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Introduction: Mucopolysaccharidoses are a group of lysosomal storage
disorders that include seven types that are classified based on the enzymes
that are disrupted. Malfunction of these enzymes leads to the accumulation of
glycosaminoglycans (GAGs) in various tissues. Due to genetic and clinical
heterogeneity, diagnosing and distinguishing the different types is challenging.
Genetic methods such as whole exome sequencing (WES) and Sanger
sequencing are accurate methods for detecting pathogenic variants in patients.

Methods: Thirty-two cases of mucopolysaccharidosis, predominantly from
families with consanguineous marriages, were genetically examined. Out of
these, fourteen cases underwent targeted sequencing, while the rest
underwent WES. The results of WES were analyzed and the pathogenicity of
the variants was examined using bioinformatics tools. In addition, a segregation
analysis within families was carried out.

Results: In most cases, a pathogenic or likely pathogenic variant was detected.
Sixteen previously reported variants and six new variants were detected in the
known IDS (c.458G>C, c.701del, c.920T>G), GNS (c.1430A>T), GALNS (c.1218_
1221dup), and SGSH (c.149T>C) genes. Furthermore, we discovered a c.259G>C
substitution in the NAGLU gene for the first time in three homozygous patients.
This substitution was previously reported as heterozygous. Except for the variants
related to the IDS gene, which were hemizygous, all the other variants were
homozygous.

Discussion: It appears that the high rate of consanguineous marriages in the
families being studied has had a significant impact on the occurrence of this
disease. Overall, these findings could expand the spectrumof pathogenic variants
in mucopolysaccharidoses. Genetic methods, especially WES, are very accurate
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and can be used alone or in conjunction with other diagnostic methods for a more
precise and rapid diagnosis of mucopolysaccharidoses. Additionally, they could be
beneficial for family screening and disease prevention.

KEYWORDS

mucopolysaccharidosis (MPS), whole exome sequencing (WES), pathogenic variant, Sanger
sequencing, genetic diagnosis

1 Introduction

Mucopolysaccharidoses refer to a group of metabolic disorders
resulting from a deficiency of lysosomal enzymes involved in the
breakdown of glycosaminoglycans (GAGs) and generally classified
into seven types. The main cause of mucopolysaccharidosis type I
(Hurler syndrome OMIM #607014, Scheie syndrome OMIM
#607016, Hurler-Scheie syndrome OMIM #607015) is a mutation in
the α-L-iduronidase (IDUA) gene, which results in a deficiency or
relative deficiency of the α-L-iduronidase enzyme. This enzyme is
responsible for the breakdown of dermatan sulfate and heparan
sulfate (Hampe et al., 2020). In contrast to other MPS types with
autosomal recessive inheritance, mucopolysaccharidosis type II
(Hunter syndrome OMIM #309900) is an X-linked disease caused by
a mutation in the iduronate-2-sulfatase (IDS) gene. The IDS protein
triggers the initial cleavage of dermatan sulfate and heparan sulfate in the
lysosome. Therefore, deficiency of this enzyme leads to the formation of
these GAGs in various tissues (Verma et al., 2021).
Mucopolysaccharidosis type III (Sanfilippo syndrome) is caused by a
defect in one of four genes: N-sulfoglucosamine sulfohydrolase (SGSH)
(MPS IIIA OMIM#252900), N-acetyl-alpha-glucosaminidase (NAGLU)
(MPS IIIB OMIM#252920), heparan alpha-glucosaminide
N-acetyltransferase (HGSNAT) (MPS IIIC OMIM#252930), and
N-acetylglucosamine–Sulfohydrolase (GNS) (MPS IIID
OMIM#252940). The protein products of these genes are involved in
the lysosomal degradation of heparan sulfate (Yogalingam and
Hopwood, 2001). Mucopolysaccharidosis type IV (Morquio
syndrome) is determined by impairment of the enzymes
galactosamine-6-sulfate sulfatase (GALNS) (MPS IVA
OMIM#253000) or beta-galactosidase 1 (GLB1) (MPS IVB
OMIM#253010), which are involved in the breakdown of keratan
sulfate and chondroitin sulfate. Mucopolysaccharidosis type VI
(Maroteaux-Lamy syndrome OMIM#253200) results from a
deficiency of the enzyme arylsulfatase B (ARSB). This type begins
with the accumulation of dermatan sulfate and chondroitin sulfate in
the lysosomes. Finally, mucopolysaccharidosis type VII and type IX are
caused by mutations in genes encoding the enzymes beta-glucuronidase
(GUSB) and hyaluronoglucosaminidase-1 (HYAL1), respectively. These
types are characterized by the accumulation of chondroitin sulfate,
dermatan sulfate and heparan sulfate in MPS VII and hyaluronan in
MPS IX (Celik et al., 2021; McBride and Flanigan, 2021; Nagral
et al., 2022).

