), conventional prognostic indicators such as
patient age, lymphovascular involvement, histological subtype,
pathological grading, and radiographic features have limitations
in accurately predicting clinical outcomes (Saini et al., 2019; Yu
et al., 2020a).

Apoptosis, a highly conserved form of programmed cell death,
plays a crucial role in physiological development and maintaining
tissue homeostasis (Mohammad et al., 2015). Its regulatory
pathways ensure the timely elimination of damaged or
unnecessary cells, thus preventing potential malfunctions or the
onset of diseases. However, in the context of oncogenesis,
particularly within breast cancer cells, the mechanisms that
control apoptosis become significantly disrupted. This
dysregulation allows cancer cells to evade normal cell death
processes, leading to their uncontrolled growth, resistance to
conventional therapies, and an increased likelihood of disease
recurrence (Carneiro and El-Deiry, 2020). The evasion of
apoptosis by cancer cells is a hallmark of cancer that facilitates
tumor progression and metastasis by allowing the survival of cells
that would otherwise be eliminated by programmed cell death
mechanisms. The alteration in apoptotic pathways in cancer cells
can be attributed to various genetic and epigenetic changes,
including mutations in genes that encode apoptotic regulators
and alterations in the expression of microRNAs that target
components of the apoptotic machinery. These changes can lead
to the overexpression of anti-apoptotic proteins, such as Bcl-2, or the
downregulation of pro-apoptotic factors, thereby tipping the balance
in favor of cell survival (Pandey et al., 2020; Qu et al., 2020;
Kandhavelu et al., 2024).

Given the important role of apoptosis in controlling cancer
development. Targeting the dysregulated apoptotic pathways in
breast cancer represents a promising therapeutic approach. This
strategy involves the development of agents that can specifically
induce apoptosis in cancer cells without harming normal tissues,
offering a more targeted and potentially less toxic treatment option
compared to traditional chemotherapy and radiation therapy
(Zhang et al., 2017). Such approaches include the use of
BH3 mimetics that inhibit Bcl-2 proteins, activating death
receptors through agonistic antibodies, or directly activating
caspases with synthetic peptides (Diepstraten et al., 2022).

The tumor microenvironment (TME), a complex assembly of
non-malignant cellular components juxtaposed with tumor cells,
modulates apoptotic pathways and consequently reconditions
cancer cell behavior (Wong, 2011; Deepak et al., 2020; Li et al.,
2020). Therapeutic interventions designed to either potentiate

apoptosis or counter apoptosis-resistance mechanisms are
considered promising approaches (Lv et al., 2011). Cancer cell
apoptosis can affect the tumor microenvironment factors to
promote the immune cells’ function. A recent study reported that
the apoptosis pathway of cell mitochondria can significantly
improve the killing of cancer cells by NK cells and is more
sensitive to the NK-mediated killing (Pan et al., 2022).

While the significance of apoptosis in the development of
tumors is widely recognized, the potential of genes associated
with apoptosis to serve as reliable markers for prognosis or
immunotherapy for breast cancer has not been sufficiently
proven. This study aimed to develop a signature based on
apoptosis-related genes, which would not only be predictive of
breast cancer prognosis but also provide insights into the tumor
microenvironment and forecast responses to immunotherapy,
which can enhance the precision of cancer prognosis and open
new sight for targeted therapies, ultimately contributing to more
personalized and effective treatment strategies for patients.

Materials and methods

Patients and study design

In this study, the multi-dimensional genomic and clinical datasets
were obtained from several established platforms. Specifically, The
Cancer Genome Atlas (TCGA) contributed a cohort of 1,089 breast
cancer patients, sequenced on the Illumina-HiSeq platform. The
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) provided data for 1,903 patients, obtained via the
Illumina HT-12 v3 platform. Additionally, 74 breast cancer
patients were included from the Sun Yat-sen Memorial Hospital,
Sun Yat-sen University (SYSMH) cohort, which utilized the
DNBSEQ-T7RS (MGI) sequencing technology. Moreover, the
IMvigor210 clinical trial dataset, comprising 348 bladder cancer
patients treated with atezolizumab (a PD-L1 inhibitor), was also
incorporated for specific analyses.

For methodological rigor, the TCGA dataset was designated as the
discovery or training set, whereas METABRIC, SYSMH, and
IMvigor210 datasets (identified by clinical trial numbers
NCT02951767/NCT02108652) were used for external validation
purposes. The data were accessed from reputable repositories:
TCGA database (https://portal.gdc.cancer.gov/repository), cBioPortal
for METABRIC data (http://www.cbioportal.org/), and the
IMvigor210 Core Biologies package for IMvigor210 clinical profiles.

