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An in-depth genotypic characterisation of a diverse collection of Digitaria
insularis was undertaken to explore the neutral genetic variation across the
natural expansion range of this weed species in Brazil. With the exception of
Minas Gerais, populations from all other states showed high estimates of
expected heterozygosity (HE > 0.60) and genetic diversity. There was a lack of
population structure based on geographic origin and a low population
differentiation between populations across the landscape as evidenced by
average Fst value of 0.02. On combining haloxyfop [acetyl CoA carboxylase
(ACCase)-inhibiting herbicide] efficacy data with neutral genetic variation, we
found evidence of presence of two scenarios of resistance evolution in this weed
species. Whilst populations originating from north-eastern region demonstrated
an active role of gene flow, populations from the mid-western region displayed
multiple, independent resistance evolution as themajor evolutionarymechanism.
A target-site mutation (Trp2027Cys) in the ACCase gene, observed in less than 1%
of resistant populations, could not explain the reduced sensitivity of 15% of the
populations to haloxyfop. The genetic architecture of resistance to ACCase-
inhibiting herbicides was dissected using a genome wide association study
(GWAS) approach. GWAS revealed association of three SNPs with reduced
sensitivity to haloxyfop and clethodim. In silico analysis of these SNPs revealed
important non-target site genes belonging to families involved in herbicide
detoxification, including UDPGT91C1 and GT2, and genes involved in vacuolar
sequestration-based degradation pathway. Exploration of five genomic
prediction models revealed that the highest prediction power (≥0.80) was
achieved with the models Bayes A and RKHS, incorporating SNPs with additive
effects and epistatic interactions, respectively.
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Introduction

Digitaria insularis, commonly known as sourgrass, is an
outcrossing perennial grass weed native to Central and South
America, where glyphosate-tolerant corn and soybean varieties
are primarily grown as a double-crop year system. The extensive
glyphosate-based weed management in South America has led to
widespread evolution of glyphosate resistant populations of D.
insularis over the years (Heap, 1999). In Brazil, glyphosate
resistant sourgrass populations were first reported from soybean
and maize fields in 2008 (de Carvalho et al., 2011). In just over a
decade, D. insularis has become one of the most persistent weed
species competing with soybean, corn and cotton. In soybean, yield
losses to sourgrass infestation can reach up to 80% and it is a major
concern to the agricultural sector (Lopez Ovejero et al., 2017;
Gazziero et al., 2019). D. insularis propagates by seed and
asexually by rhizomes, which makes it even more challenging to
control in the field as compared to many other weeds.

Acetyl coenzyme A carboxylase (ACCase) inhibiting herbicides
have been used intensively for post-emergence control of D.
insularis in Brazil, which substantially increased selection
pressure for this class of herbicides. A total of 49 weeds have
already evolved resistance to ACCase inhibitors, conferred
predominantly by target-site resistance (TSR) mechanism. The
TSR mechanism involves point mutation(s) in genes encoding
the protein targets of herbicides affecting the binding of the
herbicide at or near catalytic domains. Several mutations at
ACCase codons Ile1781, Trp1999, Trp2027, Ile2041, Asp2078,
Cys2088 and Gly2096 in the carboxyltransferase (CT) domain of
the enzyme have been associated with resistance to ACCase-
inhibiting herbicides (Powles and Yu, 2010; Beckie and Tardif,
2012; Kaundun, 2014; Takano et al., 2020). The non-target site
resistance (NTSR) mechanisms are more complex and can include
one or more physiological processes resulting in reduced absorption
and translocation of the herbicides and/or their enhanced
metabolism or sequestration. The metabolism-based NTSR
mechanism, involving the increased activity of enzymes such as
cytochrome P450s, glutathione S-transferases and/or Uridine 5′-
diphospho (UDP)-glucosyl transferases, has been reported for
ACCase inhibitors in a few grass weed species (Powles and Yu,
2010; Yu et al., 2013; Han et al., 2016; Iwakami et al., 2019).

Hitherto, limited knowledge exists on the genetic diversity and
population genetic structure in D. insularis as is the case with most
other weed species (Gonçalves Netto et al., 2021). The information
on the genetic diversity and population structure in D. insularis is
important to increase our understanding of the genetic structure and
gene flow across natural expansion area of this weed species. Recent
advances in next-generation sequencing (NGS) technologies and
bioinformatic and statistical tools have opened new vistas to
characterize plant genomes at a much greater depth than before.
Genotyping by sequencing (GBS), particularly, has been used
extensively in crops to assess genetic diversity, investigate
population genetic structure and gene discovery for a plethora of
traits using genome wide association study (GWAS) approach (Kim
et al., 2016; Sehgal et al., 2017; 2020; Shi et al., 2020; Abou-Khater
et al., 2022). It is a rapid, high-throughput, and cost-effective method
for the simultaneous discovery of single nucleotide polymorphisms
(SNPs) and genotyping of target germplasm (Poland and Rife,

2012). The GBS technology has made it possible to generate
thousands to millions of SNPs with a high resolution with and
without the availability of a reference genome in weed species
(Küpper et al., 2018).

