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Background: Prostate cancer (PCa) is one of the most common malignancies in
men with a poor prognosis. It is therefore of great clinical importance to find
reliable prognostic indicators for PCa. Many studies have revealed the pivotal role
of protein lactylation in tumor development and progression. This research aims
to analyze the effect of lactylation-related genes on PCa prognosis.

Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the
differential genes related to lactylation in PCa. Five machine learning
algorithms were used to screen for lactylation-related key genes for PCa, then
the five overlapping key genes were used to construct a survival prognostic
model by lasso cox regression analysis. Furthermore, the relationships between
the model and related pathways, tumor mutation and immune cell
subpopulations, and drug sensitivity were explored. Moreover, two risk groups
were established according to the risk score calculated by the five lactylation-
related genes (LRGs). Subsequently, a nomogram scoring systemwas established
to predict disease-free survival (DFS) of patients by combining clinicopathological
features and lactylation-related risk scores. In addition, the mRNA expression
levels of five genes were verified in PCa cell lines by qPCR.

Results:We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and
constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year
DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score
was found a better predictor of DFS than traditional clinicopathological features
in PCa. A nomogram that combined the risk score with clinical variables

OPEN ACCESS

EDITED BY

Qing Lin,
Johns Hopkins University, United States

REVIEWED BY

Xiaomei Yang,
University of Maryland, United States
Jing Liu,
Johns Hopkins University, United States

*CORRESPONDENCE

Zhigang Zhao,
zgzhaodr@126.com

†These authors contributed equally to the work

RECEIVED 27 November 2023
ACCEPTED 29 February 2024
PUBLISHED 19 March 2024

CITATION

Pan J, Zhang J, Lin J, Cai Y and Zhao Z (2024),
Constructing lactylation-related genes
prognostic model to effectively predict the
disease-free survival and treatment
responsiveness in prostate cancer based on
machine learning.
Front. Genet. 15:1343140.
doi: 10.3389/fgene.2024.1343140

COPYRIGHT

© 2024 Pan, Zhang, Lin, Cai and Zhao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations:DEGs, differentially expressed genes; DFS, disease-free survival; LRGs, lactylation-related
genes; AUC, area under the curve; ROC, receiver operating characteristic; TME, tumor
microenvironment; PCa, prostate cancer; ssGSVA, single sample gene set variation analysis; CCR,
chemotactic cytokines receptors; RF, random forest; LASSO, the least absolute shrinkage and
selection operator; XGBoost, the optimal extreme gradient boosting; SVM-RFE, Support Vector
Machine Recursive Feature Elimination.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 19 March 2024
DOI 10.3389/fgene.2024.1343140

https://www.frontiersin.org/articles/10.3389/fgene.2024.1343140/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1343140/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1343140/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1343140/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1343140/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1343140/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1343140/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1343140&domain=pdf&date_stamp=2024-03-19
mailto:zgzhaodr@126.com
mailto:zgzhaodr@126.com
https://doi.org/10.3389/fgene.2024.1343140
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1343140


accurately predicted the outcome of the patients. The PCa patients in the high-risk
group have a higher proportion of regulatory T cells and M2 macrophage, a higher
tumor mutation burden, and a worse prognosis than those in the low-risk
group. The high-risk group had a lower IC50 for certain chemotherapeutic
drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore,
five key LRGs were found to be highly expressed in castration-resistant PCa cells.

Conclusion: The lactylation-related genes prognostic model can effectively
predict the DFS and therapeutic responses in patients with PCa.
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Introduction

Prostate cancer (PCa) is one of the most common malignant
tumors of the male genitourinary system. According to the latest
cancer clinical data in the United States in 2024, the incidence of
prostate cancer in male tumors ranks first, and the mortality rate of
prostate cancer ranks second (Siegel et al., 2024). Although the
overall survival of prostate cancer is longer than other cancers, the
recurrence rate of localized prostate cancer after radical
prostatectomy is still high, and the recurrence progresses and
eventually causes death. A key challenge in the management of
PCa is the clinical heterogeneity that is hard to predict using existing
biomarkers (Bahmad et al., 2021). The PCa heterogeneity is caused
by genomic and epigenetic changes that have been revealed by
examination of prostate tumor tissue samples (Khan et al., 2024).
How to identify patients with a high risk of recurrence early, and
early intervention treatment may prolong the survival of patients
and improve the quality of life of patients. Therefore, developing an
effective prognostic signature that is required to improve patient
prognosis and guide patients to assess cancer risk, and conduct,
precision medicine treatment (such as individualized chemotherapy
and immunotherapy), is an urgent issue.

Lactylation is a novel posttranslational modification first reported
in 2019, whichmodulates histones through the addition of lactyl groups
to their lysine residues and facilitates specific gene transcription (Zhang
et al., 2019). Yang and colleagues observed extensive protein lactylation
in HCC tissues by immunostaining and further confirmed that the
emulsification mainly occurred on histones and non-histone proteins
by mass spectrometry (Yang et al., 2023). Wan et al. reported that
protein lactylation widely exists in various human normal tissues and
cancer tissues in 2022 Jul (Wan et al., 2022). Protein lactation is a crucial
mechanism through which lactate performs its duties and is required in
key biological processes such as glycolysis related to cell function (Li
et al., 2020), macrophage polarization (Irizarry-Caro et al., 2020),
neurodevelopment (Hagihara et al., 2021), and regulation of tumor
spread (Yu et al., 2021). Besides, Lactylation promotes DNA damage
repair and chemoresistance (Chen et al., 2024). It has been reported that
the occurrence and progression of a variety of tumors, such as liver
cancer (Gu et al., 2022; Kotsiliti, 2023), breast cancer (Deng and Liao,
2023; Pandkar et al., 2023), colorectal cancer (Li et al., 2023; Zhou et al.,
2023), etc., all play an important role. In prostate cancer, histone
lactylation affects cancer cell plasticity and leads to transcriptional
surges of neuroendocrine genes (He et al., 2023). It has been
reported that evodiamine blocked histone lactylation in PCa cells,
further enhancing Sema3A transcription while inhibiting that of