The gene panel for apoptotic regulation was meticulously
curated from the Molecular Signatures Database V7.0. This
database is comprehensive, featuring 161 genes either directly
participating in, or indirectly modulating, apoptotic pathways.
Such an exhaustive list enables a more nuanced understanding of
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apoptotic mechanisms in the context of breast cancer, thereby
enhancing the study’s potential impact.

Constructing an anticipating signature of
apoptosis-associated gene

The Wilcoxon test was employed to profile genes manifesting
significant differential expression between tumor and adjacent non-
tumorous tissue, using stringent selection criteria: an absolute
log2 fold-change (FC) exceeding 1 and a false discovery rate
(FDR)-corrected p-value below 0.05.

Further, univariate Cox proportional hazards regression was
conducted to ascertain apoptosis-related genes demonstrating both
differential expression and significant prognostic value. This was
followed by stepwise regression to refine the portfolio of candidate
genes for the construction of a predictive prognostic model. The risk
score metric for each patient was derived by combining the
expression status of individual genes and their corresponding
regression coefficients, according to a linear combination model.

Risk score � ∑
n

i�1
coefficient i( ) *expression i( )

In this model, coefficient(i) and expression(i) symbolize the
survival-associated coefficient for gene i and gene i’s expression
level, respectively. Utilizing an optimal threshold, patients were
stratified into high-risk or low-risk groups. Analysis of overall
survival (OS) discrepancies between these risk groups was
performed by leveraging the R packages “survival” and
“survminer.” The algorithm’s predictive accuracy was validated
through time-dependent receiver operating characteristic (ROC)
curve analysis, utilizing the “survivalROC” R package.

The investigation of tumor immune
microenvironment

To derive a panoramic understanding of the interplay between
risk stratification and immune cell infiltration, we evaluated the
distribution of 22 immune cell subtypes in the training cohort using
the CIBERSORT analytic tool (http://cibersort.stanford.edu/)
(Newman et al., 2015). Differential proportions of immune cell
infiltrates between high-risk and low-risk groups were elucidated
using the Wilcoxon test.

The Kaplan-Meiermethodwas applied to probe the association of
immune cell infiltration levels with overall survival (OS) in the breast
cancer cohort. Additionally, we employed the ESTIMATE algorithm,
facilitated through the R package “estimate,” to dissect the cellular
composition of the tumor microenvironment (TME), focusing on the
proportion of immune and stromal cells, alongside the cumulative
ESTIMATE score within the TCGA cohort (Yoshihara et al., 2013).

Further, we leveraged the single-sample gene set enrichment
analysis (ssGSEA) methodology, facilitated via the “gsva” R
package, to gauge the infiltration levels of 16 immune cell types
and the functional status of 7 immune-related pathways (Hänzelmann
et al., 2013). This comprehensive assessment aimed to elucidate the
functional landscape of the TME with respect to immune infiltration.

Functional enrichment analysis

For enrichment analysis, we employed the “clusterProfiler”
package in R (Wu et al., 2021) to execute Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
evaluations. We considered an enrichment to be statistically
significant if the false discovery rate (FDR) was less than 0.05,
serving as a robust threshold for discerning substantial biological
implications.

Epigenomic and genomic difference analysis

We generated a dataset of somatic mutations, formatted in
Mutation Annotation Format (MAF), and proceeded to conduct
an in-depth analysis using the ‘maftools’ package in R.

The predictive nomogram

Utilizing the ‘rms’ package in R, we generated line plots and
calibration curves to visualize model performance. To scrutinize the
independent prognostic potential of risk scores, clinical parameters,
and immune cell infiltration levels for overall survival (OS), both
univariate and multivariate Cox proportional hazards analyses were
executed. Subsequently, we constructed a prognostic nomogram
that integrated the results from multivariate Cox regression, risk
stratification models, clinical variables, and immune cell markers.
This nomogram aimed to provide quantitative prognostic estimates
for OS at 3, 5, and 10-year intervals in breast cancer patients.