Overall, reduced activity of these enzymes leads to the accumulation
of GAGs that affect various tissues, including the brain, eyes, ears, upper
and lower respiratory tract, liver, spleen, heart, bones, cartilage, and
joints, resulting in a variety of clinical manifestations (Münzer, 2011;
McBride and Flanigan, 2021). The prevalence of each
mucopolysaccharidosis subtype depends on geographic region and/or
ethnic background. However, demographic data show that MPS is most

common in Saudi Arabia, possibly due to consanguineous marriage or a
founder effect. This is followed by Portugal, Brazil, the Netherlands and
Australia (Celik et al., 2021). There is currently no curative treatment for
mucopolysaccharidoses and treatment includes surgical, supportive and
disease-specific treatments. Additionally, current standard treatments
such as enzyme replacement therapy (ERT) and hematopoietic stem cell
transplantation (HSCT) cannot prevent or reverse the abnormalities in
the cornea, bones, central nervous system, and heart valves. In addition,
ERT can trigger the formation of antibodies against the recombinant
enzyme (Sawamoto et al., 2019). Therefore, early diagnosis of MPS is
crucial to prevent numerous clinical symptoms. Since MPS syndromes
are an extremely heterogeneous group of inherited diseases, the
identification of new pathogenic variants could be of great benefit for
family screening and prediction of the risk of recurrence. In addition, it
can help with early diagnosis and provide therapeutic options for
potential new cases. The aim of this study was to evaluate and
validate potential novel variants involved in the pathogenesis of MPS
using whole-exome sequencing and Sanger sequencing. We have
reported several new variants in different types of genes associated
with mucopolysaccharidosis and confirmed their association with the
disease in the affected families.

2 Material and method

2.1 Patients

We enrolled 32 unrelated cases, including one neonatal death,
who were referred to the Narges Medical Genetics and Prenatal
Diagnosis laboratory in the Southwest of Iran from 2014 to 2022.
These patients were given a preliminary diagnosis of
Mucopolysaccharidosis by a metabolism specialist based on clinical
symptoms and biochemical tests, such as cellular enzymatic activities
and urine GAG levels. To accurately diagnose the type of disease and
screen it in the patient’s families, we conducted genetic examinations.
Genetic counseling was provided to all patients by genetic specialists
from the laboratory. The study was approved by the Institutional
Review Board of Ahvaz Jundishapur University of Medical Sciences,
and informed consent was obtained from all enrolled patients and
their families.

2.2 DNA extraction

Ten milliliters of peripheral blood were isolated from each case
and their available respective parents. Genomic DNA was extracted
using the standard salting-out protocol (Miler et al., 1988). The
quality and quantity of the extracted DNA were evaluated using gel
electrophoresis and a nanodrop, respectively.
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TABLE 1 A brief description of individuals. P29 clinical data were not available due to neonatal death. P: proband, AR: autosomal recessive, NA: not available, Y:year, ND: neonatal death.

Clinical synopsis P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

OMIM Phenotype/inheritance MPS Ih/
s/AR

MPS
II/XLR

MPS
II/XLR

MPS
II/XLR

MPS
II/XLR

MPS
II/XLR

MPS
II/XLR

MPS
II/XLR

MPS
IIIA/AR

MPS
IIIA/AR

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIB/AR

Severe or mild Short stature + + - + + + + + - - - + - - - -

Macrocephaly + + + - + + + + - - - + - - + +

Coarse facial features + + + + + + - - - + + + + + - -

Hearing impairment + + - - - - + - - - + - + + + -

Otitis - - - - - - - - + - - - - - - -

Visual impairment + - - - - - + - - - - - - - - +

Hypertelorism - - - + - - - - - - - - - - - -

Synophrys - + - - + + - - - + - - - - - -

Macroglossia + - + + + + + + - - - + - - - -

Thick vermilion border - - - - + - + + - + - - - - + +

Delayed eruption of teeth/Widely
spaced teeth

- - - - - + - + - + - - - - - -

Short neck - + + - + + + + - + - + - - - -

Scoliosis - - - + + - - - - - - + - - - +

Joint stifness + - + - + + + + - - + - - - - +

Epidermal acanthosis + - + - - - - + - - - - - - - -

Hirsutism + + - + + + - + + + + + + + - -

Abnormality of the cardiovascular
system

+ - + - - + - - - - - + - - + +

Respiratory problem + - - - - + + - - - - - + - - +

Hepatomegaly + + + - + + + + - - - - - + - -

Splenomegaly + + + - + + + + - - - - - - - -

Diarrhea - + - - - - - - - - - - - - - -

Inguinal hernia/Umbilical hernia + - + - - + + - - - - - - - - +

Kyphosis - + - - - - - - - - - - - - - -

Inability to walk + - - + - + - + - + - - - - - -

(Continued on following page)
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TABLE 1 (Continued) A brief description of individuals. P29 clinical data were not available due to neonatal death. P: proband, AR: autosomal recessive, NA: not available, Y:year, ND: neonatal death.