PD-L1 (Yu et al., 2023). Besides, HIF1α lactylation enhances
KIAA1199 transcription to promote angiogenesis and vasculogenic
mimicry in PCa (Luo et al., 2022). Based on these inspiring findings, we
determined that these lactylation-related genes (LRGs) were closely
connected to prostate cancer cell malignancy and spreading. Therefore,
systematic evaluation of the relationship between differentially
expressed LRGs and the prognosis, immune microenvironment, and
treatment response of PCa is still worth further exploration. Here, we
collected the lactylation-related data published thus far and
systematically analyzed the expression levels of these genes in
different databases to develop a novel prognostic signature based on
LRGs to systematically explore the relationships between the signature
and clinicopathological characteristics and disease progression in
patients with PCa. In addition, we further investigated its correlation
with the tumor microenvironment (TME), mutation profiles, and the
patient’s response to immunotherapy and chemotherapy in PCa. A
lactylation-related gene signature that effectively predicts both
prognosis and treatment responsiveness in PCa has not been
reported to date.

Materials and methods

Data acquisition

Figure 1 displays the overall procedure of the study. The mRNA
transcriptome profiles of 502 prostate cancer samples and 52 normal
samples were downloaded from The Cancer Genome Atlas (TCGA)
database, https://protal.gdc.cancer.gov/(accessed on 7May 2023). The
corresponding clinical information for TCGA-PRAD was download
from Prostate Adenocarcinoma (TCGA, Firehose Legacy) and could
be directly downloaded from the following: http://www.cbioportal.
org/.When a patient would correspond tomore than one sample, only
samples with a sample sequence number (Vial) of A were retained,
and samples with no disease-free survival were removed, resulting in
491 tumor samples. External validation data were downloaded from
Prostate Adenocarcinoma (MSK, Cancer Cell 2010), and 140 prostate
cancer samples remained after prostate Adenocarcinoma samples
without disease-free survival were deleted. A scale method-based
normalization was performed with the gene expression profiles
using the R package “limma” (v4.2.2). The lactylation-related genes
were gathered from Gene Card (lactylation was entered into the Gene
Card website to search for 92 genes, and 79 related genes with
Relevance score >0.6 were obtained) and from previously
published studies (Zhang et al., 2019; Moreno-Yruela et al., 2022;
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Cheng et al., 2023). We got a total gene set of 400 lactylation-related
genes (LRGs) after deleting duplicate genes, found in
Supplementary Table S1.

Identification of differentially expressed and
prognostic genes

The mRNA levels of lactation-modified genes were extracted
from tumor samples and adjacent tissue samples in the TCGA
prostate cancer data for difference analysis by R package “limma”
(Ritchie et al., 2015). The criteria for differentially expressed genes
(DEGs) identification were a false discovery rate (FDR) < 0.05 and
|log2 FC| ≥ 0.585. By applying these criteria, genes expressed at
more than 1.5-fold levels in tumor tissues and adjacent tissues
were screened out at a false discovery rate of less than 0.05.

Univariate Cox analysis to assess the association between disease-
free survival (DFS) status was performed with a threshold of p <
0.05, and 16 prognosis-related genes were screened out. The PCA
and t-SNE analysis were applied using the R packages “Rtsne”
(v0.16) and “ggplot2” (v3.4.0).

Unsupervised cluster analysis

Unsupervised cluster analysis was performed with the expression
of 16 prognostic genes in them for patients (TCGA, n = 491) using the
“ConsensusClusterPlu” R package (Wilkerson and Hayes, 2010). The
proportion of items per sample was 0.8, and the proportion of features
per sample was 1. Partition AroundMedoids was used. The adjacency
distance matrix was determined as (Pearson correlation coefficient).
Default settings were used for other parameters.

FIGURE 1
The main workflow of the study. DEGs, differentially expressed genes; DFS, disease-free survival; RF, random forest; LASSO, the least absolute
shrinkage and selection operator; XGBoost, the optimal extreme gradient boosting; SVM-RFE, Support Vector Machine Recursive Feature Elimination;
PCA, principal component analysis; GSVA, gene set variation analysis.
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Selection of key genes and construction of
the prognostic model

The 491 prostate cancer patients in the TCGA cohort were
randomly divided into training cohort and test cohort at a ratio of
1:1. To check whether the TCGA training set, test cohort, and MSKCC
cohort meet the conditions for the Cox proportional hazards model, we
performed Schoenfeld residual check on TCGA training cohort, TCGA
test cohort, and MSKCC cohort to check whether the proportional
hazards’ assumption was met by R package “survminer” and “survival”.
Five different machine learning algorithms: the least absolute shrinkage
and selection operator (LASSO), random forest, the optimal extreme
gradient boosting (XGBoost), Boruta algorithm, and Support Vector
Machine Recursive Feature Elimination (SVM-RFE) were used for the
eigengene screening. LASSO was implemented as a dimensionality
reduction method to perform variable screening and complexity
adjustment while fitting a generalized linear model. LASSO analysis
was implemented with a penalty parameter utilizing a 10-fold cross-
verification via the “glmnet” package. The XGBoost uses a gradient
boosting framework and improves on objective optimization function
which is to optimize the loss function and complexity punishment by
the R package “xgboost”. The Boruta algorithm was used to reduce the
dimension of molecules according to clusters and to distinguish
important features from irrelevant features (R-package Boruta, +1 to
the FPKMmatrix value, and then take the log2, finally the function scale
was used to standardize the matrix, doTrace = 2, ntree = 500). The
SVM-RFE is a supervisedmachine learning method for support vectors
that can find the best variables by halving the features each round when
there are many features by the R package “e1071”. LASSO-penalized
Cox regression analysis was performed on prognostic lactylation-related
genes to find the potential gene set suitable for the prognostic signature,
and the optimal penalty parameter λ and gene coefficients of the risk
scoring formula were obtained (Friedman et al., 2010). The risk score
model trained from the TCGA data was constructed as follows:

Riskscore � ∑
n

i�1
exp × coef( )

where N is the number of model genes; exp represents the expression
value of genes; and coef is the coefficient of each gene. The
prognostic scoring system for PCa patients was developed based
on a linear combination of regression coefficients derived from the
LASSO Cox regression analysis coefficients multiplied by the
expression levels of genes, and then patients were divided into
high-risk and low-risk groups according to the median risk value.
Kaplan-Meier analysis was conducted to evaluate differences in
disease-free survival (DFS) time between high-risk and low-risk
groups. To evaluate the stability and specificity of the prognostic
model, the R package “survivalROC” was employed to perform
receiver operating characteristic (ROC) analysis and calculate the
value of the area under the curve (AUC) (Heagerty et al., 2000). The
TCGA test cohort and MSKCC cohort were used to validate the
prognostic model.