Cells culture

The cell lines employed in this study were acquired from the
American Type Culture Collection (ATCC) and cultivated under
conventional laboratory conditions. In particular, the breast cancer
cell lines, namely SK-BR-3 and MDA-MB-231, were propagated in
Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, New York,
United States). Meanwhile, the BT-474 and MCF-7 cell lines were
maintained in RPMI-1640 medium (Gibco, New York,
United States). Both media were enhanced with 10% fetal bovine
serum (FBS) (Gibco, New York, United States) and a 1% solution of
penicillin-streptomycin (Gibco, New York, United States). Notably,
the non-transformed mammary epithelial cell line MCF-10A was
sustained in a specialized media formulation (Procell, Wuhan,
China). All cell lines were cultured in a humidified incubator at
37 °C with an atmosphere of 5% carbon dioxide (CO2).

RNA isolation, cDNA synthesis, and
qPCR analysis

Total RNA extracted from MCF-10A, BT-474, MCF-7, SK-BR-
3, andMDA-MB-231 cells, using the TRIzol reagent (Thermo Fisher
Scientific, USA), was reverse transcribed using the HiScript III First
Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). This was
followed by quantitative real-time PCR (qPCR) analysis utilizing the
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Applied Biosystems’ QuantStudio TMDx platform in combination
with the ChamQ Universal SYBR qPCR Master Mix kit (Vazyme,
Nanjing, China).

The reaction conditions consisted of an initial polymerase
activation step at 95°C for 30 s and 40 subsequent cycles
comprising denaturation at 95°C for 5 s and annealing/extension

FIGURE 1
Overview of study flow chart Schematic flowchart of our study on apoptosis-associated prognostic signatures of breast cancer. (A) The workflow
chart of this study. (B) The specific research plan of this study.

Frontiers in Genetics frontiersin.org04

Yu et al. 10.3389/fgene.2024.1332935

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1332935


at 60°C for 30 s. The 2−ΔΔCT method was employed for calculating the
relative expression levels, standardized against a housekeeping gene.

Statistical analysis

To identify differentially expressed genes (DEGs) between breast
cancer tissues and adjacent normal tissues, we employed the
Wilcoxon test. Genes with prognostic significance for overall
survival (OS) were then isolated through univariate Cox
regression analysis. Patient stratification into high-risk and low-
risk cohorts was performed based on an optimal cut-off value,
determined using the ‘survminer’ R package.

The Kaplan-Meier survival analysis, corroborated by a log-rank
test, was utilized to discern differences in OS between risk groups.
Furthermore, receiver operating characteristic (ROC) analysis was
conducted to assess the predictive robustness of the identified
features. The area under the ROC curve (AUC) was calculated to
quantify sensitivity and specificity. All statistical procedures were
executed in R version 4.0.0, employing a significance level of p <
0.05 for hypothesis testing.

Results

In the present investigation, we undertook a comprehensive
analysis of 3,066 individual patients, leveraging both mRNA
expression profiles and genomic data in strict adherence to the
TRIPOD guidelines (Collins et al., 2015). The patient cohort,
delineated in Figure 1, encompassed 1,089 subjects from the
TCGA-BRCA dataset and an additional 1,903 from the
METABRIC cohort. Comprehensive clinical attributes of the
study population have been collated and are available for perusal
in Supplementary Table S1.

Apoptosis-related prognostic DEGs in the
TCGA cohort

Our findings indicate significant differential expression of
49 apoptosis-related genes between tumor samples and their
adjacent normal counterparts (Figures 2A, B). Upon
scrutinizing the Gene Ontology (GO) category for apoptosis-
related genes, we unearthed that the activation of T-cell

FIGURE 2
Screening of differentially expressed apoptosis-associated genes in the TCGA cohort (A) Volcano plots showing the apoptosis-related DEGs. Yellow
represents significantly upregulated genes. Blue indicates significantly downregulated genes. Black shows non-differentially expressed genes. (B)
Heatmap of differentially expressed apoptosis-related genes relative to normal tissues. (C) GO enrichment of apoptosis-related DEGs. (D) KEGG
pathways of apoptosis-associated DEGs.
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mediated responses and the regulation of apoptotic pathways
were among the most perturbed biological processes.
Furthermore, in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis, prominent enrichment was
observed in cancer-associated pathways (Figures 2C,D;
Supplementary Tables S2, S3).

