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Background: GWAS discoveries often pose a significant challenge in terms of
understanding their underlying mechanisms. Further research, such as an
integration with expression quantitative trait locus (eQTL) analyses, are
required to decipher the mechanisms connecting GWAS variants to
phenotypes. An eQTL analysis was conducted on genes associated with low-
density lipoprotein (LDL) cholesterol and its subclasses, with the aim of
pinpointing genetic variants previously implicated in GWAS studies focused on
lipid-related traits. Notably, the study cohort consisted of African Americans, a
population characterized by a heightened prevalence of hypercholesterolemia.

Methods: A comprehensive differential expression (DE) analysis was undertaken,
with a dataset of 17,948 protein-coding mRNA transcripts extracted from the
whole-blood transcriptomes of 416 samples to identify mRNA transcripts
associated with LDL, with further granularity delineated between small LDL
and large LDL subclasses. Subsequently, eQTL analysis was conducted with a
subset of 242 samples for which whole-genome sequencing data were available
to identify single-nucleotide polymorphisms (SNPs) associated with the LDL-
related mRNA transcripts. Lastly, plausible functional connections were
established between the identified eQTLs and genetic variants reported in the
GWAS catalogue.

Results: DE analysis revealed 1,048, 284, and 94 mRNA transcripts that exhibited
differential expression in response to LDL, small LDL, and large LDL, respectively.
The eQTL analysis identified a total of 9,950 significant SNP-mRNA associations
involving 6,955 SNPs including a subset 101 SNPs previously documented in
GWAS of LDL and LDL-related traits.

Conclusion: Through comprehensive differential expression analysis, we
identified numerous mRNA transcripts responsive to LDL, small LDL, and large
LDL. Subsequent eQTL analysis revealed a rich landscape of eQTL-mRNA
associations, including a subset of eQTL reported in GWAS studies of LDL and
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related traits. The study serves as a testament to the important role of integrative
genomics in unraveling the enigmatic GWAS relationships between genetic variants
and the complex fabric of human traits and diseases.
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Introduction

The mechanisms underlying Genome-Wide Association Study
(GWAS) variants remain incompletely understood. While GWAS
successfully identifies genetic loci associated with various traits and
diseases, the precise molecular pathways through which these
variants exert their effects often remain elusive.

Expression quantitative trait loci (eQTL) analysis can play a
crucial role in enhancing our understanding of the genetic basis of
complex traits and diseases identified through GWAS.While GWAS
pinpoints genetic variants associated with specific phenotypes,
eQTL analysis enables the exploration of how these variants
influence gene expression. By identifying regulatory variants in
coding and non-coding regions of the genome, eQTL analysis
sheds light on the impact variants have on the expression of
nearby or distant genes and their functional consequences in
relation to GWAS findings. This integration of eQTL data with
GWAS outcomes allows for the elucidation of underlying biological
pathways, aiding in the prioritization of candidate genes,
identification of potential therapeutic targets, and refinement of
disease mechanisms. Notable consortia like the GTEx Consortium
and eQTLGen Consortium (Vosa et al., 2021) have demonstrated
the utility of eQTL analysis in bridging the gap between genetic
associations and functional insights.

Lipoprotein quantification, traditionally focused on cholesterol
levels, is undergoing reassessment due to emerging evidence
emphasizing the significance of particle number and size. Recent
studies suggest that particle concentration, as opposed to cholesterol
content, may offer a more accurate reflection of the atherogenic
potential of lipoproteins. Notably, small dense low-density
lipoprotein (LDL) particles have been shown to have a higher
association with atherosclerosis risk than their larger, more
buoyant counterparts (Otvos et al., 2002; Cromwell et al., 2007).
This nuanced perspective on lipoprotein particles enables a more
precise risk assessment for cardiovascular diseases, with substantial
implications for personalized approaches to lipid management
in medicine.

This project leverages the whole-blood transcriptome to conduct
an unbiased eQTL scan of the genome and identify Single-
Nucleotide Polymorphisms (SNP) associated with messenger
RNAs (mRNA) involved in pathways relevant for LDL
cholesterol metabolism and hence provide plausible mechanistic
links between GWAS-reported SNPs and LDL. The analysis also
considered small and large LDL because those lipoprotein particles
provide a more nuanced understanding of cardiovascular risk,
metabolic disorders, and lipid metabolism; knowledge that leads
to improved personalized treatment strategies, and advancements in
the prevention and management of cardiovascular diseases.