Gene set variation analysis (GSVA)

“c2. Kegg. v7.4. symbols” and “c5. go.v7.4. symbols” gene sets were
applied to performed GSVA to investigate the difference of the

biological function between high- and low-risk groups in TCGA
cohort by the R package “GSVA”.

Analysis of tumor mutation burden and
immune cell infiltration

R package “Maftools”was used to analyze and visualize the somatic
variation data (MAF files) of high- and low-risk group prostate cancer
samples in TCGA. We utilized CIBERSORT, ESTIMATE, MCP
counter, TIMER algorithms, Immunophenoscore algorithms (IPS),
EPIC algorithm, and xCell algorithms (Aran et al., 2017;
Charoentong et al., 2017; Li et al., 2017; Racle et al., 2017; Chen
et al., 2018; Dienstmann et al., 2019; Xiang et al., 2021) to evaluate
the immune cell levels of the two groups. Furthermore, we applied the
ssGSEA algorithm to quantify the subgroups of the infiltrating immune
cells between the two groups. The differences in immune response
under different algorithms were revealed using a Heatmap.

Drug sensitivity prediction of the risk model

We used the R package “OncoPredict” (Maeser et al., 2021) to
predict the half-maximal inhibitory concentration (IC50) of 198 drugs
based on the Genomics of Drug Sensitivity in Cancer (GDSC) databases
in vivo drug responses between high- and low-risk groups.

Construction and evaluation of
the nomogram

With the “rms” and “survival” packages in R, a nomogram for
predicting the 1-, 3-, and 5-year disease-free survival of PCa was
constructed using the risk model with clinicopathological
parameters such as T-stage, risk score, and Gleason score. To
evaluate the nomogram’s effectiveness, the Calibration curve and
time-dependent ROC curve analysis were performed.

Cell lines and cell culture

Human prostate cancer cells (LNCAP, PC3, C4-2, 22Rv1,
DU145) were purchased from the Cell Bank of Type Culture
Collection of the Chinese Academy of Sciences, Shanghai
Institute of Cell Biology, Chinese Academy of Sciences. All PC
cell lines were cultured in RP1640 medium (RP1640, Gibco)
supplemented with 10% fetal bovine serum (FBS, Gibco), and
streptomycin at 37 °C in 5% CO2.

RNA extraction and quantitative analysis

Total RNA was extracted from cell lines with TRIzol Reagent
(Invitrogen, USA). Total RNAwas reverse-transcribed into cDNAwith
PrimeScript RT Master Mix (Takara, USA) and then used to perform
quantitative real-time PCR (qRT–PCR) with SYBR qPCR Master Mix
(Vazyme, China). GAPDH was used as an internal control for gene
quantification. The 2−ΔΔCT was calculated for every sample and

Frontiers in Genetics frontiersin.org04

Pan et al. 10.3389/fgene.2024.1343140

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1343140


normalized to GAPDH. The primer sequences used are shown in
Supplementary Table S2.

Statistical analysis

All statistical analyses were conducted based on R (v4.2.3).
Statistical significance was defined as p-value <0.05 when there is
no special description for the above methods. Statistical significance
is indicated with asterisks (*). A two-sided p-value of <0.05 was
considered statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001).

Results

Identifying prognostic lactylation-related
genes and subtypes in PCa

The clinical and pathological characteristics of PCa patients in the
TCGA andMSKCC cohorts are listed in Table 1. Using the R package
“limma” with an absolute log2-fold change (FC) ≥ 0.585 and an

adjusted p-value < 0.05 to perform differential expression analysis,
81 lactylation-related genes were differentially expressed between
tumor tissues and adjacent nontumorous tissues in the TCGA
cohort (Figure 2A). By univariate Cox analysis of the relationship
between 81 differentially expressed genes and disease-free survival
(p < 0.05) of prostate cancer from TCGA, we obtained 16 of the
81 genes were significantly related to the prognosis of PCa (Figure 2B).
Close correlation was observed among the 16 lactylation-related
DEGs (Figure 2C). CNV status analysis showed a frequent
alteration in 16 lactylation-related DEGs (Figure 2D). It was noted
that ALDOA only had copy number deletion and most alterations
were losses in copy number. Unsupervised consensus clustering
analysis of 16 prognostic lactylation-related genes could obtain two
clusters with two different lactylation signatures (Figures 2E, F). In
this study, consensus clustering based on differential expression of
lactylation-related genes was achieved using the R package
“Consensus ClusterPlus”. The optimal clustering value was k = 2.
Kaplan–Meier method suggested that, compared with the DFS of
prostate cancer patients in the C1 and C2 lactylation cluster, PCa
patients in the C2 lactylation cluster had significantly shorter DFS
time (Figure 2G; p = 0.045, HR = 1.53, 95% CI = 1.01–2.34). PCA
analysis and t-Distributed Stochastic Neighbor Embedding suggested

TABLE 1 Characteristics of sample cohorts used for the analysis of DFS.