The present study aims to i) characterize the genetic diversity in
a large Brazilian collection ofD. insularis using the GBS approach ii)
determine the population genetic structure and investigate pattern
of gene flow between populations iii) identify marker trait
associations (MTA) for resistance to reduced sensitivity to
ACCase inhibitors such as haloxyfop and clethodim using the
GWAS approach and iv) investigate genomic prediction (GP)
models to explore the potential of this approach for predicting
NTSR. The present study is the first report of a detailed genotypic
characterization of the largest collection of D. insularis and a
preliminary investigation to explore the potential of GWAS
approach and GP models dissecting NTSR in its natural diverse
populations.

Materials and methods

Plant material

A total of 205 D. insularis weed populations were used in the
study. The populations were collected from the most relevant
soybean- (and corn) growing regions across Brazil inhabiting
crop fields and crop margins in the southern, mid-western,
south-eastern and north-eastern regions. Briefly, these
205 populations originated from seven states including Mato
Grosso (77), Mato Grosso do Sul (10), Minas Gerais (19), Bahia
(24), Goiás (20), Paraná (PR) and Rio Grande do Sul (18). The detail
information on the geographic origin and geographic coordinates
are provided in the (Supplementary Table S1). Some collection sites
(1/5th of the collection) had a history of multiple herbicide
treatments on the crop including glyphosate, ACCase inhibitors
such as haloxyfop or clethodim alone or in mixtures and/or ALS
inhibitors (Supplementary Table S1). The populations were
collected in 2020 and 2021 and were investigated for their
sensitivity to ACCase inhibitors haloxyfop and clethodim at
multiple dose rates by Weed Research team at Brazil Resistance
Management Laboratory in Uberlândia, Brazil, as part of resistance
monitoring studies.

Herbicide resistance screening of Digitaria
insularis collection

The rates used in the population screening were initially
determined in a pilot study using ten D. insularis sensitive
populations sampled in Brazil urban areas with no history of
herbicide application. Informative herbicide rates were
determined as 7.8; 15.0, 27.0 and 64.0 g a. i ha-1 for haloxyfop
and 27.0, 54.0 and 108.0 g a. i ha-1 for clethodim.

Seeds from all D. insularis populations were germinated and
planted in 1 L pots filled with a commercial substrate to produce
around 15 plants per pot. Each combination of population and
herbicide dose was replicated 3 times (45 plants tested per
treatment) in a completely randomized design. The herbicide
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treatments were sprayed on plants at the 4 leaf-stage, in a spray
chamber equipped with flat fan nozzles calibrated to deliver 200 L
ha-1 at 200 kPa pressure. Plant control was evaluated 21 days after
treatment, using a visual scale of 0%–100%; 0% represents healthy
plants and the absence of symptoms, and 100% represents the death
of the plant.

DNA extraction, genotyping-by-sequencing
(GBS) library preparation and sequencing

Four pinches of seeds were sown in a punnet of size 18 cm ×
6 cm filled with peat keeping 3 cm between pinches. For each
population, two such punnets were sown. The punnets were
watered manually and put on trolleys in a glass house with
controlled conditions (day temperature, 24°C; night temperature,
18°C; light, 16 h; humidity −65%). The punnets were watered daily
for 3 weeks. After 3 weeks, a 1 cm × 2 cm of leaf sample was cut from
25 individual plants for each population and pooled into a 14 mL
falcon tube. The falcon tubes were stored in a −80°C freezer until
further manipulation.

The leaf samples were dried in a freeze dryer for three
consecutive days and nights by keeping the shelves at a contact
temperature of 1.0°C and freezer at −60°C. After freeze drying, the
samples were shipped to LGC Genomics GmbH, Germany for DNA
extraction, reduced representation library preparation and
sequencing.

Genomic DNA extraction was performed from the pooled
samples using the sbeadex™ maxi plant kit (LGC) on KingFisher
Flex (after lysis step) followed by a spectrophotometric
quantification step using Nano Drop 8,000 (Thermo Fisher
Scientific). Reduced representation library preparation was done
by the standardized ddRAD protocol at LGC Genomics. Briefly,
100 ng of genomic DNA were digested with 2 units each of Apek I
and Pst I enzymes (NEB) in 1 times NEB buffer 3.1 in 20 μL volume
for 1 hour at 37°C. The restriction enzymes were heat inactivated by
incubation at 75°C for 60 min. The detailed protocol for the ligation
reaction, library purification, amplification and normalization were
performed according to the standardized ddRAD protocol at LGC
Genomics, GmbH. The library was size selected on a LMP-Agarose
gel, removing fragments smaller than 300 bp and those larger than
500 bp. Sequencing was done on an Illumina NovaSeq 6,000 (150bp
paired-end read).

Genotypes and SNP filtering

Demultiplexing of all libraries for each sequencing lane was done
using the Illumina bcl2fastq v2.20 software. Demultiplexing of
library groups into samples was done according to their inline
barcodes and verification of restriction site. No mismatches or
Ns were allowed in the inline barcodes, but Ns were allowed in
the restriction site. Reads with final length <20 bases were rejected
and reads with 5′ ends not matching the restriction enzyme site were
also discarded. The reads were quality trimmed at 3′-end to get a
minimum average Phred quality score of 20 over a window of ten
bases. The mapping of quality trimmed reads on the D. insularis
reference genome v01.0 (available at Weedpedia, https://weedpedia.

weedgenomics.org/) was done using BWA-MEM v0.7.12. One
combined alignment file of all samples in the BAM format was
used for variant discovery and genotyping of samples with Freebayes
v1.2.0. Filtering of variants was done using the following GBS-
specific rule set;

1. The read count for a locus must exceed 8 reads
2. Genotypes must have been observed in at least 66% of samples
3. Minimum allele frequency across all samples must exceed 5%.