Our study, centered on an African American cohort, adds to a
broader body of research encompassing diverse populations.

Similar eQTL analyses of LDL cholesterol and its subclasses
have been conducted in non-African American groups,
providing insights into the genetic determinants of lipid
metabolism. For instance, studies by the Global Lipids Genetics
Consortium explored genetic contributions across ancestries,
including European and East Asian cohorts (Teslovich et al.,
2010). Additionally, the Framingham Heart Study,
predominantly involving European Americans (Zubair et al.,
2016), offered valuable eQTL data for lipid traits. While not
focused on African Americans, these studies provide a
comparative context for assessing the uniqueness or
commonality of our findings. Emphasizing the importance of
including diverse populations in genetic research, they highlight
the need to capture the full spectrum of genetic influences on
complex traits like lipid metabolism.

Elevated LDL cholesterol is a key phenotype in the
development of hypercholesterolemia, a major risk factor for
cardiovascular diseases (CVD), which accounts for
approximately 1 of every 5 deaths in the United States (U.S.)
(Ference et al., 2017). It is estimated that abnormal LDL
concentrations affect 70 million Americans and cost upwards of
$35 billion dollars annually in health expenditures (Dieleman et al.,
2020). While LDL’s role in hypercholesterolemia is well studied
and widely used clinically, increasing evidence challenges the
conventional view of LDL as the most relevant biomarker for
hypercholesterolemia. Historically, the concentration of LDL has
been estimated using their cholesterol content (LDL-C) (Dieleman
et al., 2020). However, quantifying lipoproteins by their particle
concentration rather than cholesterol concentration can improve
risk assessment for CVD (Cantey and Wilkins, 2018; Liou and
Kaptoge, 2020; Glavinovic et al., 2022). Specifically, large buoyant
LDL and small dense LDL, are considered biomarkers of interest in
CVD processes (Liou and Kaptoge, 2020). Buoyant LDL particles
have a cholesterol rich core, and as such may be resistant to
oxidation and possibly be anti-atherogenic (Liou and Kaptoge,
2020). Smaller and denser LDL particles are causal risk factors for
CVD because of their greater susceptibility to oxidation and their
permeability through the endothelium of arterial walls, which
makes them pro-atherogenic (Ivanova et al., 2017), pro-
thrombotic (Toth, 2014), and proinflammatory (Krychtiuk
et al., 2015).

Similar to European Americans (EAs), approximately 1 in
4 African American (AA) adults (23%–29%) have elevated LDL
concentrations (Tsao et al., 2022). Yet, AA are prescribed lipid-
lowering medications less often (56.7%) compared with European
Americans (EA; 67.7%) and are less likely to achieve LDL control
(Dorsch et al., 2019). This study investigated a sample of African
American from The GENomics, Environmental FactORs and the
Social DEterminants of Cardiovascular Disease in African-
Americans STudy (GENE-FORECAST).
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Material and methods

Data description

GENE-FORECAST is a research platform that establishes a
strategic, multi-omics systems biology approach amenable to the
deep, multi-dimensional characterization of minority health and
disease in AA. GENE-FORECAST is study designed to create a
cohort based on a community sampling frame of self-identified,
U.S.-born, AA men and women (ages 21–65) recruited from the
metropolitan Washington D.C. area.

A description of the baseline characteristics of the GENE-
FOREAST samples included in the analyses is outlined in Table 1.
LDL cholesterol concentration was assessed as part of the fasting
blood chemistry panel (overnight fast and no alcohol consumption for
24 h) from plasma collected in Lithium Heparin tubes. Among the
416 individuals examined, only 41 (10%) were receiving lipid-
lowering medications, while 101 (24%) exhibited LDL levels equal
to or exceeding 129 mg/dL. The NMR LipoProfile (Jeyarajah et al.,
2006) lipoprotein particle test was employed to quantify both small

and large LDL particles; each particle level is positively correlated with
LDL cholesterol level. Age displayed a significant correlation with
LDL levels, whereas factors such as gender, body mass index (BMI),
and educational attainment did not. The study population consisted
of a larger proportion of females than males, with over one-third of
the individuals possessing a graduate-level education or higher.
Hypertensives were defined as subject with systolic blood pressure
(SBP) > 120 and/or diastolic blood pressure (DBP) > 80 and/or on
high blood pressure medication or doctor diagnosed.