Characteristics cohort TCGA cohort MSKCC cohort

TCGA training cohort TCGA test cohort

Total number of patients 245 246 140

pT2 82 (33.5% 95 (38.6%) 86 (61.4%)

T-stage pT3 139 (56.7%) 144 (58.5%) 47 (33.6%)

pT4 5 (6.1%) 5 (2%) 7 (5%)

Not available 19 (13.7%) 2 (0.8%) 0

pN0 170 (69.4%) 171 (69.5%)

N-stage pN1 38 (15.5%) 40 (16.3%)

Not available 37 (15.1%) 35 (14.2%) 140 (100%)

M0 224 (91.4%) 226 (91.9%)

Metastasis M1 2 (0.8%) 0 (0%)

Not available 19 (7.8%) 20 (8.1%) 140 (100%)

≤ 7 141 (57.6%) 149 (60.6%) 117 (83.6%)

Gleason score > 7 104 (47.4%) 97 (39.4%) 21 (15%)

Not available 0 (0%) 0 (0%) 2 (1.4%)

R0 160 (65.3%) 152 (61.8%)

Residual tumor R1-2 73 (29.8%) 77 (31,3%)

Rx 8 (3.3%) 7 (2.8%)

Not available 4 (1.6%) 10 (4.1%) 140 (100%)

≤ 10 225 (91.8%) 207 (84.1%)

PSA > 10 5 (2%) 10 (4.1%)

Not available 15 (6.1%) 29 (11.8%) 140 (100%)
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FIGURE 2
Identifying prognostic lactylation-related genes and subtypes in PCa. (A) A volcano plot of differentially expressed lactylation-related genes in the
TCGA cohort; (B) Forest plots showing the results of the univariate Cox regression analysis of 16 prognostic differentially expressed lactylation-related
genes; (C) The co-expression network of 16 prognostic differentially expressed lactylation-related genes. (D) CNV status analysis showed a frequent
alteration in 16 lactylation-related DEGs. (E–F) K = 2 was identified as the optimal value for unsupervised clustering. (G) The relation of LRGs
molecular subtypes to the disease-free survival of PCa patients. (H) Principal component analysis of the entire TCGA cohort. (I) The distribution was
analyzed by t-SNE of the two subtypes in the TCGA cohort. (J) The clinicopathological features and differential expression of LRGs in the two molecular
subtypes. T, T stage. N, N stage. M, metastasis status. LRGs cluster, lactylation-related genes cluster. PSA, prostate-specific antigen. *p-value <0.05,
**p-value <0.01, ***p-value <0.001.
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FIGURE 3
Selection of critical LRGs by machine learning and construction of an LRGs prognostic model with good performance. (A)The optimal parameter
(lambda) was selected in the LASSO model: dotted vertical lines were drawn at the optimal values using the minimum criteria. (B) LASSO coefficient
profiles of the candidate lactylation-related genes with nonzero coefficients determined by the optimal lambda. (C) The error rate of random survival
forest (left panel); out-of-bag variable importance ranking (right panel). (D) 8 key genes were identified by the SVM-RFE algorithm. (E) 6 key genes
were obtained using the Boruta algorithm. (F) XGBoost algorithm helped to select 10 key genes. (G) Venn diagram. Five overlapping eigengenes were
screened out via LASSO regression analysis, random forest, XGBoost, Boruta algorithm, and SVM-RFE. (H) Univariate Cox regression in TCGA cohort. (I)
Multivariate Cox regression in TCGA cohort. (J) Kaplan-Meier curve of disease-free survival between patients in high-risk group and low-risk group in
TCGA training cohort. (K) The 1-, 3- and 5-year AUC of the prognostic signature in TCGA training cohort. (L) ROC curves for the risk score and other
clinical features in TCGA training cohort.
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significant differences between the C1 and C2 lactylation clusters (p =
0.001) (Figures 2H, I). The heatmap for the association between
16 lactylation-related DEGs and clinicopathological manifestations
was also analyzed (Figure 2J).

Selection of key LRGs by machine learning
and construction of a LRGs prognostic
model with good performance

Prostate cancer patients withDFS inTCGAwere randomly divided
into a training cohort (n = 245) and test cohort (n = 246) at a ratio of 1:1.
Because we need to construct the Cox proportional hazards regression
model later, the main premise for constructing the Cox proportional
hazards regression model is the assumed hazard ratio. We check each
collaborator’s variable (T stage, N stage, metastasis status, PSA, Residual
tumor, risk score) is in line with the Cox proportional hazards model
assumptions with Schoenfeld residuals. Each schoenfeld individual test
p was not statistically significant (p > 0.05), and the global schoenfelds
were not statistically significant (Supplementary Figure S1). Therefore,
we can assume that this Cox model meets the proportional hazards’
assumption. Then, we used LASSO regression analysis, random forest,
XGBoost, Boruta algorithm, and SVM-RFE to find key genes associated
with DFS in the TCGA training cohort. Five lactylation-related genes,
ALDOA, DDX39A, H2AX, KIF2C, and RACGAP1, were identified as
key genes by the LASSO regression algorithm. The five variables were
obtained based on the optimal value of λ = 0.069 (Figure 3A), and the
lowest partial likelihood of deviance is shown in Figure 3B. According to
the correlation map between the number of decision trees and the
model error, we chose ntree was 600, the error rate of the model tended
to stabilize and the importance of variables was ranked according to the
VIMP method (Figure 3C). Six key genes, ALDOA, DDX39A, H2AX,
KIF2C, RACGAP1, and H2BC4, were selected by the minimum depth
variable selection function in the R package “randomForestSRC”. The
SVM-RFE algorithm identified 8 key genes significantly associated with
the DFS (Figure 3D). The Boruta algorithm identified 6 key genes
significantly associated with the DFS (Figure 3E). XGBoost algorithm
screened the 10 most important signature genes affecting the disease-
free survival of prostate cancer (Figure 3F). The intersection of the RF,
LASSO, SVM-RFE, Boruta, and XGBoost results were shown in a Venn
diagram in Figure 3G.We identified 5 overlapping key genes, including
ALDOA, DDX39A, H2AX, KIF2C, and RACGAP1. The overlapping
key genes screened by the five machine learning algorithms were
consistent with those screened by the lasso algorithm. We wanted to
use the five signature genes to construct a survival prognosis model.
Then, the five key genes were used to construct a survival prognostic
model by Lasso Cox regression analysis in the TCGA training set, and
validated in the TCGA test set and external validation set MSKCC. The
risk score model was as follows: Risk score = (0.0880 × expression level
of ALDOA) + (0.0108 × expression level of DDX39A) + (0.0199 ×
expression level of H2AX) + (0.2848 × expression level of KIF2C) +
(0.0181× expression level of RACGAP1). Univariate and multivariate
Cox regression analyses demonstrated that T stage, Gleason score, and
risk score based on the signature of five lactylation-related genes were
independent predictors of prognosis in patients with PCa (Figure 3HI).
The patients were divided into high-risk or low-risk groups according to
the median value of the risk scores in the TCGA training cohort. KM
analysis indicated that significantly poorer DFS in the TCGA training