Clinical synopsis P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

Ataxia - - - - - - - - + - - - - - + -

Loss of speech - + - + - + - + + + + - + + + +

Seizure - + - - - - - - - - - - - - - -

Intellectual disability - + + + + + - - - + + + + + + +

Sleep abnormality - - - - + - - + + - - - - - - +

Hoarse voice - + - + - + - - - - - - - - - -

Hyperactivity - - + - - - - - + + - - - - + +

Abnormal aggressive, impulsive
or violent behavior

- - + + + - + - - - + - + + - +

Sex Female Male Male Male Male Male Male Male Female Male Female Male Female Female Male Female

ethnicity Lor Lor Arab Lor Lor Lor Lor Lor Lor Persian NA Lor Lor Lor Arab Lor

consanguinity + + - + - - - + + + NA + + + + +

Age 8Y 7Y 7Y 15Y 12Y 13Y 11Y 10Y 8Y 14Y NA 7Y 4Y 7Y 8Y 7Y

P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIB/AR

MPS
IIIC/AR

MPS
IIIC/AR

MPS
IIID/AR

MPS
IVA/AR

MPS
IVA/AR

MPS
IVA/AR

MPS
VI/AR

MPS
VI/AR

MPS
VI/AR

MPS
VI/AR

MPS
VI/AR

- - + + - - - - + + + - NA + + +

+ + + + - + - - - + - + NA + + +

- - - + - - - - - - - - NA - + -

+ - + - - - + - - + + - NA + + -

- - - - - - - + - - - - NA - - -

- - + - - + - - - + - + NA - + +

- - - - - - - + - - - _ NA - - -

+ - - - - - - - - - - - NA - - -

- - + - - - - - - + + - NA + + +

+ - - - - - + - - - - - NA + + -

- - + + + - + - - - + - NA + + -

+ + + - - - + - - + - + NA + + +
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TABLE 1 (Continued) A brief description of individuals. P29 clinical data were not available due to neonatal death. P: proband, AR: autosomal recessive, NA: not available, Y:year, ND: neonatal death.

P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32

- - + - - - + - - - + + NA + + -

- - - - - + - + - - + - NA + + +

+ - - - - - - - - - - - NA - - -

- - + + + + - + + - - _ NA + - +

+ - - + - - - - - + - - NA + + -

+ - - + - - - - - - - + NA - + +

- - + + - + + + - + - - NA - + +

- - - + - + + - - - - - NA - + -

- - - - - - - - - - - - NA - - -

+ - + - - - - - - + + - NA + - +

- - - - - - - - + - - - NA - - -

- - + + + + - - - + - + NA - + -

- - - - - - - - - - - - NA - - -

+ + + + + + - - - - - - NA - - +

- - - - - - + - - - - - NA - - -

+ + + + + + + + - - - _ NA - - -

+ - + + + + + - - - - - NA - - -

- - - - - - - - - - - - NA - - +

- - - - + - + - - - - - NA - - -

- + - + + + - + - - - - NA - - +

Male Male Male Female Female Female Male Female Male Male Female Male Male Female Male Male

Lor Lor Lor Arab Lor Arab Arab Lor Lor Lor Arab Arab Arab Arab Arab Arab

+ + + + + + + + - - NA + - + + +

16Y 7Y 13Y 18Y 16Y 12Y 9Y 11Y 7Y 14Y NA 5Y ND 12Y 14Y 10Y
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TABLE 2 In silico pathogenicity analysis of the detected variants. WES: Whole Exome Sequencing, NF: not found, D: deleterious, N: neutral, NA: not available.

Proband Gene Variant
GRCh37 chr
location CDS

protein
change

Consequence GenomAD
(AF)

Predict
SNP2

Polyphen2 Mutation
Taster

CADD
score

REVEL
score

ClinVar Varsome
(ACMG

classification)

Method of
detection

Zygosity

P1 IDUA chr4:994486:G>A Intronic/Splice site NF 89%D NA Deleterious 33 NA NA Pathogenic (PVS1,
PM2, PP4)

WES

NM_000203.5:c.385
+ 1G>A

Homozygote

-

P2 IDS chrX:148579644:
GT>G NM_000202.8:

c.701del

Frameshift NF NA Probably
damaging

Deleterious NA NA NA Pathogenic (PVS1,
PM2, PP4)

WES

p.Tyr234SerfsTer46 Hemizygote Score:1

P3 IDS chrX:148585021:T>C Intronic/Splice site NF 64%N NA NA 34 NA NA Pathogenic (PVS1,
PM2, PP4)

WES

NM_000202.8:
c.241-2A>G

Hemizygote

-

P4 IDS chrX:148564524:G>C Missense NF 87% D Probably
damaging

Deleterious 24.5 0.761 Likely
pathogenic

Likely pathogenic
(PM1, PM5, PP3, PP5,

PM2, PP4)

WES

NM_000202.8:
c.1406C>G
p.Pro469Arg

Hemizygote Score: 0.994

P5 IDS chrX:148564635:C>T Missense NF 87% D Probably
damaging

Deleterious 27.2 0.939 NA Likely pathogenic
(PP3, PM2, PP2,

PP5, PP4)

Sanger
sequencing

NM_000202.8:
c.1295G>A
p.Cys432Tyr

Hemizygote Score:0.997

P6 IDS chrX:148578049:T>C Intronic/Splice site NF 87% D NA Deleterious 35 NA NA Pathogenic (PVS1,
PM2, PP4)

Sanger
sequencing

NM_000202.8:
c.709-2A>G

Hemizygote

-

P7 IDS chrX:148582529:C>G Missense NF 82%D Probably
damaging

Deleterious 28.2 0.857 NA Likely pathogenic
(PM1, PM5, PP3,

PM2, PP4)

Sanger
sequencing

NM_000202.8:
c.458G>C
p.Trp153Ser

Hemizygote Score:1

(Continued on following page)
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TABLE 2 (Continued) In silico pathogenicity analysis of the detected variants. WES: Whole Exome Sequencing, NF: not found, D: deleterious, N: neutral, NA: not available.