Based on univariate Cox regression analysis, we identified
10 apoptosis-related genes holding prognostic relevance for
overall survival (OS) in our patient cohort (Figure 3A;
Supplementary Table S4). Among these, FEZ1 appeared to exert
the most substantial influence on breast cancer OS, manifesting a
hazard ratio (HR) of 1.87 (95% CI: 1.18–2.97, p = 0.007). In addition,
EGR3, GSN, LEF1, AVPR1A, NEDD9, and HGF emerged as
influential contributors to OS, displaying HR values of 0.55 (95%
CI: 0.40–0.77, p < 0.001), 0.61 (95% CI: 0.44–0.85, p = 0.003), 0.60
(95% CI: 0.43–0.82, p = 0.001), 2.08 (95% CI: 1.37–3.17, p =
0.00046), 0.62 (95% CI: 1.0–2.32, p = 0.0045), and 1.60 (95% CI:
1.10–2.32, p = 0.0127) respectively, as depicted in
Supplementary Figure S1.

Prognostic evaluation based on RNA-
seq profiles

We conducted RNA-seq profiling of the aforementioned
10 genes using stepwise regression analysis. To establish a
prognostic model, we identified seven essential genes. Our
findings revealed that higher expression levels of EGR3, GSN,
LEF1, and NEDD9 were correlated with improved prognosis in
breast cancer, while elevated expression of AVPR1A, FEZ1, and
HGF yielded contrasting results, as depicted in Supplementary
Figure S1. Subsequently, we formulated a prognostic model for
breast cancer by incorporating these seven crucial apoptosis-
related genes.

The risk score for this model was calculated using the following
equation: HGF × 0.650937 - EGR3 × 0.15298 - GSN × 0.46446 +
FEZ1 × 0.568178 - LEF1 × 0.3521 + AVPR1A × 0.341397 -
NEDD9 × 0.27414.

Utilizing this formula, we computed the risk score for each
sample and visualized its distribution, as shown in Figure 3B–D.
Based on the optimal cut-off point, we categorized patients into a
high-risk group (n = 410) and a low-risk group (n = 679).
Strikingly, Kaplan-Meier survival curves demonstrated
significantly lower overall survival rates in the high-risk group
compared to the low-risk group (HR = 3.28, 95% CI = 2.35–4.56,
p < 0.001) (Figure 4A).

We evaluated the predictive performance of our prognostic
model by constructing time-dependent ROC curves, yielding
AUCs of 0.726, 0.721, and 0.747 for 3-, 5-, and 10-year time
frames, respectively (Figure 4B).

Furthermore, we validated the prognostic model across
various subtypes of breast cancer. The Kaplan-Meier curves
consistently illustrated a robust association between the
prognostic model and overall survival in all subtypes
(Supplementary Figure S2). In the Luminal A subtype, the
AUCs were 0.733, 0.682, and 0.694 at 3, 5, and 10 years,
respectively. For the Luminal B subtype, the AUCs were 0.717,
0.799, and 0.807 at 3, 5, and 10 years, respectively. In the HER2-
positive subtype, the AUCs were 0.719, 0.793, and 0.683 at 3, 5,
and 10 years, respectively. Lastly, for the TNBC subtype, the
predicted AUCs were 0.833, 0.775, and 0.785 at 3, 5, and 10 years,
respectively (Supplementary Figure S3).

Prognostic evaluation of the classifier

To assess the prognostic utility of our classifier, we conducted
external validation using the METABRIC cohort and SYSMH
cohort. Similarly, patients in these cohorts were stratified into
high-risk and low-risk groups based on their gene expression
profiles. Consistently, mirroring the results obtained from the
TCGA cohort, the Kaplan-Meier survival curve demonstrated
significantly poorer prognosis for patients in the high-risk
group (HR = 1.46, 95% CI = 1.30–1.65, p < 0.001)
(Supplementary Figure S4). Furthermore, in the SYSMH cohort,
a strong correlation was observed between the risk score and
reduced disease-free survival (HR = 20.82, 95% CI =
2.56–169.14, p < 0.001) (Figure 4C), with AUC values of 0.625,

FIGURE 3
Prognostic analysis of risk score formula in TCGA cohort (A)
Forest plots showing 10 prognosis-associated genes via univariate cox
regression. (B) Heat map of the seven-gene signature in the TCGA
cohort. (C) Distribution of risk score in the TCGA cohort. (D)
Distribution of survival status of the TCGA cohort patients.
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0.651, and 0.643 for predicting 1-year, 2-year, and 3-year
outcomes, respectively (Figure 4D).