cohort was detected among patients in the high-risk group compared to
patients in the Low-risk group (log-rank test, p< 0.0001, HR= 6.04,95%
CI:2.83-12.9,5-yearsDFS:0.49,95%CI:0.38-0.63) (Figure 3J). A receiver
operating characteristic (ROC) curve was constructed to estimate the
model and assess the reliability of the risk score, and the areas under the
curve (AUCs) in the TCGA training cohort at 1 year, 3 years, and
5 years DFS were 0.82, 0.797 and 0.769, suggesting that the risk model
can be useful in predicting prognosis (Figure 3K). The ROC curve
analysis shows the risk score’s highly sensitive and specific prognostic
performance in the TCGA training cohort (Figure 3L). So, the
Prognostic model had a better predictive performance in the TCGA
training cohort.

An internal validation set (TCGA test cohort)
and an external validation set (MSKCC
cohort) were used to verify the prediction
performance of the prognostic model

To verify the prediction model had a powerfully predictive
performance in the other cohort, the TCGA test cohort and the
MSKCC cohort were used to verify the predictive performance.
According to the median value of the risk scores in the TCGA test
cohort, the patients were divided into a high-risk group and a low-risk
group. KManalysis indicated that significantly poorerDFS in the TCGA
test cohort was detected among patients in the high-risk group
compared to patients in the Low-risk group (log-rank test, p =
0.0003, HR = 3.31,95%CI:1.16-6.61,5-years DFS:0.64,95%CI:0.52-
0.77) (Figure 4A). In the TCGA test cohort, the AUC for the 1-year,
3-year, and 5-year DFS were 0.704,0.674 and 0.644 (Figure 4B). The
ROC curve analysis shows the risk score’s highly sensitive and specific
prognostic performance in the TCGA test cohort (Figure 4C). To better
assess its predictive accuracy, the above results were replicated in the
entire TCGA cohort. We found that the DFS of the high-risk group was
shorter than that of the low-risk group (p < 0.001) and the area under
the ROC curves (AUC) of the prognostic model for DFS was 0.762 at
1 year, 0.745, at 3 years, and 0.709 at 5 years in entire TCGA cohort
(Figures 4D, E). Also, in the ROC curve containing risk score, stage,
Gleason score, residual tumor, and prostate-specific antigen (PSA), the
AUC value of the risk score was higher than other indicators in the
entire TCGA cohort (Figure 4F). Similarly, patients with PCa in
MSKCC cohort were classified into a high-risk group and a low-risk
groups according to the median risk score. KM analysis indicated that
the DFS was shorter in patients with high-risk scores than those with
low-risk scores in the MSKCC cohort (log-rank test, p = 0.0021, HR =
2.91,95%CI:1.43-5.92,5-years DFS:0.62,95%CI:0.50-0.76) (Figure 4G).
The areas under the curve (AUCs) of the ROC curve at 1 year,
3 years, and 5 years DFS were 0.835, 0.701, and 0.661, suggesting
good predictive ability (Figure 4H). The risk score was statistically
different between TCGA subgroups C1 and C2 (Figure 4I). The risk
score of each patient in the entire TCGAcohort andMSKCC cohort was
calculated based on the expression levels and regression coefficients of
these five genes. The distribution of risk scores and survival status in the
entire TCGA cohort and MSKCC cohort is shown in Supplementary
Figure S4J; Figure 4K. The risk curves reflect the relationship between
the risk score and disease-free survival status of patients with prostate
cancer, and we found that the probability of recurrence or progression
was higher in the high-risk patients than the low-risk patients.
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FIGURE 4
TCGA test cohort and MSKCC cohort were used to validate the prognostic model. (A) Kaplan-Meier curve of disease-free survival between patients
in high-risk group and low-risk group in TCGA test cohort. (B) The 1-, 3- and 5-year AUC of the prognostic model in TCGA test cohort. (C) ROC curves for
the risk score and other clinical features in TCGA test cohort. (D) Kaplan-Meier curve of disease-free survival between patients in high-risk group and low-
risk group in entire TCGA cohort. (E) The 1-, 3- and 5-year AUC of the prognostic signature in entire TCGA cohort. (F) ROC curves for the risk score
and other clinical features in entire TCGA cohort. (G) Kaplan–Meier analyses demonstrating the prognostic significance of the risk model in MSKCC
cohort. (H) ROC curves of a prognosticmodel inMSKCC cohort. (I) The box plot depicts the risk score for the different clusters. (J) Risk scores distribution,
survival status of each patient, and heatmaps of prognostic 5- gene signature in entire TCGA cohort; (K) Risk scores distribution, survival status of each
patient, and heatmaps of prognostic 5- gene signature in MSKCC cohort.
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Establishment and evaluation of the
predictive nomogram

The independent predictors, including T stage, risk score, and
Gleason score, which affect the DFS of PCa patients, were

incorporated into the nomogram model (Figure 5A). Time-
dependent C-index curves of different variables based on TCGA
cohorts show the optimum performance of the nomogram
compared with other single factors (Figure 5B). The nomogram
AUCs in the TCGA-PRAD cohort for the 1-year, 3-year, and 5-year