The transcriptome data consist of themessenger RNA sequencing
(mRNA-seq) data of whole blood (buffy coat). Total RNA extraction
was carried out using MagMAXTM for Stabilized Blood Tubes RNA
Isolation Kit as recommended by vendor (Life Technologies,
Carlsbad, CA). For library preparation, total RNA samples are
concentration normalized, and ribosomal RNA (rRNA) is
removed. Pooled libraries are bound to the surface of a flow cell
and each bound template molecule is clonally amplified up to 1000-
fold to create individual clusters. Illumina paired end 100 base pair
sequencing was performed on HiSeq2000 analyzer (Illumina, USA)
with an average sequencing depth of 50 million reads per sample. The
mRNA expression was quantified using a bioinformatics pipeline
developed by the Broad Institutes and used by the Genotype-Tissue
Expression (GTEx). The pipeline is detailed in the GitHub software
development platform (Broad Institute, 2015). The pre-analysis
quality control (QC) procedures for mRNA sequencing data are
detailed in Supplementary Material SM1, accompanied by
graphical representations of each QC step. Briefly, the QC
consisted of validation of target read depth, exclusion of lowly
expressed transcripts, and subsequent normalization utilizing the
Trimmed Mean of M-values (TMM) method (Robinson and
Oshlack, 2010). Following these steps, principal component
analysis was employed to detect any noteworthy outliers among
samples and transcripts. After QC, the analysis incorporated
17,948 protein-coding mRNAs and 416 samples for whom LDL
and LDL particle measurements were available.

The genotype data are from whole-genome sequencing
(WGS) of a subset of 242 samples. DNA was extracted from
whole blood Ethylenediaminetetraacetic acid (EDTA) tubes
followed by picoGreen quantitation. Library preparation was
done using Whole Genome Small Insert PCR-Free. The WGS
samples were 151bp paired end sequenced on an Illumina
NovaSeq6000 to a mean coverage of 30X. At the data
preprocessing step, WGS reads were processed with the Whole
Genome Germline Variant Discovery pipeline developed and used
by the Genomics Platform at the Broad Institute. Reads were then
aligned to the genome build Hg38 with Burrows-Wheeler Aligner
and gVCF generation, joint genotype calling, and quality filtering
were executed in accordance with GATK4 best-practices. A total
of 8,581,606 SNPs with a minor allele frequency (MAF) ≥
0.01 were considered for the analysis.

Statistical analyses

The analytical steps of the project are depicted graphically in
Figure 1 and detailed in the subsequent paragraphs. All the analyses
were conducted on R version 4.3.1; R is a programming language
and environment for statistical computing and graphics.

TABLE 1 Baseline characteristics of the 416 samples included in the
differential expression analysis and their correlation with LDL cholesterol.

Characteristic Mean or
count

SD or
proportion

LDL (mg/dL) 105 33

Small LDL (mg/dL) 477 333

Large LDL (mg/dL) 485 285

Lipid Lowering Medication

No 376 90%

Yes 41 10%

BMI 32 7

Age (years) 48 12

Sex

Female 289 69%

Male 127 31%

Education

≤ high school 44 11%

Some vocational or college or
technical school

125 30%

College graduate 112 27%

> Graduate 135 32%

Hypertension

No 110 26%

Yes 306 73%

Systolic Blood Pressure 159 38

Diastolic Blood Pressure 76 10

HDL 59 16

Triglycerides 82 44

Type 2 Diabetes

No 368 88.5%

Yes 47 11.5%
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Differential expression analyses

For each of the three differential expression (DE) analyses, the
number of samples contrasted between the top and bottom tertiles are
reported in the Supplementary Table SM1 along with the distribution
of the covariates age, sex and education level. In summary, the DE
analyses, involved a comparison of 137 samples in the lower tertile
with 143 samples in the upper tertile for LDL, 139 samples versus
140 samples for small LDL, and 139 samples versus 140 samples
for large LDL.