Proband Gene Variant
GRCh37 chr
location CDS

protein
change

Consequence GenomAD
(AF)

Predict
SNP2

Polyphen2 Mutation
Taster

CADD
score

REVEL
score

ClinVar Varsome
(ACMG

classification)

Method of
detection

Zygosity

P8 IDS chrX:148571931:A>C Missense NF 63%N Probably
damaging

Deleterious 24.9 0.896 NA Likely pathogenic
(PP3, PM1, PM2, PP4)

Sanger
sequencing

NM_000202.8:
c.920T>G

p.Leu307Trp

Hemizygote Score:0.996

P9 SGSH chr17:78190931:A>G Missense NF 87% D Probably
damaging

Deleterious 26.1 0.786 NA Likely pathogenic
(PP3, PM2, PP2, PP4)

WES

NM_000199.3:
c.149T>C p.Leu50Pro

Homozygote Score:1

P10 SGSH chr17:78184631:G>A Missense 0.00001425 87% D Probably
damaging

Deleterious 29.9 0.876 Pathogenic/
Likely

pathogenic

Pathogenic (PP5, PM5,
PP3, PM1, PM2, PP4)

Sanger
sequencing

NM_000199.5:
c.1129C>T

p. Arg377Cys

Homozygote Score:1

P11 NAGLU chr17:40690432:C>T Nonsense 0.000003717 72%D NA Deleterious 36 0 Pathogenic Pathogenic (PVS1,
PP5, PM2, PP4)

WES

NM_000263.4:
c.607C>T

p.Arg203Ter

Homozygote

P12 NAGLU chr17:40688549:G>C Missense 0.000 89% N Probably
damaging

Benign 23.6 0.619 NA VUS leaning toward
likely pathoegnic (PP3,

PM2, PP2, PP4)

WES

NM_000263.4:
c.259G>C p.Ala87Pro

Homozygote Score:0.994

P13 NAGLU chr17:40688549:G>C Missense 0.000 89% N Probably
damaging

Benign 23.6 0.619 NA VUS leaning toward
likely pathoegnic (PP3,

PM2, PP2, PP4)

WES

NM_000263.4:
c.259G>C p.Ala87Pro

Homozygote Score:0.994

P14 NAGLU chr17:40695468:C>T Missense 0.000006257 87% D Probably
damaging

Deleterious 23.8 0.9 Pathogenic/
Likely

pathogenic

Likely pathogenic
(PP5, PP3, PM5, PM2,

PP2, PP4)

WES

NM_000263.4:
c.1444C>T
p.Arg482Trp

Homozygote Score:1

(Continued on following page)
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TABLE 2 (Continued) In silico pathogenicity analysis of the detected variants. WES: Whole Exome Sequencing, NF: not found, D: deleterious, N: neutral, NA: not available.

Proband Gene Variant
GRCh37 chr
location CDS

protein
change

Consequence GenomAD
(AF)

Predict
SNP2

Polyphen2 Mutation
Taster

CADD
score

REVEL
score

ClinVar Varsome
(ACMG

classification)

Method of
detection

Zygosity

P15 NAGLU chr17:40696069:T>G Missense 6.843e-7 87% D Probably
damaging

Deleterious 25.2 0.894 Pathogenic Likely pathogenic
(PP3, PP5, PM2,

PP2, PP4)

WES

NM_000263.4:
c.2045T>G
p.Leu682Arg

Homozygote Score:1

P16 NAGLU chr17:40695468:C>T
NM_000263.4:
c.1444C>T

Missense 0.000006257 87% D Probably
damaging

Deleterious 23.8 0.9 Pathogenic/
Likely

pathogenic

Likely pathogenic
(PP5, PP3, PM5, PM2,

PP2, PP4)

WES

p.Arg482Trp Homozygote Score:1

P17 NAGLU chr17:40690432:C>T
NM_000263.4:
c.607C>T

Nonsense 0.000003717 72%D NA Deleterious 36 0 Pathogenic Pathogenic (PVS1,
PP5, PM2, PP4)

WES

p.Arg203Ter Homozygote

P18 NAGLU chr17:40690432:C>T Nonsense 0.000003717 72%D NA Deleterious 36 0 Pathogenic Pathogenic (PVS1,
PP5, PM2, PP4)

Sanger
sequencing

NM_000263.4:
c.607C>T

p.Arg203Ter

Homozygote

P19 NAGLU chr17:40693129:A>G Missense 0.000003181 87% D Probably
damaging

Deleterious 24.3 0.888 Pathogenic Pathogenic (PP5, PM5,
PP3, PM1, PM2, PP4)

Sanger
sequencing

NM_000263.4:
c.926A>G

p.Tyr309Cys

Homozygote Score:1

P20 NAGLU chr17:40696069:T>G Missense 6.843e-7 87% D Probably
damaging

Deleterious 25.2 0.894 Pathogenic Pathogenic (PP3, PP5,
PM2, PP2, PP4)

Sanger
sequencing

NM_000263.4:
c.2045T>G
p.Leu682Arg

Homozygote Score:1

P21 NAGLU chr17:40688549:G>C Missense 0.000 89% N Probably
damaging

Benign 23.6 0.619 NA VUS (PP3, PM2,
PP2, PP4)

Sanger
sequencing

NM_000263.4:
c.259G>C p.Ala87Pro

Homozygote Score:0.994

(Continued on following page)
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TABLE 2 (Continued) In silico pathogenicity analysis of the detected variants. WES: Whole Exome Sequencing, NF: not found, D: deleterious, N: neutral, NA: not available.