Genetic diversity and population
differentiation

The genetic diversity indices expected heterozygosity (HE) and
inbreeding coefficients (FIS) were calculated using the R packages
“adegenet” and “hierfstat” (Goudet, 2005). The polymorphic
information content (PIC) was calculated using an in-house R
package. The two- and three-dimensional principal component
analysis (PCA) was conducted using the R packages “stats” and
“rgl”. A Bayesian clustering approach implemented in the program
STRUCTURE version 2.3.4 (Pritchard et al., 2000) was used to
analyse population genetic structure by setting replication number
to 10,000 for the burn-in and Markov Chain Monte Carlo (MCMC)
iterations each and using options of admixture model and correlated
allele frequencies. The number of subpopulations, i.e., K was set
from 1 to 7 and three independent runs were performed for each K.
The Structure Harvester (https://taylor0.biology.ucla.edu/
structureHarvester/) was used to analyze the results from the
STRUCTURE software, which constructs a deltaK vs K plot
using the method of Evanno et al. (2005). The weighted
neighbour joining (NJ) was constructed in DARwin 6.0. (Perrier
and Jacquemoud-Collet, 2006).

Target site mutations in ACCase

Two primer pairs were used to amplify the ACCase gene
sequence in D. insularis: FE35332 Forward (5′-ATGTCCACT
CCTGAATTCCCA-3′), FE35333 Reverse (5′-CATTCTGAGGGA
AGTATCAT-3′). PCR was performed in 25 μL reaction volume
containing 5.0 µL of GoTaq Buffer, 0.5 µL of 10 mM dNTPs, 1.5 µL
of 25 mM MgCl2, 0.5 µL of 10 µM of each forward and reverse
primers, 0.2 µL of GoTaq G2 Hot Start Polymerase (Promega), and
14.8 µL of ultrapure nuclease-free water (Sigma). PCR cycling
conditions were: one cycle at 95°C for 2 min, 35 cycles at 94°C
for 30 s, 58°C for 30 s, 72°C for 90 s, and final extension at 72°C for
10 min. PCR product was run on 1.0% agarose gel to verify the
amplicon size of 1.5 kb. The amplified samples were purified and
sequenced in a Genetic Analyzer 3,500 instrument (Applied
Biosystems, Thermo Fisher) following manufacturer’s
instructions. Four individuals per population were sequenced
using the original amplification primers and the following three
internal sequencing forward primers: FE35334 Sequencing Forward
1 (5′- TGGGAGAGCAAAGCTTGGGGT-3′), FE35407 Sequencing
Forward 2 (5′- GAAGTGCTGCTATTGCCAGTGC -3′) and
FE35408 Sequencing Forward 3 (5′- GACCCACCAGACAGA
CCTGTTA -3′). The chromatograms were manually read using
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Bioedit version 7.2.5 software (Hall, 1999) to screen the seven known
target-site mutations.

Genome wide association study (GWAS) and
in silico analysis of significant SNPs

The normality of the resistance data scores was checked in
PAST3 program (Hammer et al., 2001). The resistance scores data of
haloxyfop at dose rate of 7.8 g a. i ha−1 and clethodim at dose rate of
27.0 g a. i ha−1 showed normal and near-normal distribution,
respectively and hence were used in GWAS. Both general linear
model (GLM) and mixed linear model (MLM) were used for GWAS
in TASSEL software ver 5.0 (Bradbury et al., 2007). The kinship
matrix was calculated using VanRaden algorithm (VanRaden, 2008)
in the GAPIT package 2.0 (Lipka et al., 2012). In the GLM, PCA was
used as a fixed variate and in the MLM, PCA and kinship matrices
were used as fixed and random variates, respectively. The threshold
to declare significant marker-trait associations (MTA) was ≥10−3

(log10p) after applying a correction for a false discovery rate (FDR)
at p < 0.05.

The VCF file was annotated with SnpEff version 5.1 using the
IWGC D. insularis reference genome and annotation v01.0. In
addition, the in silico analysis of the significant SNPs was
conducted using nucleotide Basic Local Alignment Search
Tool (BLAST) in the EnsemblPlants database (https://plants.
ensembl.org/index.html). The EnsemblPlants database has
cDNA/transcript sequences of more than 80 monocots and
dicots and of model plants, which were used to find the
homologies. The genes found in the overlapping region and
within 1.0 Mb upstream and downstream of the matched
regions were selected as candidate genes. To determine their
molecular functions, the protein sequences of the candidate genes
were downloaded from EnsemblPlants database and used in
protein BLAST analysis in NCBI server (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) and their molecular functions were determined
after ascertaining their homologies with known proteins
in grasses.