Differential expression (DE) analysis was conducted on a set of
17,948 protein-coding mRNAs, employing the R library edgeR
(Robinson et al., 2010). This library fits a negative binomial model
to the read counts of mRNAs and subsequently computes
likelihood ratio tests for the coefficients within the model. More
specifically, a gene-wise statistical test was conducted by fitting a
negative binomial generalized log-linear model to the read counts
(expression) of each gene. An empirical Bayes estimate of the
negative binomial dispersion parameter was computed for each
gene and that vector was used to set the dispersion parameter of the
binomial model. The association was adjusted for age, sex and level
of education (measure of socio-economic status). Statistical
significance in differential expression between the upper and
lower tertiles of LDL, small LDL, and large LDL was
determined based on a false discovery rate-adjusted
p-value ≤0.05. The DE analysis focused on the extremes of the
lipid variables distribution, specifically the upper and lower
tertiles, to enrich the subsequent eQTL analysis in novel
variants with substantial effects.

eQTL analysis

All SNPs with MAF ≥0.01 in the cis region (within 1Mb) of each
mRNA differentially expressed by LDL, small LDL and large LDL
were included in the eQTL analysis conducted using the R library
MatrixEQTL (Shabalin, 2012). MatrixEQTL fits a regression model

with mRNA expression as the outcome and additive genotypes as
the independent variable. The regression was adjusted for age, sex
and principal components (PCs) 1 to 6 to adjust for genetic ancestry
admixture. A SNP is deemed a plausible eQTL if the p-value of the
association with mRNA expression is statistically significant after
adjusting for multiple testing (adjusted p-value ≤0.05).

Overlap with GWAS variants associated with
LDL and LDL-related traits

The eQTLs significantly associated with differentially expressed
mRNAs were juxtaposed with genetic variants cataloged with
genome-wide significance in the GWAS Catalogue database
(version 1.0 as of 8th November 2023). The objective is to
discern eQTLs identified in our analysis that have been
previously reported in extensive investigations on LDL and LDL-
related traits.

Finally, pathway and gene ontology enrichment analyses were
conducted using a hypergeometric test. This involved sampling
across the mRNA associated with eQTLs reported in GWAS,
from the broader universe of Kyoto Encyclopedia of Genes and
Genomes (KEGG) genes. The objective of these enrichment analyses
was to discern pathways enriched in the list of mRNAs and establish
connections to the GWAS traits.

Results

Differential expression analysis

Differential expression analysis was conducted to identify
mRNAs that have a significant different level of expression
between top and bottom tertiles of LDL, small LDL and large
LDL. A total of 1048, 284 and 94 mRNA were significantly
differentially expressed by LDL, small LDL and large LDL,
respectively. The results are reported graphically in Figure 2,

FIGURE 1
First, (1) mRNAs differentially expressed (DE) between the top and bottom tertiles of LDL, small LDL and large LDL are identified. Then, (2) eQTL
analysis was conducted to identify cis-eQTLs associated with mRNAs DE by LDL, small and large LDL. Finally, cis-eQTLs reported in GWAS of LDL and
LDL-related traits are identified.
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including the number of differentially expressed genes overlapping
between LDL and small LDL (132), between LDL and large LDL
(79), between small and large LDL (32) and those differentially
expressed in all three analyses (10). The set of 10 mRNA that overlap
between the 3 analyses includes OLFM4, CXCL5, PF4, CAMP,
FLRT2, MUC12, DEFA1B, ITGB3, GOLGA6L22 and
ENSG000002849. Two of those 10 associations are illustrated
graphically in Figure 3 for LDL, small LDL and large LDL. The
full list of significantly differentially expressed mRNAs is reported in
Supplementary Table S1A.

eQTL analysis and overlap with GWAS
reported associations

The cis-eQTL analysis revealed a total of 9,950 associations
between eQTL and mRNA transcripts, encompassing 6,955 distinct
eQTL and 955 mRNA entities. A comprehensive summary of the
eQTL reported in GWAS is provided in Supplementary Table S1B.
Two of the eQTLs reported in GWAS of LDL are depicted
graphically in Figure 4.

A subset of 101 eQTL identified in this analysis aligns with
previously documented findings in GWAS studies of 40 LDL and
LDL-related traits outlined in Table 2. A concise presentation of the
count of eQTL affiliated with each mRNA and their respective
associations with traits in GWAS is reported in Table 3.