FIGURE 5
Establishment and evaluation of the predictive nomogram. (A)Nomograms for the prognostic prediction of TCGA-PRAD patients. (B)C-Index curve
analyzed the concordance index of the nomogram, risk score, Gleason score, T. (C) 1-year, 3-year, and 5-year DFS calibration chart; (D) ROC curves for
the nomogram and other clinical features in entire TCGA cohort. (E) 1-, 3-, and 5-year DFS area under the ROC curve (AUC) of nomogram in the entire
TCGA cohort. (F) Decision curve analysis for the nomogram prediction in the TCGA-PRAD cohort.
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FIGURE 6
Analysis of tumor immunemicroenvironment of high- and low-risk groups. (A)Heatmap showing the scores of immune and stromal cell infiltrations
based on CIBERSORT, ESTIMATE, MCP counter, TIMER algorithms, IPS algorithms, EPIC algorithms and xCell algorithms among high and low-risk
group. The statistical difference between the two groups was compared by the Student’s t-test. (B) Boxplot of the abundance of immune cells in the high
and low-risk groups. The x-axis represents the type of immune cells and the y-axis represents the level of immune infiltration. Blue represents low-
risk group and red represents high-risk group. (C) The ssGSEA for the association between immune cell subpopulations and related functions. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant.
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OS probability were 0.796, 0.755, and 0.746, respectively
(Figure 5C). To evaluate the accuracy of this nomogram, the
ROC curves were utilized to compare this signature with several
available clinical traits. They showed that the predictive value of this
nomogram model was more optimal compared to several clinical
characteristics. (Figure 5D). Moreover, the calibration curve of the
nomogram model showed the actual DFS was close to the predicted
DFS (Figure 5E). DCA showed that the nomogram provided a net
benefit over different threshold probability ranges, suggesting that it
might have potential applications in different contexts (Figure 5F).

Analysis of tumor immune
microenvironment of high- and low-
risk groups

First, we estimated the composition of infiltrating immune cells
in high- and low-risk groups of the TCGA cohort by CIBERSORT,
ESTIMATE, MCP counter, TIMER algorithms, IPS algorithms,
EPIC algorithms, and xCell algorithms. The results of Immune
cell Infiltration in high and low-risk groups were presented as a
heatmap (Figure 6A). From the heatmap, we know that regulatory
T cell and M2 Macrophages were significantly higher in the high-
risk group compared to the low-risk group. At the same time,
Neutrophils and Fibroblasts were substantially lower in the high-
risk group. The increase of regulatory T cells andM2macrophages is
conducive to tumor immune escape and tumor recurrence, which
suggests that the infiltration of these immune cell subtypes into the
tumor microenvironment might significantly impact the prognosis
of PCa patients. Based on risk grouping, in terms of immune cells,
we discovered that the content of natural killer T cells, natural killer
cells, immature dendritic, and neutrophil was significantly lower in
patients in the high-risk group compared to the patients in the low-
risk group (Figure 6B). Regarding immune functions, the Immune
functions of Type II IFN response, CCR, and MHC class I level were
significantly downregulated in the patients in the high-risk group
compared to those in the low-risk group with ssGSVA algorithm
analysis (Figure 6C). Then, we explored the correlation between
infiltrating immune cells and risk group and prognostic genes with
the CIBERSORT algorithm. We found that the risk score of LRGs
was significantly correlated with regulatory T cells,
M2 Macrophages, T cells CD4 memory resting, and T cells
follicular helper (Figure 7A). Moreover, the risk score had a
significantly positive correlation with the regulatory T cells,
M2 macrophages, and follicular helper T cells, and it had a
significantly negative correlation with the T cells CD4 memory
resting (Figures 7B–E). Considering the importance of checkpoint
inhibitors in clinical treatment, we further investigated potential
changes in immune checkpoint expression between the two groups.
Combined with the bar chart showing immune checkpoint
expression, where most canonical markers of exhausted T cells,
including TIM3/HAVCR2, LAG3 and CTLA4 are highly expressed
in the high-risk group of patients. We could conclude that the
abundance of exhausted T-cell infiltration in the high-risk group of
patients may be higher than that in the low-risk group (Wherry and
Kurachi, 2015). Besides, we found that the expression of B2M, JAK1,
JAK2, CD40, TNFSF4, and CD28 in the high-risk group was
significantly lower than those in the low-risk group (Figure 7F).

Functional enrichment analysis and drug
sensitivity

Exploring the functional annotation between high-risk and
low-risk subtypes, we found that the high-risk group was
significantly enriched in the lamin filament, U2AF complex,
positive regulation of apoptotic DNA fragmentation, and
positive regulation of DNA catabolic process in the GSVA of
gene ontology biological processes (GOBPs) (Figure 8A). KEGG
pathway analyses were performed to explore the biological
processes and pathways using the gene set variation analysis
(GSVA). We found that the high-risk group was enriched in the
base excision repair, DNA replication, homologous
recombination, pyrimidine metabolism, mismatch repair, and
cell cycle (Figure 8B). According to the above functional
enrichment analysis, the risk score was closely related to the
DNA synthesis, repairing, degradation, and cell cycle progression
of PCa. We further analyzed the response of PCa patients in the
TCGA cohort to DNA synthesis and repairing and cell cycle-
related chemotherapy drugs (5-Fluorouracil, Cisplatin,
Docetaxel, Paclitaxel, Gemcitabine, Epirubicin, Talazoparib).
The results revealed that these drugs had lower half maximal
(50%) inhibitory concentration (IC50) in patients of the high-
risk group, implying that these patients may be more sensitive to
these drugs (Figures 8C–I). Based on the immune checkpoint
analysis, we know that JAK1 and JAK2 are lower in the high-risk
group, which is consistent with our results from the drug
prediction analysis that we know that the high-risk group has
a worse response to JAK inhibitors (JAK_8517, Ruxolitinib)
(Figures 8J, K).