Genomic prediction models

Four parametric models (Ridge regression, Bayes A, Bayes B,
Bayes C) and a non-parametric model (RKHS) were used and all
these models are implemented in the “BGLR” package (De Los
Campos et al., 2022) in R. Ridge regression (RR) method
considers common variance for all markers and shrinks the
marker effects toward zero (Meuwissen et al., 2001). All
Bayesian models do not consider the common variance of
markers and incorporate additive genetic effects. The RKHS
model uses a kernel function and captures non-additive effects
(epistatic interactions). Either all available SNP markers were
used or different sets of SNP markers were employed according to
preliminary GWAS results. The SNP markers were ranked
according to increasing p-values in GWAS analyses. Prediction
accuracy of all models was calculated through “Pearson
correlation coefficient” between observed and predicted values
based on 100 iterations and 10-fold cross-validations.

Results

GBS marker distribution

A total of 105,699 single nucleotide polymorphisms (SNPs) were
generated across 205 populations using the criterion of a minimum
coverage to call a SNP. Of these, 5,238 SNPs were retained for
genetic analysis after filtering for 5% minor allele frequency (MAF)
and missing data 30% and removing markers that could not be
mapped on the currently available reference genome of D. insularis
on Weedpedia (https://weedpedia.weedgenomics.org/). The
polymorphic information content (PIC) of the filtered SNPs
varied from 0.10 to 0.38. Overall, SNPs showed good distribution
with chromosomes S02 and S06 showing the highest (842) and the
least (344) number of SNPs, respectively (Figure 1). On an average,
624 Mb of the physical genome was encompassed by these SNPs
with the maximum genome coverage achieved on chromosome S01
(93.7 Mb) and minimum (51.9 Mb) on chromosome S09
(Supplementary Table S2).

Within populations genetic diversity and
population differentiation

The expected heterozygosity (HE) and polymorphic information
content (PIC) values of the populations ranged from 0.56 to 0.64 and
0.20 to 0.37, with an average of 0.62 and 0.37, respectively (Table 1).
Both parameters, HE and PIC, showed that Minas Gerais (MG)
population was moderately diverse while most other populations
showed high level of genetic diversity (HE > 0.60). The inbreeding
coefficient (FIS) for all the seven populations was negative (Table 1)
suggesting highly outcrossing nature of the populations under local
environmental conditions.

The average Fst across all samples s was 0.020, indicating a low
genetic differentiation among populations. The pairwise Fst values
ranged from 0.003 (between populations MS and PR, GO and PR,
MT and RS and PR and RS) to 0.064 (between MG and BA)
(Table 2). As expected, a high gene flow (Nm) was detected
among populations, varying from 3.65 to 83.08, with an overall
average of 12.25. Interestingly, the lowest Nm estimates were
obtained between MG and five populations (MT, MS, PR, RS
and BA) (Table 2).

Principal component analysis (PCA) and
STRUCTURE analysis

The PCA plot with genome wide 5,238 SNPs revealed two
important features; i) all populations were scattered in the PCA
plot and ii) populations did not show clusters based on their
geographical origin (Figure 2). The population structure explored
by Bayesian STRUCTURE analysis revealed two subpopulations at
the best K (K = 2) (Supplementary Figures S1A, B). Both
subpopulations comprised of individuals from all seven
populations (Supplementary Figure S1B). Only populations from
MG had a defined cluster (cluster II) based on a cluster membership
threshold of 0.80 (Supplementary Figure S1B), whereas all
remaining populations were distributed between the two clusters.
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The weighted neighbour joining (NJ) tree confirmed that two groups
comprised individuals from seven populations clustered randomly
irrespective of their geographic origin (Supplementary Figure S2).

With the Fst outlier analysis, we detected 63 SNPs that showed
Fst values higher than the average Fst (Figure 3A). We used these
63 SNPs to redraw PCA to investigate if any geographical

differentiation could be observed (Figure 3B). Interestingly, using
a subset of 63 SNPs (Fst >0.03), MT population could be moderately
differentiated from rest of the populations while the remaining six
populations remained mixed (Figure 3B). To understand the
functional significance of this subtle geographical differentiation,
we conducted an in silico analysis of the sequences of the top fifteen
outlier hits (Fst >0.04) to identify candidate genes (Supplementary
Table S3). It was revealed that orthologs of the genes involved in
growth and development and/or stress pathways showed hits with
these sequences.

Resistance to ACCase inhibitors and
population structure of resistant and
sensitive populations

As part of the resistance monitoring program, the D. insularis
populations were tested with, haloxyfop at 7.8, 15.0, 27.0 and 64.0 g
a. i ha−1 ai/ha and clethodim at 27, 54 and 108 g a. i ha−1 ai/ha. A total
of 29 (15.0%), 29 (15.0%), 7 (3.6%) and 6 (3.1%) populations were
found to show less than 90% control with haloxyfop at 7.8, 15.0,

FIGURE 1
Genome wide GBS marker distribution of 5,238 SNPs; number of SNPs per chromosome (A) and SNP density per chromosome (B) (physical
positions based on the current Digitaria insularis reference genome in Weedpedia).