Additionally, a comprehensive analysis was conducted within
the IMvigor210 cohort to characterize the prognostic model.
Notably, low-risk patients exhibited a higher survival rate (HR =
1.46, 95% CI = 1.10–1.94, p = 0.0084) (Figure 4E). Furthermore,
high-risk patients in the IMvigor210 cohort displayed increased
sensitivity to immunotherapy (Figure 4F).

Functional enrichment analysis with varying
risk scores

Based on the GO functional enrichment analysis, the DEGs
between high-risk and low-risk score patients demonstrated
significant enrichment in immune-related biological processes
(BP) (p < 0.005), as illustrated in Figure 5A. Additionally, the
KEGG analysis revealed notable differences in cytokine-cytokine

FIGURE 4
Kaplan-Meier curves and ROC curves of the risk score formula in the TCGA cohort. Validation of the risk score model in SYSMH cohort and
immunotherapy cohort IMvigor210. (A) Kaplan-Meier curve of patients in the TCGA cohort between the high- and low-risk group patients for OS. (B) The
ROC analysis proved the prognostic performance of the risk score model in the TCGA cohort. (C) Kaplan-Meier curve of patients in the SYSMH cohort
between the high- and low-risk group patients for DFS. (D) The ROC analysis proved the prognostic performance of the risk score model in the
SYSMH cohort. (E) Kaplan-Meier survival curve of OS of the high- and low-risk groups in the IMvigor210 cohort. (F) The difference in risk score in the
subgroup of anti PD-L1 treatment response.
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receptor interactions between these two patient groups, as depicted
in Figure 5B.

Immune cell infiltration patterns and their
impact on overall survival

The CIBERSORT analysis provided an illustration of the
proportions of 22 immune cell types, revealing distinct differences
in immune cell infiltration patterns among breast cancer samples. To
further investigate these distinctions, we conducted theWilcoxon test
to compare immune cell fractions between the high-risk and low-risk
groups. The results unveiled significant variations in the proportions
of several immune cell types. Specifically, T cells CD8 (p < 0.001),
resting mast cells (p < 0.001), plasma cells (p < 0.001), macrophages
M0 (p < 0.001), naive B cells (p < 0.001), and macrophages M2 (p <
0.001) exhibited markedly different distributions between the high-

risk and low-risk groups. Interestingly, the low-risk group displayed
higher levels of infiltration of B cells, plasma cells, and CD8 T cells,
while the high-risk group demonstrated elevated levels of infiltration
of macrophages M0, macrophages M2, and resting mast cells
(Figure 5C). Furthermore, patients with higher levels of naive
B cells (p < 0.0001) and plasma cells (p < 0.0001), as well as
lower levels of macrophages M0 (p = 0.013) and macrophages M2
(p < 0.0001), exhibited a strong association with improved overall
survival, as demonstrated by Kaplan-Meier curve analysis
(Supplementary Figure S5).

Evaluation of tumor-infiltrating immune
cells and immune function

Through the application of single-sample Gene Set Enrichment
Analysis (ssGSEA), our objective was to evaluate the interplay

FIGURE 5
GO and KEGG functional enrichment analyses between the high- and low-risk groups in the TCGA cohort and the analysis of tumor immune
infiltrations via CIBERSORT. (A)GO enrichment of the DEGs between the high- and low-risk patients in the TCGA cohort. (B) KEGG pathways of the DEGs
between the high- and low-risk patients in the TCGA cohort. (C) Vioplot of 22 immune cell content in the high- and low-risk groups.
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between tumor-infiltrating immune cells and their immune
functionality. The findings corroborated the observations made
by CIBERSORT, revealing heightened B cell expression in low-
risk patients and reduced macrophage expression in the low-risk
group. Additionally, ssGSEA analysis unveiled further disparities
between the low-risk and high-risk groups, encompassing cytolytic
activity, chemokine receptor expression (CCR), MHC class I, HLA
(human leukocyte antigen) genes, parainflammation, T cell co-
stimulation, type II interferon (IFN) responses, and pro-
inflammatory factors (refer to Figures 6A,B). Notably, the low-
risk group exhibited a noteworthy increase in immune scores, while
the high-risk group displayed a significant elevation in matrix scores
(Figures 6C,D).

Mutation analysis and risk stratification by
tumor location

Figures 7A, B provide visual representations of the mutation
profiles and the distribution of high-risk and low-risk groups based
on tumor location for differentially mutated genes. The mutations

were subjected to further categorization based on various criteria,
with missense mutations being the predominant type. Notably, a
noteworthy elevation in the mutation rate of PIK3CA was observed
in the low-risk group, underscoring its potential as a target for
precision therapeutic interventions (Willis et al., 2020).
Additionally, distinctive mutation patterns were discerned among
genes associated with triple-negative breast cancer in both the high-
risk and low-risk groups (Supplementary Figure S6A, B).