Relationship between the LRGs signature
and clinicopathological traits and
mutation landscape

First, we evaluated the association between clinicopathological
parameters and the risk score further to investigate the clinical
relevance of the prognostic model. The risk score increased
significantly with increasing Gleason score, T-stage, and
N-stage, but there was no statistical difference between the no
metastasis (M0) and metastasis (M1) (Figure 9A). In assessing the
relationship between expression profiles of the signature genes in
PCa tissues and related clinicopathological characteristics based on
the TCGA cohort, we further found the 5 essential genes were
differentially expressed between tumor tissues and normal tissues
and were highly expressed in tumor tissues (Figure 9B). There were
differences in the expression of 5 critical genes in different T stages
and N stages, and the expression in advanced T stages (T3 + T4)
and N1 was higher than that in early T stages (T1+T2) and N0
(Figures 9C, D). Among the five essential genes, except ALDOA,
the expression differed in different Gleason scores and increased
with the increase in Gleason score (Figure 9E). We investigated the
mutation profiles separately in the high- and low-risk groups of
PCa patients from the TCGA cohort. Results indicated that Tumor
Mutational Burden (TMB) was more widely distributed in the
high-risk group, and miscellaneous mutation was the most
common variant classification in PCa. The top five most
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FIGURE 7
Analysis of tumor immunemicroenvironment of high- and low-risk groups. (A)Heatmap of correlation between the immune cell infiltration and the
prognostic genes and risk score. (B) Correlation between risk score and M2Macrophages cells. (C) Correlation between risk score and regulatory T cells.
(D) Correlation between risk score and T cells follicular helper. (E) Correlation between risk score and T cells CD4 memory resting. (F) Analyses of the
expression of immune checkpoints genes in the high and low-risk groups.
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frequent mutation genes in the high-risk group were TP53 (20%),
SPOP (16%), TITIN (12%), MUC16(10%), FOXA1 (8%), while
genes such as TITIN (13%), SPOP (7%), MUC16 (6%),
MUC4(6%), SYNE1 (6%) had the top five mutation frequencies

in low-risk group (Figures 9F, G). Previous studies have shown that
mutations in these genes are often associated with a poor prognosis
for PCa (Shi et al., 2019; Nyquist et al., 2020; Jiang et al., 2021;
Zhang et al., 2022).

FIGURE 8
Functional enrichment analysis and drug sensitivity. (A) Gene set variation analysis based on the gene ontology biological processes between high-
risk and low-risk groups. Dotted line indicates p-value less than 0.05. (B)Gene set variation analysis based on the KEGG terms between high-risk and low-
risk groups. Dotted line indicates p-value less than 0.05. (C–K) The box plot depicts the drug sensitivity for the different risk groups.
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FIGURE 9
Relationship between the five LRGs and clinicopathological traits and mutation landscape. (A) The abundance of the risk score calculated by LRG
signature in different clinicopathological characteristics, including tumor stage, N stage, and metastasis status, Gleason score, Residual tumor. (B–E)
Relationships between each gene of the LRG signature and clinicopathological characteristics of TCGA-PRAD patients, including tumor stage, N stage,
and Gleason score. The Wilcoxon test was used for double terms, and the Kruskal test was used for multiple terms. (F) SNV waterfall plot of TOP25
(mutation frequency) genes in the high-risk group; (G). SNV waterfall plot of TOP25 (mutation frequency) genes in the low-risk group.
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The mRNA expression levels of lactylation-
related genes in PCa cells

To further evaluate the mRNA expression levels of these five
genes, we utilized their expression in the cell lines using RT-qPCR.
The results indicated that most signature genes were expressed at a
relatively high level in castration-resistant prostate cancer cell lines
(C4-2, PC3, 22Rv1, DU145) compared with non-castration-resistant
prostate cancer cell line (LNCAP) (Figures 10A–E). Castration-
resistant prostate cancer cell lines are more malignant than non-
castration-resistant prostate cancer cell line. In sum, the high
expression of these five key genes is positively correlated with the
malignant degree of prostate cancer, which validated the accuracy of
our previous bioinformatics analysis.

Discussion

Prostate cancer is an extremely common malignancy in men.
The rates of PCa recurrence and metastasis remain high after

radical prostatectomy and were associated with a poor prognosis.
Despite the widely used classification system by TNM staging and
Gleason score, the heterogeneous nature of PCa poses difficulty
to prognosis and therapeutic decision. Therefore, exploring new
methods of PCa subtyping has become the most urgent task in
bringing precision medicine into reality. Recently, new
biomarkers have emerged for the prognosis of cancer patients,
but this is the first time to discuss the establishment of a
prognostic model related to protein lactation in prostate
cancer patients.

Lactylation modification widely occurred on histones and non-
histone proteins. Protein lactylation has been found to be related to
cell metabolism and cancer immune regulation (Chen et al., 2022).
More and more evidence suggests that protein lactylation plays an
indispensable role in the development and progression of cancer.
In this study, the expression profiles of lactylation-related genes
were mined from TCGA PRAD RNA-seq data and were initially
analyzed followed by filtering out via differential analysis. Then,
81 LRDEs were subsequent to univariate Cox regression analysis,
and a total of 16 prognostic LRGs were identified. The five key