TABLE 1 Expected heterozygosity (HE), polymorphic information content (PIC) and inbreeding coefficient (Fis) of Digitaria insularis populations from Mato
Grosso (MT), Mato Grosso do Sul (MS), Minas Gerais (MG), Bahia (BA), Goiás (GO), Paraná (PR) and Rio Grande do Sul (RS).

Population Number of populations sampled HE PIC Fis

MT 74 0.63 0.36 −0.58

MS 10 0.64 0.35 −0.57

MG 24 0.56 0.20 −0.78

BA 24 0.62 0.32 −0.62

GO 21 0.63 0.35 −0.59

PR 35 0.63 0.37 −0.58

RS 18 0.63 0.36 −0.58

Overall 201 0.62 0.37 −0.61

TABLE 2 Genetic differentiation coefficient (Fst) and gene flow (Nm)
between populations. The upper and lower triangles represent pairwise Fst
and Nm values, respectively.

MT MS MG BA GO PR RS

MT 0.005 0.040 0.004 0.007 0.008 0.003

MS 49.75 0.042 0.004 0.004 0.003 0.005

MG 6.00 5.70 0.064 0.009 0.024 0.036

BA 62.25 62.25 3.65 0.019 0.006 0.008

GO 35.46 62.25 27.52 12.90 0.003 0.004

PR 31.00 83.08 10.16 41.41 83.08 0.003

RS 83.08 49.75 6.70 31.00 62.25 83.08
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27.0 and 64.0 g a. i ha−1, respectively. For clethodim, 16 (8.2%), 8
(4.1%) and 4 (2.0%) populations were found to be controlled at less
than 90% at doses 27.0, 54.0 and 108.0 g a. i ha-1, respectively. There
were no significant differences in the sensitivity scores for the two
lower doses of haloxyfop, i.e., 7.8 and 15.0 g a. i ha−1, hence
sensitivity scores from the dose 7.8 g a. i ha−1 were used in all
further analysis. The state wise distribution showed that more than
50% of populations with reduced sensitivity to the haloxyfop dose
rate 7.8 g a. i ha-1 were from MG state followed by MT (31%)
(Supplementary Figure S3A). For higher doses of haloxyfop and for
all the three doses of clethodim, populations with reduced sensitivity
were from PR and MS states (Supplementary Figure S3B). The
efficacy scores at 7.8 g a. i ha−1 dose of haloxyfop and 27.0 g a. i ha−1

of clethodim showed a normal and near-normal distribution,
respectively (Supplementary Figures S3C, D).

Sequencing of the ACCase gene in all samples revealed that only
two populations (BR-20-Din-144 and BR-21-Din-046) showed the
presence of Trp2027Cys mutation. Whilst both populations showed
reduced sensitivity to all the four doses of haloxyfop (7.8, 15.0,
27.0 and 64.0 g a. i ha−1), only one exhibited reduced sensitivity to

the two doses (27.0 and 54.0 g a. i ha−1) of clethodim. The four
populations (BR-21-Din-417, BR-21-Din-419, BR-21-Din-421 and
BR-21-Din-423), that showed reduced sensitivity to the higher doses
of haloxyfop (27.0 and 64.0 g a. i ha−1) and to all the three doses of
clethodim (27.0, 54.0 and 108.0 g a. i ha−1), did not show the
Trp2027Cys mutation. None of the other known mutations in
this gene were identified in the resistant populations.

To understand whether the high gene flow observed in the
species is shaping the genetic structure of resistance, we investigated
the population genetic structure of a subset of 65 populations,
contrasting for resistance or reduced sensitivity to 7.8 g a. i ha−1

of haloxyfop regardless of geographic origin. Only 7.8 g a. i ha−1 dose
rate was selected for these analyses as this dose rate showed a good
size of populations with reduced sensitivity (29) which could be
compared with sensitive populations (36). The other dose rates
produced too few populations showing reduced sensitivity (<8) and
hence were not analysed further. The PCA plot showed that resistant
and sensitive populations were interspersed, and no clear groups
were observed (Figure 4A), which led us to suggest that the
resistance has evolved independently across the landscape. We

FIGURE 2
Two-dimensional (A) and three-dimensional (B) principal component analysis of Digitaria insularis populations based on 5,238 SNPs.

FIGURE 3
Plot of Fst outlier analysis showing 63 SNPs Fst>0.03 (A) and 2D-PCAwith 63 SNPs showing amoderate differentiation of MT population from rest of
the populations (B).

Frontiers in Genetics frontiersin.org06

Sehgal et al. 10.3389/fgene.2024.1340852

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1340852


then drew weighted NJ trees of populations from MG and MT
regions separately (Figures 4B, C). For MG, the tree showed
distinction between resistant and sensitive populations but for
MT, resistant and sensitive populations were interspersed.