Prognostic nomogram for predicting breast
cancer outcome

After accounting for other conventional clinical variables within
the TCGA dataset, we conducted univariate regression analysis to
assess whether the prognostic model could maintain its status as an
independent predictor. This analysis aimed to evaluate the
predictive utility of clinical characteristics for breast cancer
patients. Our findings revealed that the following factors
significantly impacted overall survival (OS): age, tumor stage,
B cell naive, plasma cells, CD8 T cells, CD4 T cell memory

FIGURE 6
Exploration of tumor immune microenvironment (A, B) ssGSEA for the association between immune cell subpopulations and immune-related
functions in the high- and low-risk groups. (C) The difference of immune score in the high- and low-risk groups. (D) The difference in stromal score in the
high- and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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resting, monocytes, macrophages M0, macrophages M1,
macrophages M2, CD4 T cell memory activated, dendritic cell
resting, neutrophils, and the risk score model (Figure 8A).

To establish a quantitative prognostic assessment method with
clinical relevance in breast cancer, we subsequently conducted
multivariate regression analysis. This analysis demonstrated that
age (p = 0.002), tumor stage (p < 0.001), plasma cells (p < 0.001),
macrophages M0 (p = 0.038), macrophages M2 (p = 0.021), and the
risk score (p < 0.001) all emerged as independent prognostic factors
strongly associated with OS (Figure 8B).

Building upon the prognostic model centered around apoptosis-
related genes, conventional clinical features, and multi-omics
immune cell data, we crafted a quantitative prognostic evaluation
nomogram for breast cancer (Figure 9A). This nomogram provided
a vertical axis scale for estimating 3-year, 5-year, and 10-year OS
probabilities, with the predicted outcomes closely aligning with
actual results, thus validating the nomogram’s accuracy
(Figures 9B–D).

Furthermore, we applied the nomogram to compute scores for
each patient in both the TCGA and METABRIC cohorts, classifying

them into two groups using an optimal cutoff value. Survival analysis
showcased significant distinctions between these two groups,
surpassing the results derived solely from the risk score model
(Figure 10). Importantly, the prognostic nomogram demonstrated
superior performance over the use of a single prognostic variable,
exhibiting high accuracy and long-term predictive capability
extending up to 10 years (Supplementary Figure S7).

Additionally, we assessed the DEGs between the two patient
groups based on the nomogram scores. Our analysis highlighted
that the most significant alterations within the biological process
GO category were related to the humoral immune response.
Moreover, KEGG pathway analysis unveiled significant
enrichment in pathways associated with hematopoietic cell
lineage and protein digestion and absorption (Supplementary
Figure S8; Supplementary Table S6). In summary, our study
underscores that the prognostic nomogram offers a more
precise and dependable method for forecasting the prognosis
of breast cancer patients.

qPCR analysis to evaluated mRNA
expression level

To identify differential gene expression within the prognostic
model, we conducted a gene expression analysis across various
breast cancer cell lines and a normal mammary epithelial cell
line, MCF-10A. The selected cell lines encompassed the luminal
A cell line, MCF-7, the luminal B cell line, BT-474, the Her2-
overexpressed cell line, SK-BR-3, and the triple-negative breast
cancer cell line, MDA-MB-231. Quantitative PCR (qPCR) was
employed, and the relevant primer information is summarized in
Supplementary Table S7.

The results revealed a notable downregulation of AVPR1A,
FEZ1, HGF, GSN, NEDD9, and EGR3 expression in the breast
cancer cell lines (MCF7, BT-474, SK-BR-3, MDA-MB-231) when
compared to the normal mammary epithelial cell line (MCF-10A).
In contrast, LEF1 expression exhibited an increase relative to MCF-
10A (Figure 11).