Proband Gene Variant
GRCh37 chr
location CDS

protein
change

Consequence GenomAD
(AF)

Predict
SNP2

Polyphen2 Mutation
Taster

CADD
score

REVEL
score

ClinVar Varsome
(ACMG

classification)

Method of
detection

Zygosity

P22 HGSNAT chr8:43014188:G>A Intronic/Splice site NF 61%D NA Deleterious 34 NA Pathogenic Pathogenic (PVS1,
PP5, PM2, PP4)

WES

NM_152419.3:c.493
+ 1G>A

Homozygote

-

P23 HGSNAT chr8:43002207:G>A Intronic/Splice site 0.00002522 61%D NA Deleterious 32 NA Pathogenic Pathogenic (PVS1,
PP5, PM2, PP4)

WES

NM_152419.3:c.234
+ 1G>A

Homozygote

-

P24 GNS chr12:65113952:T>A Missense NF 87% D Probably
damaging

Deleterious 32 0.929 NA VUS (PP3, PM2, PP4) WES

NM_002076.4:
c.1430A>T
p.Glu477Val

Homozygote Score:1

P25 GALNS chr16:88891195:
A>AGTTG

Frameshift NF NA NA Deleterious NA NA NA Likely pathogenic
(PVS1, PM2, PP4)

WES

NM_000512.5:
c.1218_1221dup

p.Ser408GlnfsTer11

Homozygote

P26 GALNS chr16:88909203:G>A Missense NF 87% D Probably
damaging

Deleterious 27.1 0.951 Conflicting Likely pathogenic
(PP3, PM1, PM2,

PP5, PP4)

WES

NM_000512.5:
c.155C>T p.Pro.52Leu

Homozygote Score:1

P27 GALNS chr16:88891195:
A>AGTTG

Frameshift NF NA NA Deleterious NA NA NA Pathogenic (PVS1,
PM2, PP4)

Sanger
sequencing

NM_000512.5:
c.1218_1221dup

p.Ser408GlnfsTer11

Homozygote

P28 ARSB chr5:78264850:G>A Nonsense 0.00001735 77%D NA Deleterious 42 0 Pathogenic Pathogenic (PVS1,
PP5, PM2, PP4)

WES

NM_000046.5:
c.478C>T

p.Arg160Ter

Homozygote

P29 ARSB chr5:78280791:G>T Nonsense 7.453e-7 NA NA Deleterious 39 0

(Continued on following page)
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2.3 Exome sequencing

Exome enrichment was performed on 18 samples using the
SureSelect Human All Exon kit V6 (Agilent Technologies, Santa
Clara, CA, United States), followed by sequencing using the Illumina
HiSeq 2000 genome analyzer platform (Illumina, San Diego, CA,
United States). The short reads were aligned to the human genome
reference version B37 using BWA, and duplicate reads were marked
using Picard v2.6.0 (https://broadinstitute.github.io/picard). GATK
and ANNOVAR were used for variant detection and annotation,
respectively.

2.4 Assessment of variant pathogenicity

To identify disease-causing variants, filtering was performed for
each WES data file based on allele frequency. Variants with allele
frequencies lower than 0.01 in the 1,000 Genomes (https://www.
internationalgenome.org), ExAC (http://exac.broadinstitute.org),
and gnomAD (https://gnomad.broadinstitute.org/) databases were
selected for the next step. Then, the data files were filtered based on
the variant consequence, selecting exonic, exonic-splicing, and
splicing locations. Afterward, we focused on zygosity and the
inheritance of diseases in families. Mucopolysaccharidosis-related
genes were then filtered based on the OMIM and GeneCards
databases. In the next step, the pathogenicity of the remaining
variants was evaluated using in silico tools such as Mutation-
Taster (Steinhaus et al., 2021), Polyphen2 (Adzhubei et al., 2010),
PredictSNP2 (Bendl et al., 2016), VarSome (Kopanos et al., 2019),
and CADD (Kircher et al., 2014). Finally, the selected variants were
searched in our in-house database (which includes more than
2,500 WES files), and variants with low allele frequency were
chosen for additional segregation analysis in the families.