Genome wide association study (GWAS) and
genomic prediction models

Since efficacy scores at 7.8 g a. i ha−1 dose of haloxyfop and 27.0 g
a. i ha−1 of clethodim showed a normal and near-normal
distribution, respectively (Supplementary Figures S3C, D),
characteristics of a quantitative trait, a pilot GWAS study was
conducted to identify candidate genes associated with reduced
efficacy to haloxyfop and clethodim. Three and two SNPs were
found associated with reduced efficacy with haloxyfop in GLM and
MLMmodels, respectively (Figure 5). Two SNPs, S02_45439268 and
S03_5213977, were common in both models (Table 3). S02_
45439268 on chromosome 2 explained the highest percentage
variation (R2) of 26.6% (p-value = 3.13E-06), while S03_
5213977 on chromosome 3 explained 14.6% R2 (p-value = 9.71E-
04). In silico analysis (BLAST analysis using reference genomes/
cDNA sequences of D. exilis or model species) of these SNPs
revealed that the SNP S02_45439268 was located 0.1 Mb
upstream of a D. exilis gene Dexi2A01G0009650. The protein
BLAST analysis of the protein sequence of this gene showed
homologies with UDP-glycosyltransferase 91C1-like protein
(UDPGT91C1) of Panicum virgatum, Sorghum bicolor, Oryza
glaberrima and Setaria italica. The SNP S03_5213977 showed
homologies with the galactinol--sucrose galactosyltransferase
(GT) 2 in Hordeum vulgare, Aegilops tauschii, Triticum urartu
and Lolium arundinaceum.

For efficacy shift to clethodim, four and one SNP were identified
with GLM and MLM, respectively (Figure 6). The four SNPs with
the GLM model explained 11.3%–16.6% of R2, while the SNP
identified with the MLM explained 24.0% of R2 (Table 3).
Interestingly, two SNPs were located within 0.1 Mb of potential

NTSR genes. The SNP S05_47637569 was located within 0.1 Mb of
D. exilis gene Dexi1A01G0019350. The BLASTP analysis of protein
sequence of this gene showed homologies with vacuolar protein
sorting (VPS)-associated protein 20 of P. virgatum, S. italica, Zea
mays and Lolium rigidum. The SNP S08_15270772 is located within
0.1 Mb of D. exilis gene Dexi9A01G0037640, the protein sequence of
which showed homologies with CMP-sialic acid transporter 2 of S.
italica, P. virgatum and S. bicolor.

We further investigated the potential of genomic prediction
(GP)models to predict NTSR resistance in the panel using resistance
data scores at haloxyfop dose of 7.8 g a. i ha-1. We tested five models,
Ridge Regression, Bayes A, Bayes B, Bayes C and RKHS, on different
subsets of SNPs selected either based on GWAS hits or complete set
of 5,238 SNPs (Figure 7). Although predictions based on models
having 50 SNPs from GWAS showed more than 50% prediction
accuracy, the highest accuracy was achieved with complete set of
5,238 SNPs with better prediction accuracy from Bayes A or
RKHS models.

Discussion

The present study highlights the outcomes of the assessment of
neutral genetic variation in D. insularis in its natural expansion
range in Brazil, where it has recently become one of the most
problematic agricultural weeds. Both genetic diversity parameters
(PIC and HE) indicated an overall high genetic diversity in the
populations. The HE estimates in populations (0.56–0.64) are higher
than the previously reported values for this species by GBS markers
(0.15–0.45; Netto et al., 2021). This discrepancy is partly due to
differences in the sample size, i.e., a smaller set analysed in the
previous study and due to the fact that only glyphosate resistant and
susceptible populations were investigated earlier (Gonçalves Netto
et al., 2021). A further comparison with other outcrossing weed
species revealed higher genetic diversity in D. insularis as compared
to Alopecurus myosuroides (average HE = 0.24) and Ipomoea
purpurea (average HE = 0.24) and lower genetic diversity than

FIGURE 4
Two-dimensional PCA plot of resistant and sensitive populations from different geographic regions in Brazil (A) and weighted NJ trees of resistant
and sensitive populations from Minas Gerais (B) and Mato Grosso (C) based on complete set of 5,238 SNPs.
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Lolium multiflorum (average HE = 0.81) (Délye et al., 2010; Kuester
et al., 2015; Karn and Jasieniuk, 2017; Dixon et al., 2021).

The PCA, STRUCTURE and NJ tree analyses based on neutral
GBS markers unveiled the absence of geographic differentiation
among populations and concurrently reiterated the fact that
geographical distance does not govern the genetic structure of D.
insularis across the landscape (Figure 2). This lack of spatial
patterning has been revealed in several weed species that are
outcrossing and possess a high seed dispersal ability such as
black grass and common morning glory (Kuester et al., 2015;
Dixon et al., 2021). The same is true for invasive weed species
that have shown recent expansion such as common ragweed (Martin
et al., 2016) andM. micrantha (Ruan et al., 2021). Several factors are

associated with the lack of structure or spatial patterning observed in
weeds, including their outcrossing nature leading to higher gene
flow between populations as compared to inbreeding species,
human-mediated modes of dispersal (e.g., dispersal through farm
machinery) and their recent expansion across the landscape
(Kuester et al., 2015). The population genetic differentiation
coefficient (Fst) confirmed a very low genetic differentiation
between D. insularis populations (0.003 ≤ FST ≤ 0.064),
suggesting that gene flow between populations was common. The
interpopulation gene flow estimates (Nm = 3.65–83.08) were
approximately two-fold higher than the values obtained in
invasive weed Mikania micrantha (Ruan et al., 2021). Such low
level of population differentiation and high level of gene flow among

FIGURE 5
Manhattan plots showing marker-trait associations identified for resistance to Haloxyfop in Digitaria insularis with GLM (A) and MLM (B) models.
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populations are indicative of recent expansion of the species as an
agricultural weed in Brazil.