The aforementioned 101 eQTL are involved in 127 significant
eQTL-mRNA associations, implicating 32 distinct mRNA
transcripts. Within these associations, the predominant location
of the eQTL is upstream of the mRNA (169 instances), followed by
downstream positioning (113 instances); in four cases, the eQTL is
an exonic non-synonymous SNP. A total 92 of the 101 eQTL are
common (MAF ≥0.05); for the remaining 9 eQTL, the MAF ranges
from 0.013 to 0.042. Importantly, all 101 eQTLs are characterized as
common in the context of the GWAS reports. Furthermore, only
two of the 101 eQTL, namely rs3094219 and rs3094214, situated on
chromosome 6, are in linkage disequilibrium.

Pathway and gene ontology (GO) enrichment analysis, across
the 32 mRNA associated with eQTL reported in GWAS, revealed a
number of pathways and GO terms relevant for the GWAS traits; the
results are summarized in Tables 4, 5.

Discussions

Systems genetics integrates genetic information with
molecular endophenotypes, such as the transcriptome, to
overcome the challenge of understanding the mechanisms
behind the association between genetic variants and diseases
(Civelek and Lusis, 2014). This is achieved through a process of
elucidating the interconnections and discerning how a genetic
variant exerts its influence on a given phenotype (Wierbowski
et al., 2018). Particularly pivotal in this context are expression
quantitative trait loci (eQTLs) that co-locate with loci identified
through genome-wide association studies (GWAS), as they play
a crucial role in bridging the gap between genetic variants and
the pertinent gene expression alterations associated with the
GWAS-trait (Liu et al., 2022). Our study, conducted within a
cohort of African American individuals, elucidates an intricate
genetic landscape that influences LDL cholesterol and its
subclasses. These findings significantly contribute to the
burgeoning understanding of the genetic determinants
underpinning lipid metabolism. In our exploration of the
genetics of lipid metabolism, our discourse has centered on
genes exhibiting noteworthy expression alterations in whole
blood, with a particular emphasis on those biologically
pertinent to the targeted phenotypes. The selection of whole
blood as the analytical tissue is deliberate, owing to its ready
accessibility and its role as a reflective medium of the body’s
physiological status. It affords a comprehensive perspective on
systemic gene expression modifications linked to lipid
metabolism.

We identified distinct molecular profiles associated with LDL
and LDL particles: 1,048 differentially expressed mRNAs for

FIGURE 2
Graphical summary of the (A) differential expression analysis results alongwith the (B) number of differentially expressed genes overlapping between
the 3 lists.
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LDL, 284 for small LDL, and 94 for large LDL. Overlapping
patterns include 132 mRNAs common to LDL and small LDL,
79 to LDL and large LDL, and 32 between small and large LDL,
implying shared pathways in their roles in lipid metabolism and

cardiovascular risk. Notably, 10 mRNAs were consistently
differentially expressed across all three analyses, suggesting
potential key regulatory nodes in lipid-related pathways. Cis-
eQTL analysis unveiled 9,950 associations, indicating a

FIGURE 3
Plots of CXCL5 and PF4, 2 of the 10 mRNAs differentially expressed between top and bottom tertiles of LDL, small LDL and large LDL in respectively
column 1, 2 and 3 of the graph.

FIGURE 4
Plot of HLA-B and FCRL3 by respectively rs2247056 and rs3761959 associated with LDL cholesterol level in previous GWAS analyses.
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significant genetic influence on mRNA expression levels.
Integration with GWAS data enhanced the credibility of these
eQTLs, with 101 aligning with previously reported associations.

Associations of MHC-Related genes with
LDL cholesterol, cardiovascular disease, and
immune responses