2.5 Sanger sequencing

Direct Sanger sequencing was performed on DNA samples from
14 cases. Specific primers were designed using OLIGO 7 to target the
entire coding exons and flanking intronic sequences of the IDS,
NAGLU, SGSH, ARSB, and GALNS genes in order to identify any
existing variants. The selected regions were amplified using PCR.
The PCR products were then sequenced and analyzed using the ABI
Prism 3700 automated genetic analyzer (Applied Biosystems,
ThermoFisher, United States). The results were interpreted using
Chromas 2.6.6 and compared with reference gene sequences using
the BLASTN and ClustalW programs. Furthermore, the presence of
all detected variants was confirmed through Sanger sequencing of
cases that underwent whole exome sequencing, as well as available
relatives of all the studied cases.

3 Result

The initial diagnosis of mucopolysaccharidosis in patients was
based on clinical symptoms and biochemical tests. However, the
specific type of disease was not clear in some patients. After
sequencing, the exact type of disease in each person wasT
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determined by identifying the presence of pathogenic or likely
pathogenic variants in different known genes that encode
enzymes responsible for mucopolysaccharidosis. The general
information of the probands is provided in Table 1. Based on
Table 1, the majority of patients were of Arab or Lor ethnicity,
and 71.8% (23/32) of them were born to consanguineous parents.
Furthermore, MPS III has the highest prevalence among all types of
the disease, accounting for 50% (16/32) of cases. We identified
various disease-causing variants in known genes associated with
different types of Mucopolysaccharidosis in all 32 cases. The genetic
findings and in silico analysis of these variants are summarized in
Table 2. The distribution of genes containing these variants is shown
in Figure 1, depicted as a pie chart. The NAGLU, IDS, SGSH, GNS,
GALNS, ARSB, HGSNAT, and IDUA genes each contained one or
more variants. Based on the data presented in Figure 1, it is evident
that the NAGLU and IDS genes had the highest number of variants
among the patients, respectively. Among all the variants, we detected
6 novel variants in the IDS, GNS, GALNS, and SGSH genes. All of
these new variants occur in the protein-coding regions of the genes,
with 66.6% (4/6) being missense mutations and 33.3% (2/6) being

FIGURE 1
Distribution of variants inMPS genes. Themajority of patients had
disease-causing variants in the NAGLU and IDS genes respectively.

FIGURE 2
Schematic illustration of the protein structures in which at least one new variant was identified: (A) Iduronate-2-sulfatase, (B)N-acetylglucosamine-
6-sulfatase, (C) galactosamine-6-sulfate sulfatase, (D) N-sulfoglucosamine sulfohydrolase. Mutated residues are indicated by red lines.
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frameshift mutations. The novel variants are as follows, based on the
gene in which the mutation occurred. Additionally, the pedigree of
the proband’s families with new variants is shown in Figure 3.

3.1 IDS

Three different variants were detected in the Iduronate-2-
sulfatase (IDS) gene in P2, P7, and P8. As shown in Figure 2, all

of the variants were found within the sulfatase domain of the
protein, which is crucial for the enzyme’s activity. In the case of
P2, genetic screening identified a single nucleotide deletion (NM_
000202.8, c.701del, p.Tyr234Ser) in exon 5. Additionally, two novel
missense variants, (NM_000202.8, c.458G>C, p.Trp153Ser (exon
4)) and (NM_000202.8, c.920T>G, p.Leu307Trp (exon 7)), were
detected in subjects P7 and P8, respectively. All three variants were
found in a hemizygous state in the probands, while being
heterozygous in their mother and wild type in their father.

FIGURE 3
Pedigrees of families with new variants. (A–G) represent the family pedigrees of P2, P7, P8, P9, P24, P25 and P27 cases, respectively. Squares and
circles denotemales and females, respectively. Filled symbols represent affected individuals, and consanguinity is indicated by doublemarriage lines. The
normal andmutated protein locations of participating individuals have been written beneath each individual in black and red, respectively. The proband is
indicated by an arrow.

Frontiers in Genetics frontiersin.org12

Zabihi et al. 10.3389/fgene.2024.1343094

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1343094


According to the pedigrees of the families (Figure 3), the other
patients in these three families were also males, confirming the type
of disease as mucopolysaccharidosis type II.

3.2 GNS

In case P24, a missense variant was detected in the
N-acetylglucosamine-6-sulfatase (GNS) gene (NM_002076.4,
c.1430A>T, p.Glu477Val). This variant was located in exon
13 and similar to the variants in the IDS gene, it affects the
sulfatase domain of the protein. As shown in Figure 3, The
proband was homozygous for the mentioned variant, and both of
her parents were heterozygous. After performing Sanger sequencing
on the proband’s brother, who was also suspected of having
mucopolysaccharidosis, it was revealed that he also has this
variant in a homozygous form.

3.3 GALNS

In patients P25 and P27, a novel duplication variant was
identified in exon 11 of the galactosamine-6-sulfate sulfatase
(GALNS) gene (NM_000512.4, c.1218_1221dup,
p.Ser408GlnfsTer11). In both cases, the probands inherited the
variant homozygously from their heterozygous parents.
Interestingly, in case P25, the patient also had an identical twin
with him, along with two other identical twin brothers who also had
mucopolysaccharidosis type IVA.

3.4 SGSH

A missense variant was found in exon 2 of the
N-sulfoglucosamine sulfohydrolase (SGSH) gene in case P9
(NM_000199.3, c.149T>C, p.Leu50Pro). This variant also affects
the sulfatase domain of the protein, potentially interfering with its
activity. Here, the proband was the only affected individual in the
family and had received the variant in a homozygous form from her
heterozygous parents.