Discussion

In this study, we conducted a comprehensive analysis of
genomic data derived from breast cancer tissues and normal
mammary tissues to investigate the differential expression of
apoptosis-related genes, with the aim of identifying potential
biomarkers for breast cancer. Subsequently, we developed and
rigorously validated a prognostic model for breast cancer,
leveraging the expression profiles of seven apoptosis-related
genes. Furthermore, we stratified breast cancer patients into
low- and high-risk categories based on their respective risk
scores. Our results unveiled substantial disparities in
prognosis, molecular pathways, the tumor microenvironment
(TME), immune functionality, and gene mutational profiles
between these low-risk and high-risk cohorts. Significantly, the
low-risk group demonstrated a more favorable response to
immunotherapy. To synthesize the risk score model, clinical

FIGURE 7
Gene mutation analysis (A) Oncoprint of the genes in the high-
risk group. (B) Oncoprint of the genes in the low-risk group.

Frontiers in Genetics frontiersin.org10

Yu et al. 10.3389/fgene.2024.1332935

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1332935


variables, and immune cell data, we formulated a multi-omics
nomogram. Calibration plots and area under the curve (AUC)
analyses affirmed the improved predictive efficacy of
this nomogram.

Apoptosis constitutes a pivotal mechanism that regulates cell
proliferation by controlling mutation rates, thereby curbing
malignant transformations. The inhibition of specific
apoptosis signaling pathways can lead to treatment resistance.
Extensive research has highlighted the association between
apoptosis mechanisms and the efficacy of immunotherapy,
indicating that antagonists of apoptosis antagonistic proteins
can enhance the effectiveness of cancer immunotherapy
(Michie et al., 2020). In our previous investigations, we
established a novel immune classification based on long non-
coding RNAs (lncRNAs) and cytotoxic T lymphocyte (CTL)

infiltration. This classification delineated four distinct immune
subtypes in the context of clinical cancer immunotherapy.
Moreover, multi-omics panels incorporating CTL infiltration,
tumor mutation burden, PD-L1 expression, and lncRNA profiles
have proven to be practical biomarkers for cancer
immunotherapy (Yu et al., 2020b). Consequently, our study
employed mRNA profiling to establish a prognosis model
founded on seven apoptotic genes, which we subsequently
validated in cancer patients undergoing immunotherapy.
Notably, patients classified in the low-risk group demonstrated
a more favorable therapeutic response to anti-PD-L1 therapies
compared to their high-risk counterparts.

Our previous research identified a correlation between the
response to immune checkpoint inhibitor therapy and the status
of MUC16 variants (Yu et al., 2020c). Furthermore, inhibiting

FIGURE 8
Independent prognostic role of the gene signature (A, B) Univariate Cox regression analysis and multivariate Cox regression analysis of risk score
model, clinical indicators, and immune cells.
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MUC16 has been shown to suppress apoptosis in triple-negative
breast cancer (TNBC) cells (Lakshmanan et al., 2012). In the present
study, we harnessed seven apoptotic genes to construct a prognostic
model capable of effectively predicting the overall survival (OS) of
breast cancer patients. We subjected this model to internal
validation across various breast cancer subtypes and external
validation using the METABRIC cohort. Additionally, our
research entailed univariate Cox analysis, stepwise regression
analysis, and enrichment analysis, among other analytical
methods, to address the limitations of previous clinical prediction
models, offering valuable insights for the clinical management of
breast cancer patients.

The tumor microenvironment (TME), which plays a pivotal role
in immune surveillance, can serve as a prognostic factor in breast
cancer (He et al., 2020). Immune biomarkers have been established
as crucial prognostic factors for overall survival in cancer patients
(Yu et al., 2019). Research indicates that immune cells within the
tumor microenvironment can both promote and inhibit cancer cell
apoptosis. For instance, cytotoxic T lymphocytes and natural killer
cells induce apoptosis in tumor cells through the secretion of
granzymes and the expression of death ligands like FasL and
TRAIL (Dotiwala et al., 2016). Conversely, certain tumor-
associated macrophages and regulatory T cells can suppress
apoptosis by releasing factors that enhance cancer cell survival
and resistance to cell death (Chen et al., 2024). This complex
interplay influences cancer progression, therapeutic response, and