We also hypothesized that the prevailing agricultural practices in
Brazil have played a significant role in shaping the genetic structure
of D. insularis populations investigated here. As a common practice,
many Brazilian soybean growers own many large-scale farms,
serving urban and rural markets, across the country and
transport of combines is common between the farms during
harvesting (Lopez Ovejero et al., 2017). Through hair like
appendages, D. insularis seeds adhere to combines, leading to an
increased genetic exchange between different populations thereby
weakening population divergence. This also explains the high gene
flow detected between D. insularis populations collected from
southern and mid-western states (Table 2).

The Fst outlier analysis detected 63 SNPs that showed Fst values
above genome-wide average obtained with 5,238 SNPs. Using these
SNPs in PCA evidenced a subtle genetic structure; populations from
MT could be moderately differentiated from the remaining
populations (Figure 3B). The in silico analysis of the top outlier
loci revealed hits with adaptive genes such as DUF579,
DUF2404 and GRAS family transcription factor involved in
growth and development and/or abiotic stress responses (Lee
et al., 2012; Wang et al., 2022). In invasive weed species, adaptive
signatures throughout the genomes have been identified using GBS
markers and SNPs active in geographic differentiation detected
more often pathways related to growth and defence responses
(Martin et al., 2016; van Boheemen et al., 2017; Ruan et al.,
2021). The identification of similar functional genes in the
present study therefore suggests that the populations have been
adapting to changes in the environments while going through
population expansion. There are evidences that indicate that the
populations from southern, south-eastern, and north-eastern states
(PR, RS, MS, MG, BA) have been exposed to cyclical droughts more
often than populations from mid-western states such as MT (Nobre
et al., 2016; Cunha et al., 2018; Marengo et al., 2020).

Two different models of resistance evolution have been
proposed in weed species, i.e., gene flow and independent
evolution (Kuester et al., 2015; Délye et al., 2010). Currently,
only a limited number of studies have addressed the issue by
simultaneous assessment of neutral genetic variation with the
level of resistance in weed species across the spatial scale
(Küpper et al., 2018; Dixon et al., 2021). Such studies are

required in more weed species, both inbreeding and outcrossing,
to provide insights into the evolutionary units of herbicide
resistance. By combining neutral genetic variation with the level
of resistance, if a pattern of isolation-by-distance (IBD) is displayed,
we can infer that resistance has spread by gene flow in a weed
species. In the second scenario, if a mosaic resistance pattern is
exhibited and no evidence of IBD across populations, it would
suggest independent evolution of resistance on a local scale or at
larger distances. Such studies will prove of high relevance to applied
weed scientists willing to maintain low levels of resistance as these
will help to make informed decisions about weed management
strategies, which would differ in the two scenarios.

We investigated, using a subset of populations showing
susceptibility and reduced sensitivity to haloxyfop, whether the
potential for spread of resistance occurs through gene flow or
through independent evolution in this weed species. Although we
did see a moderate differentiation between the resistant and sensitive
populations, a mosaic pattern of resistance, i.e., resistant populations
placed closely to sensitive populations, was generally observed across
the landscape in the PCA (Figure 4A). The weighted NJ trees of the
local resistant and sensitive populations within MT and MG states
(Figures 4B, C) provided explicit evidence that resistance is evolving by
both means (gene flow and independent evolution) in D. insularis.
Within MG, two clusters of resistant populations were evident which
were separated from the sensitive populations (Figure 4B), whereas
within MT a mosaic pattern was evident (Figure 4C). These results
suggests that both evolutionary mechanisms, gene flow and multiple,
independent resistance evolution, are contributing to the evolution of
resistance in D. insularis. This contrasts with the results obtained in
black grass (Délye et al., 2010; Dixon et al., 2021) and common
morning glory (Kuester et al., 2015) that reported only independent
evolution of resistance across the landscape.

The sequencing of the ACCase gene to screen the seven known
target-site mutations (Powles and Yu, 2010; Kaundun et al., 2021)
showed the presence of Trp2027Cys mutation in two populations
only. It is noteworthy that these two populations showed clear
survivorship at field rate (64.0 g a. i ha−1) of haloxyfop, consistent
with the impact of the W2027C mutation on FOP herbicides
(Kaundun, 2014). A large majority of populations showing
reduced sensitivity to lower doses of haloxyfop (7.8 or 15.0 g a. i
ha−1) or clethodim (27.0 g a. i ha−1) did not show this or other known
target-site mutations. In the light of the present results, although it

TABLE 3 Marker-trait associations identified by genome wide association study for resistance to Haloxyfop and clethodim and candidate gene hits.