The study revealed significant associations between specific
mRNAs (e.g., HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1)
highlighted in both our pathway and Gene Ontology (GO)
enrichment analyses. The immune system has been increasingly
recognized for its role in metabolic processes (Zmora et al., 2017),
including lipid metabolism. The MHC-related genes discussed are
expressed in blood and have known associations with lipid levels and
cardiovascular risk, making them relevant for whole blood analysis
(Zhang et al., 2023). These genes are statistically significant in our
eQTL analysis and showed biological plausibility in their roles
related to lipid metabolism, cardiovascular risk, or immune
response, which are all processes reflected in whole blood
dynamics. Identified through eQTL analysis, these mRNAs are
linked to traits reported in GWAS, such as LDL cholesterol levels
and cardiovascular disease markers. Recent insights into the
regulatory role of miRNAs in lipid metabolism, particularly miR-
122 and miR-33, add an additional layer to our understanding of
post-transcriptional regulation in lipid homeostasis. As highlighted
in recent literature, miR-33’s multifunctional roles, which extend to
macrophage activation and vascular homeostasis, complement our
findings by providing potential mechanistic links between lipid
metabolism and cardiovascular health (Aryal et al., 2017).

Notably, genes like HLA-DRB1 and HLA-DRB5, situated in or
near the human major histocompatibility complex (MHC) on
chromosome 6 (Caillier et al., 2008), exhibit associations with
immune diseases (Jacobson et al., 2008) (e.g., autoimmune
thyroid disease) and cardiovascular traits (Klein and Danzi, 2016)
(e.g., coronary artery disease). The MHC region has been associated
with lipid traits in multiple population studies, suggesting that
genetic variants in this region may influence lipid levels
systemically (Kathiresan et al., 2008). Furthermore, the
involvement of lncRNAs in lipid metabolism, as evidenced by
their presence on HDL in individuals with familial
hypercholesterolemia, aligns with our observations of significant
genetic associations in lipid-related pathways. Particularly, the
association of HDL-lncRNA LEXIS with lipoprotien levels and
vascular impairment underscores the importance of exploring
non-coding RNAs in the context of cardiovascular risk
stratification (Scicali et al., 2024).

Within the HLA-B region, 33 eQTLs were associated with
reported GWAS traits including LDL, HDL, TG, total cholesterol
levels, as well as cardiovascular disease (CVD), and
anthropomorphic measures. This aligns with existing knowledge
about antigen presentation, emphasizing the critical roles of MHC-
related genes in immune response and their implications in
inflammatory, autoimmune diseases (Fernando et al., 2008), and
cardiovascular risk (Porto et al., 2005). Recent genome-wide
association studies have linked genetic variants in the MHC
region to cardiovascular risk (Dehghan, 2018).

A particularly intriguing finding is the upregulation of the HLA-
DRB1 gene associated with elevated LDL cholesterol levels. The
observed upregulation suggests a potential compensatory or reactive
mechanism in the body in response to increased LDL levels
(Wysocki et al., 2020). Research on the HLA-DRB1 gene,

TABLE 2 LDL and LDL-related traits associated with the 101 eQTL identified.

Trait GWAS phenotypes

Low-Density Lipoprotein Average diameter for LDL particles,

Average diameter for VLDL particles,

Free cholesterol levels in chylomicrons and extremely
large VLDL, Free cholesterol to total lipids ratio in
very small VLDL,

LDL cholesterol, Total lipid levels in large LDL,

Total lipid levels in LDL,

Total lipid levels in small HDL,

Total lipids in large LDL,

Total lipids in LDL,

Total lipids in small HDL

High-Density
Lipoprotein (HDL)

HDL cholesterol,

Free cholesterol levels in small HDL,

Triglyceride levels in HDL,

Triglyceride levels in medium HDL,

Triglyceride levels in small HDL

Triglycerides Triglycerides levels

Cholesterol Cholesterol levels in large LDL,

Total cholesterol levels,

Total free cholesterol levels

Cardiovascular
Disease (CVD)

Coronary artery disease,

Coronary heart disease,

Factor VIII levels

Anthropomorphic Allometric body shape index,

Adult body size,

BMI,

BMI (joint analysis main effects and physical activity
interaction), BMI in physically active individuals,

Fat-free mass,

Hip circumference adjusted for BMI,

Hip index,

Waist circumference adjusted for BMI,

Waist-hip index,

Waist-hip ratio,

Waist-to-hip ratio adjusted for BMI,

Waist-to-hip ratio adjusted for BMI,

Weight

Other Circulating leptin levels in high cardiovascular risk

Frontiers in Genetics frontiersin.org07

Abbas et al. 10.3389/fgene.2024.1345541

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1345541


TABLE 3 Summary of the number of eQTL reported in GWAS of LDL and related traits (column 1), the mRNA the eQTLs are associated with in our eQTL
analysis (column 2), and the GWAS traits reported as associated with the eQTLs (column 3–8).