the efficacy of treatments targeting immune checkpoints or
apoptosis pathways, underscoring the importance of
understanding the mechanisms governing these interactions for
the development of effective cancer therapies (Hänggi and
Ruffell, 2023). Macrophages, when in a resting (M0) state, can
polarize into either M1 or M2 macrophages upon stimulation by
specific tumor factors. Extensive research has focused on
M2 macrophages due to their immunosuppressive nature and
their contribution to tumor growth and angiogenesis (Chen et al.,
2017). Elevated plasma cell levels have been associated with a more
favorable prognosis in breast cancer, whereas higher M0 and
M2 macrophage levels are linked to a poorer prognosis (Chávez-
Galán et al., 2015; Dai et al., 2021). Our study delved into the
characteristics of apoptotic genes and the tumor microenvironment
in breast cancer, providing a robust framework for prognostic
prediction and immunotherapy sensitivity assessment.
Additionally, we found that high-risk patients based on the
apoptotic gene model exhibited unfavorable immune cell
infiltration, such as macrophages M0 and M2. Verification
through the IMvigor210 immunotherapy cohort indicated poorer
responsiveness to immunotherapy among high-risk patients,
offering comprehensive insights into the interplay of immune cell
dynamics, tumor apoptosis, and treatment outcomes in
breast cancer.

To enhance the precision of OS prediction in breast cancer,
we integrated the risk score with two clinical variables (age and

FIGURE 9
Nomogram predicting overall survival of breast cancer patients and the calibration curve for the nomogram. (A) Nomogram predicting overall
survival of breast cancer patients. (B) Calibration curve of the nomogram for 3-year prediction. (C) Calibration curve of the nomogram for 5-year
prediction. (D) Calibration curve of the nomogram for 10-year prediction.
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stage) and immune cell populations (plasma cells, M0, and
M2 macrophages) to construct a multi-omics nomogram. ROC
analysis demonstrated significant improvements in the
nomogram’s predictive performance upon the inclusion of the
risk score in conjunction with clinical characteristics and
immune cell data. Furthermore, the calibration plot showcased
robust agreement between the predicted outcomes and observed
results. Of particular note, our prognostic model exhibited
exceptionally reliable predictions for triple-negative breast
cancer (TNBC), a subtype characterized by high mortality and
resistance to conventional therapies (Yin et al., 2020). In recent
years, immunotherapy has emerged as an effective treatment
approach for TNBC (Keenan and Tolaney, 2020). Clinical trials
like KEYNOTE-012 (Nanda et al., 2016), evaluating
pembrolizumab treatment in TNBC patients, have shown
promising overall response rates, further underscoring the
potential utility of the risk score model as a predictive marker
for TNBC patients undergoing immunotherapy. Our previous
retrospective study, which encompassed 1,088 breast cancer
patients, identified early invasive breast cancer through a

comprehensive assessment combining axillary lymph node and
tumor area clinicopathological characteristics with molecular
subtypes and MRI multi-sequence key radiological features
(Yu et al., 2021). However, this prior study had limitations,
particularly the absence of genetic characterization in breast
cancer. In the current study, we delved into the characteristics
of apoptotic genes and the tumor microenvironment in breast
cancer, thereby providing a robust framework for prognostic
prediction and immunotherapy sensitivity assessment in breast
cancer patients.

It is important to acknowledge several limitations within our
study. Firstly, our study is based on retrospective samples,
warranting further validation with prospective data. Additionally,
the absence of immunotherapy-treated patients in the TCGA cohort
limits our ability to fully assess the applicability of apoptosis
biomarkers. Future investigations should consider the
incorporation of additional features, such as neoantigen load,
long non-coding RNA expression, and microRNA profiles, to
further enhance the accuracy and interpretability of multi-
biomarker sets.

FIGURE 10
Kaplan-Meier curves and ROC curves of the two groups reclassified by nomogram score. (A) Kaplan-Meier curve of patients in the TCGA cohort
between the high- and low-risk group patients for OS. (B) Kaplan-Meier curve of patients in METABRIC cohort between the high- and low-risk group
patients for OS. (C) The ROC analysis proved the prognostic performance of the risk score model in the TCGA cohort. (D) The ROC analysis proved the
prognostic performance of the risk score model in in METABRIC cohort.
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Conclusion

In this study, the prognostic model, using seven apoptosis-
related genes, accurately predicts survival for various breast
cancer types and suggests these genes as targets for treatments.
It identified the breast cancer patients into high or low-risk
groups, showing significant differences in pathways, immune
microenvironment between these two groups. Notably, there’s
a association between our prognostic score and response to anti-
PD-L1thearpy, highlighting its value in cancer treatment. By
combining risk scores with clinical data and immune profiles,
we’ve developed a multi-factor nomogram, greatly improving our
predictions’ precision.
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FIGURE 11
qPCR analysis to evaluated mRNA expression level. (A) The expression level of AVPR1A. (B) The expression level of EGR3. (C) The expression level of
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0.01; ***p < 0.001; ns, not significant.
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