Trait Marker Chr Position p-Value R2 (x 100) Candidate gene hits

Resistance to haloxyfop S02_45439268a 2 45439268 3.13E-06 0.26682 UDPGT91C1

S03_5213977a 3 5213977 8.72E-04 0.14603 GT 2

S05_53583216 5 53583216 9.71E-04 0.13438

Resistance to clethodim S09_10317698 9 10317698 2.35E-07 0.16425

S02_43460448 2 43460448 6.38E-06 0.1148

S05_47637569 5 47637569 7.57E-06 0.11327 VPS20

S02_6916309 2 6916309 9.18E-06 0.12125

S08_15270772 8 15270772 2.36E-04 0.24071

aSNPs, identified in both GLM, and MLM.
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seems safe to assume that NTS mechanisms are likely the cause of
reduced sensitivity of 15% of populations, further studies including
sequencing of the ACCase gene on hundreds of individuals of these
populations will be required to rule out the possibility of co-
existence of TSR (at a very low frequency) and NTSR. It is
important to note that previous studies in weeds reporting TSR
as the leading mechanism of resistance to ACCase inhibitors largely
involved smaller number of populations and only field dose rates,
which precluded the plausibility of detection of NTSR genes.

GWAS analysis for haloxyfop resistance identified two
important SNPs that together explained 41.0% of variation. One
of these SNPs (S03_5213977) showed hits with galactinol--sucrose

galactosyltransferase (GT) 2 of multiple grass species including H.
vulgare, A. tauschii, T. urartu and L. arundinaceum. GTs are a well-
researched group of NTSR enzymes known for herbicide
detoxification in several weed species such as L. rigidum (Gaines
et al., 2014; Duhoux et al., 2015),A.myosuroides (Gardin et al., 2015)
and Eleusine indica (Chen et al., 2015). The second SNP (S02_
45439268) for reduced sensitivity to haloxyfop was located within
0.1 Mb upstream of a geneDexi2A01G0009650 inD. exilis (reference
genome of a cultivated species of Digitaria) encoding a putative
NTSR enzyme UDP-glycosyltransferase 91C1-like protein
(UDPGT91C1), the role of which in herbicide detoxification
mechanisms has been shown only recently in Arabidopsis

FIGURE 6
Manhattan plots showing marker-trait associations identified for resistance to Clethodim.
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thaliana through its glucosylating activity (Huang et al., 2021).
Using both mutant and overexpression lines, it was demonstrated
that UDPGT91C1 can glycosylate the herbicide sulcotrione, a
triketone herbicide. UDPGTs (also known as UGTs), in addition
to CYP450s and GSTs, have been implicated in herbicide
detoxification by metabolism, and upregulated expression of
some UDPGT genes has been observed with degradation of
herbicides (Matzrafi et al., 2017; Vega et al., 2020; Huang et al.,
2021; Chandra and Leon, 2022).

For reduced sensitivity to clethodim, two important
candidate gene hits with multiple grass species were obtained
in close vicinities of two significant SNPs (S05_47637569 and
SNP S08_15270772). Of these, vacuolar protein sorting (VPS)-
associated protein 20 (VPS20) is part of Endosomal Sorting
Complex Required for Transport (ESCRT)-III, responsible for
vacuolar-based degradation pathway (Agaoua et al., 2021). The
herbicides that are inactivated by GST-catalyzed glutathione
conjugation are transported into vacuoles for further
metabolism (YU et al., 2013; Cai et al., 2014). A VPS60-type
candidate target gene has been selected for validation in relation
to NTS mechanism of glyphosate resistance mechanism in
Lolium multiflorum (Cechin et al., 2020).

Finally, we tested five genomic models; Ridge Regression,
Bayes A, Bayes B, Bayes C and RKHS, to explore the ability of
these models for predicting NTSR in D. insularis. While Ridge
Regression model assumes that all markers have same effects,
Bayesian models (Bayes A, Bayes B and Bayes C) incorporate
additive genetic effects and RKHS captures complex epistatic
interactions. As anticipated, we got reasonably high prediction
with the reduced set of SNPs selected by GWAS (the case of
50 GWAS SNPs), comparable to the whole set of 5,238 SNPs

(Figure 7). All models invariably showed ≥0.60 prediction
accuracy with the 50 SNPs selected by GWAS as compared to
10 SNPs. However, the highest prediction power (≥0.80) was
achieved with the complete set of 5,238 SNPs with the models
Bayes A and RKHS, incorporating SNPs with additive effects and
epistatic interactions, respectively. These results contrast with
the ones obtained by Dixon et al. (2021) in black grass, who
obtained the highest prediction with the top few hundreds
GWAS loci for resistance to fenoxaprop compared to using
all markers.

Conclusion

Digitaria insularis populations showed high genetic diversity
and a population structure typical of a weed species that has
shown recent expansion across the landscape. In most weed
species, where resistance evolution to ACCase inhibitors has
been investigated, it is indicated that resistance has evolved
independently in weed populations. Digitaria insularis, on the
other hand, is a fascinating example of herbicide resistance
evolution, in which resistance has evolved by multiple
mechanisms, i.e., gene flow and independent evolution. Since
resistance to ACCase inhibitor haloxyfop is observed in Brazil,
the identification of candidate genes conferring shifts in the
sensitivity scores or reduced sensitivity to haloxyfop opens
new opportunities to further investigate resistance
mechanisms in this species and come up with effective weed
management strategies. The present study also opens new
avenues of functional validation of the candidate genes
identified here to determine their role in NTSR-linked processes.

FIGURE 7
Prediction accuracy of five genomic prediction models tested using a subset of GWAS.
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