FIGURE 10
The mRNA expression levels of lactylation-related genes in PCa cells. (A–E) RT–qPCR analysis for the five eigengenes in PCa cell lines. (ns: not
significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001).
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LRGs were selected from the 16 prognostic genes by five machine
learning algorithms (LASSO regression analysis, random forest,
XGBoost, Boruta algorithm, and SVM-RFE). The five key genes
(ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) were used to
construct a survival prognosis model. Further, the five key
LRGs were used to construct a survival prognostic model by
Lasso-Cox regression analysis. The predictive performance of
the model was verified using the KM curve and ROC curve and
the results indicated that the model had good predictive
performance. Meanwhile, the nomogram, which was
constructed by combining risk score, T stage, and Gleason
score, had good accuracy in predicting 1,3,5 years disease-free
survival and can be used as a practical and reliable prognostic tool
for PCa patients. Among the five essential genes, all were
significantly over-expressed in prostate cancer tissues than
tumor-adjacent tissue, and their expression was positively
correlated with the TNM stage. Many studies reported that
these genes played a significant role in the pathogenesis of
cancer. ALDOA, a glycolytic enzyme that catalyzes the
reversible conversion of fructose-1,6-bisphosphate to
glyceraldehyde 3-phosphate and dihydroxyacetone phosphate,
was reported to promote the glycolysis of cancer cells and may
be significantly associated with the development, metastatic
potential, and poor prognosis of various kinds of tumors (Du
et al., 2014; Long et al., 2014; Shi et al., 2015; Chang et al., 2017).
Nakata et al. reported that DDX39A regulates androgen receptor
splice variant AR-V7 generation (Nakata et al., 2017). H2AX
coordinates DNA repair following genotoxic stress and double
strand breaks (Bonner et al., 2008). The loss of H2AX increased
chromosomal instability seen in acute myeloid leukemia, acute
lymphoid leukemia, and Head and neck squamous cell may
contribute to tumor development, progression, and resistance to
therapy in this cancer subtype (Thirman et al., 1993; Parikh et al.,
2007). Besides, H2AX promotes metastatic progression in breast
cancer cells by preserving glycolysis via hexokinase-2 (Liu et al.,
2022). Many studies reported that KIF2C enhanced hepatocellular
cancer through the Ras/MAPK and PI3K/Akt signaling pathways
and accelerated the growth of cervical cancer by blocking the
stimulation of the p53 signaling pathway and activated
mTORC1 pathway and promoting tumor cell motility and
invasion (An et al., 2021; Moon et al., 2021; Yang et al., 2022).
KIFC2 promotes prostate cancer progression by regulating p65
(Liu et al., 2023). A previous study indicated that
RACGAP1 regulated the downstream factors of the PI3K/AKT
signaling pathway and that the compensatory activation of the
PI3K/AKT signaling pathway was closely associated with ADT
drug resistance and neuroendocrine differentiation in PCa (Hazar-
Rethinam et al., 2015; Song et al., 2023). Besides, the results of
qPCR verified that the most signature genes were transcribed at
higher levels in more malignant castration-resistant prostate
cancer cell lines.

Recently, immune-based treatment has emerged for patients
with PCa, which has revolutionized cancer therapy and improved
the survival of patients with many types of solid tumors. However,
prostate cancer is recognized as a poorly immunogenic tissue with
immunological ignorance showing low levels of antigen-
presenting process and cytotoxic T-cell activation, high levels
of immune checkpoint molecules and immunosuppressive

cytokines/chemokines, and recruitment of immunosuppressive
cells (Sun, 2021). Due to the immunosuppressive
microenvironment and heterogeneous nature of PCa, it is
important to identify the molecular subtypes and characterize
the TME that can predict response to immunotherapy and
identify high-risk patients for early intervention. Therefore, we
investigated the status of TME between the high-risk and the low-
risk subtypes. With 7 immune algorithms, we found that the
proportion of regulatory T cells and M2 macrophages were
significantly increased in the high-risk than low-risk group,
while Myeloid dendritic cells were significantly decreased in the
high-risk group. Previous studies have shown that lactylation
modification can regulate inflammatory to reparatory
macrophage transition and promote immunosuppression of
tumor-infiltrating myeloid cells (Irizarry-Caro et al., 2020;
Xiong et al., 2022). M2-polarized macrophages are contributors
to many pro-tumorigenic outcomes in cancer through angiogenic
and lymphangiogenic regulation, immune suppression, hypoxia
induction, tumor cell proliferation, and metastasis (Boutilier and
Elsawa, 2021). Sadasivan et al. found that patients with high levels
of infiltrating M2 macrophages had an almost 5-fold increased
risk of PCa recurrence (Sadasivan et al., 2020). Our results
obtained by the immune algorithm were consistent with
previous reports that regulatory T cells and M2 macrophages
were high in prostate cancer in the high-risk group, so the
prognosis of the high-risk group was worse, which may be
related to its immunosuppression. Besides, patients in the high-
risk group had significantly lower levels of type II IFN response,
CCR, and MHC class I compared to patients in the low-risk group
by ssGSVA algorithm analysis. These findings strongly implied
the potential roles of lactylation -related genes in reshaping the
TME in PCa. The results of the GSEA analysis showed that the
high-risk score group enriched in positive regulation of DNA
catabolic process in gene ontology biological processes (GOBPs),
and in base excision repair and DNA replication in KEGG. Then,
we explored how patients responded to diverse treatments and
tried to offer different recommendations based on LRGs risk
groups. Using the R package “OncoPredict” to predict the
IC50 of 198 drugs, we found that high-risk group patients were
sensitive to DNA synthesis and repairing and cell cycle-related
chemotherapy drugs, such as Docetaxel, Cisplatin, 5-Fluorouracil.

Our study systematically evaluated the expression of RLGs
and their potential prognostic value in PCa. Moreover, a risk
model of five RLGs was established in the TCGA train cohort
and validated using the TCGA test cohort and MSKCC cohort.
We found that the high-risk group was correlated with elevated
TMB and chemotherapy response, and shorter DFS.
Undeniably, there are still some limitations of our study.
First, since research in the protein lactylation field is still in
its preliminary stages, it has not yet fully elucidated how
lactylation modification affects protein function in tumor
cells. Second, the current analysis is based on RNA level
data, and lacking protein level data makes the analysis
potentially inaccurate. Due to the lack of appropriate
lactylation antibodies, the experimental validation of
lactylation proteins is currently hampered by practical
problems. Third, the majority of the data are obtained from
bioinformatics analysis of the public data.
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Conclusion

We developed a novel lactylation-related prognostic model to
predict the prognosis of prostate cancer patients, which had good
efficacy in predicting the DFS of PCa patients and provided new
insights into personalized therapies for PCa patients. Moreover,
further research on these hub genes may contribute to molecular
targeted therapy of prostate cancer.
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