4 Discussion

In the present study, a total of 32 cases with a primary diagnosis
of mucopolysaccharidosis from separate families underwent genetic
analysis. In some families, there was only one patient, while in
others, there were additional patients besides the proband, clearly
indicating the hereditary nature of the disease. Among all the
families, MPS I was reported in only one family, and the affected
individual was characterized as having the MPS Ih/s subtype.
Genetic analysis revealed a homozygous splice site variant located
in intron 3 of the IDUA gene (c.385 + 1G>A) in the proband. This
variant had previously been detected in the European population
and was shown to cause the loss of a neutral donor splice site that is
conserved among vertebrate species (Bertola et al., 2011).

Probands in seven families were classified as MPS II, and we
identified four previously reported and three novel hemizygous

variants in the IDS gene. X-linked inheritance was apparent in the
pedigrees and all of the patients were male. Among these variants,
an intronic splice variant (c.241-2A>G) was detected, which can
lead to alternative splicing and the creation of two mutant
transcripts (Alves et al., 2006). Another splice site variant
(c.709-2A>G) was detected, in which a nucleotide transition
leads to a 3′ splice site alteration in intron 5 of the IDS gene
(Lissens et al., 1997). This alteration may result in the production
of an incorrect transcript or a premature stop codon, leading to
the absence of a functional protein. Further investigation and
functional assays are needed to determine the exact mechanism
of this vatiant. Other previously reported alterations in MPS II
patients were two missense variants, including c.1406C>G and
c.1295G>A (Karsten et al., 1998; Pollard et al., 2013).
Additionally, two previously unreported missense variants
were identified in this study. In one of these variants
(c.458G>C, p.Trp153Ser), a hydrophobic, nonpolar, aromatic,
and large amino acid is replaced with a neutral, polar, and small
amino acid. Hence, factors such as hydrophobicity, size and
polarity exchange may affect the final protein folding. Two
other pathogenic variants in the same amino acid have been
previously reported, in which tryptophan is converted to arginine
and leucine, respectively (Froissart et al., 2007; Zhang et al.,
2019). In another missense variant (c.920T>G, p.Leu307Trp), an
aliphatic amino acid is changed to an aromatic amino acid. This
change allows the amino acid to donate hydrogene, unlike its
previous form. In addition to the missense variants, one
frameshift variant was also found in the IDS gene (c.701del,
Tyr234Ser), which likely results in the production of incomplete
and non-functional protein.

Sanfilippo syndrome, the most frequent and heterogeneous
type of mucopolysaccharidoses (van de Kamp et al., 1981), was
observed in the families with different subtypes ranging from
MPS IIIA to MPS IIID. In two of the families, we identified two
distinct homozygous missense variants in the SGSH gene. These
variants included one previously reported variant (c.1129C>T)
and one newly discovered variant (c.149T>C), both of which
were found to be responsible for causing MPS ⅢA. The
c.1129C>T variant, which was initially identified by (Di
Natale et al., 1998) leads to a severe form of the disease
because position 377 at the C-terminal is crucial for
sulfamidase function (Di Natale et al., 1998). Our studied
patient had a severe form of the disease, consistent with the
research conducted by Di Natale et al. The c.149T>C variant,
p.Leu50Pro, involves the substitution of a hydrophobic and large
amino acid with a neutral and small amino acid. This change in
the size and nature of amino acids at position 50 may affect the
protein’s interactions with other molecules and residues, leading
to improper protein folding. Among the individuals we studied,
the highest frequency of Sanfilippo patients was associated with
the subtype of MPS ⅢB. In this subtype, we observed five
different variants in the NAGLU gene. Among these variants,
we found a previously reported nonsense variant (c.607C>T,
p.Arg203ter) and a missense variant (c.2045T>G, p.Leu682Arg)
in three and two families, respectively. Schmidtchen et al. (1998)
first reported these variants and demonstrated the presence of
these variants along with 8 other variants in the fibroblast cell
line of patients with MPS ⅢB. They also validated the reduction
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of enzyme activity in Chinese hamster ovary cells transfected
with a mutagenized vector containing the NAGLU missense
variants. Furthermore, they found excessive molecular
heterogeneity in the NAGLU gene and suggested a role for
the amino or carboxyl end of α-N-acetylglucosaminidase in
the transport or function of the enzyme (Schmidtchen et al.,
1998). In three families, we identified one homozygous missense
variant (c.259G>C, p.Ala87Pro) in the NAGLU gene. This
variant is similar to the aforementioned variants in terms of
its location in the N-terminal domain of the protein. The
substitution of alanine with proline converts a hydrophobic
amino acid to a neutral one. As a result, the hydrophobic
intra and intermolecular interactions that are dependent on
this substitution lead to the complete loss of protein activity.
Pollard et al. (2013) reported the c.259G>C substitution in a
compound heterozygous patient, in combination with another
variant (c.1949G>A, p.G650E) (Pollard et al., 2013). However,
our patients showed novel homozygous alleles. In two of the
families we observed a substitution (c.1444C>T) in the NAGLU
gene, where a 5-methylcytosine in a highly mutable CpG
dinucleotide position is converted to thymine as a result of
deamination (Bunge et al., 1999). The last observed missense
variant in the NAGLU gene in our study was a substitution
(c.926A>G, p.Tyr309Cys) in a highly conserved amino acid.
This variant does not affect the amount or stability of RNA, but
it only influences the activity of the enzyme (Lee-Chen et al.,
2002). We identified MPS ⅢC in two families, where we
observed two different previously described homozygous
splice site variants (c.493 + 1G>A, c.234 + 1G>A) in the
HGSNAT gene (Fan et al., 2006; Hřebíček et al., 2006). In a
comprehensive study, (Martins et al., 2019), described the
evolutionary history of MPS ⅡIC by analyzing the clinical
presentation, molecular defects, and haplotype context of
patients from 22 countries (Martins et al., 2019). Remarkably,
both patients in our study were from the Arab ethnic group,
suggesting an African origin of these variants. In one of the
families, we found the c.1430A>T missense variant in the GNS
gene, which is responsible for MPS IIID. This variant was found
for the first time in the current study. At the protein level, this
variant results in the conversion of a hydrophilic, negatively
charged and polar amino acid to a hydrophobic, uncharged and
nonpolar amino acid. This change has the potential to generate
misfolded proteins. In two families with individuals clinically
diagnosed with MPS ⅣA, a novel homozygous frameshift
variant was observed in the GALNS gene. This variant is
caused by a duplication of CAAC at position 1,218 to
1,221 of the coding sequence (c.1218_1221dup); resulting in
the introduction of a premature termination codon (PTC)
11 codons downstream of the duplication. Another MPS ⅣA
patient was found to be homozygous for a missense variant
(c.155C>T) that had been previously identified in the Indian
population. This variant is likely to prevent the formation of
homodimers of the GALNS protein, as reported by (Bidchol
et al., 2014). Additionally, two different nonsense variants were
identified in the ARSB gene, which is mutated in MPS VI. These
variants are c.478C>T and c.281C>A, resulting in the
conversion of Arg160 and Ser94 to premature stop codons
and the creation of a non-functional truncated protein

(Voskoboeva et al., 1994). The c.478C>T variant is located in
a CpG dinucleotide, which is considered a mutation hotspot in
the ARSB gene, as noted by (Zapała et al., 2020). It is also one of
the most frequently reported pathogenic and likely pathogenic
variants in ARSB, as stated by (Tomanin et al., 2018). The
c.281C>A variant was found to have a high frequency in
Arab patients, as reported by (Aminzadeh et al., 2019). Its
presence in 4 out of 5 families of Arab ethnicity suggests that
this variant may be the most common variant among Iranian
Arab patients with MPS VI. Furthermore, among the four
families with the same variant, one family experienced
neonatal death, while the individuals in the other cases were
over 10 years old. This may demonstrate the clinical
heterogeneity of MPS VI.

In mucopolysaccharidoses, as was the case in the current study,
there can be clinical symptom overlap between different types. In some
cases, relying solely on clinical symptoms and biochemical tests for an
accurate diagnosis of Mucopolysaccharidosis type can lead to errors.
However, with the assistance of genetic counseling and genetic tests, an
accurate diagnosis of Mucopolysaccharidosis type in patients can be
achieved. For instance, in the case of MPS type 2, which has X-linked
inheritance, a definitive diagnosis can be made by combining genetic
counseling, identifying the disease more frequently in males than
females, and detecting mutations in the IDS gene.

This research is unique due to the prevalence of specific ethnic
groups and the practice of consanguineous marriage in them.
Considering that all types of mucopolysaccharidosis, except type II,
have autosomal recessive inheritance, the high rate of inbreeding leads
to the emergence and manifestation of potentially pathogenic variants
in populations with high levels of inbreeding. Therefore, further genetic
investigations and studies, particularly those utilizing exome or genome
sequencing, are strongly recommended in inbred populations.

There are several caveats that should be noted regarding the
present study. Firstly, in most cases, the other patients in the
family, apart from the proband, were not sequenced. This was
either due to their unavailability or their refusal to participate in
the research. Secondly, the current study does not include
functional assays related to the novel detected variants, and
our final criteria for determining the pathogenicity of variants
were based on ACMG classification. Therefore, future research is
needed to validate the pathogenicity and better understand the
mechanism and biological effects of the identified new variants.
These studies should include more in silico investigations, such
as 3D protein structure analysis, as well as in-vitro and in-vivo
functional assays.

5 Conclusion

Genetic screenings can provide significant benefits inmanaging and
preventing diseases within families, as well as alleviating clinical
symptoms in new cases (Kubaski et al., 2020). In this study, we
focused on whole exome sequencing and Sanger sequencing to
examine genetic variants in patients with mucopolysaccharidosis
from the Khuzestan province in Southwest Iran. We detected six
novel variants and confirmed these findings through segregation
analysis in family members. Our in silico analysis suggests that these
novel variants may be disease-causing variants. The present findings
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contribute to expanding the spectrum of pathogenic variants associated
with mucopolysaccharidosis and can facilitate rapid diagnosis.
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