eQTL
count

mRNA LDL HDL TG Cholesterol CVD Anthropomorphic Other

33 HLA-B Average diameter
for VLDL
particles, Free
cholesterol levels
in chylomicrons
and extremely
large VLDL, Free
cholesterol to
total lipids ratio
in very small
VLDL, LDL
cholesterol, Total
lipid levels in
large LDL, Total
lipid levels in LDL

Triglycerides
levels

Cholesterol levels in
large LDL, Total
cholesterol levels

A body shape index, Hip
circumference adjusted for
BMI, Hip index, Waist
circumference adjusted for
BMI, Waist-hip index, Waist-
to-hip ratio adjusted for BMI,
Weight

30 HLA-
DRB5

Average diameter
for LDL particles

Coronary
artery
disease,
Coronary
heart
disease,
Factor VIII
levels

A body shape index, Hip
circumference adjusted for
BMI, Waist circumference
adjusted for BMI, Waist-hip
index, Waist-hip ratio, Waist-
to-hip ratio adjusted for BMI

Circulating
leptin levels in
high
cardiovascular
risk

25 HLA-
DRB1

Average diameter
for LDL particles,
LDL cholesterol

Triglycerides
levels

Coronary
heart
disease,
Factor VIII
levels

A body shape index, Hip
circumference adjusted for
BMI, Waist circumference
adjusted for BMI, Waist-hip
index, Waist-hip ratio, Waist-
to-hip ratio adjusted for BMI

Circulating
leptin levels in
high
cardiovascular
risk

5 TAGLN LDL cholesterol,
Total lipid levels
in large LDL,
Total lipid levels
in LDL, Total
lipid levels in
small HDL, Total
lipids in large
LDL, Total lipids
in LDL, Total
lipids in
small HDL

Free
cholesterol in
small HDL,
Free
cholesterol
levels in small
HDL, HDL
cholesterol

Triglycerides
levels

Cholesterol in large
LDL, Cholesterol
levels in large LDL,
Total cholesterol
levels, Total free
cholesterol levels

4 BAG6 A body shape index, Hip
circumference adjusted for
BMI, Waist-hip index, Waist-
hip ratio, Waist-to-hip ratio
adjusted for BMI

2 TTC38 Triglycerides
levels

2 SIDT2 LDL cholesterol HDL
cholesterol

Triglycerides
levels

Total cholesterol
levels

2 CTSW HDL
cholesterol

Adult body size, BMI

1 STAB1 HDL
cholesterol

Triglycerides
levels

A body shape index, Waist
circumference adjusted for
BMI, Waist-hip index, Waist-
to-hip ratio adjusted for BMI

1 CPSF1 Fat-free mass

1 LYZ Triglycerides
levels

1 NPRL3 BMI

(Continued on following page)
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particularly HLA-DRB1*04:01 (a particular variant of HLA-DRB1),
shows its impact on LDL and HDL cholesterol levels. Blackler et al.
reported that the DR4tgLdlr−/− mice, mice generated by crossing
HLA-DRB1*04:01 transgenic mice with Ldlr−/− (LDL knockout
mice), showed comparable atherosclerosis levels to Ldlr−/−mice on

a high-fat diet, despite their lower LDL levels (Blackler et al., 2023).
Their research suggests HLA-DRB1*04:01 might increase oxidized
LDL (OxLDL), a more damaging LDL variant, potentially due to
systemic inflammation mechanisms, consequently heightening the
risk of cardiovascular complications (Blackler et al., 2023).

TABLE 3 (Continued) Summary of the number of eQTL reported in GWAS of LDL and related traits (column 1), the mRNA the eQTLs are associated with in
our eQTL analysis (column 2), and the GWAS traits reported as associated with the eQTLs (column 3–8).

eQTL
count

mRNA LDL HDL TG Cholesterol CVD Anthropomorphic Other

1 CD37 LDL cholesterol Triglycerides
levels

Total cholesterol
levels

1 CLIP2 Triglycerides
levels

1 LIMK1 Triglycerides
levels

1 GIT1 Coronary
artery
disease

1 PADI2 Waist circumference adjusted
for BMI

1 MUC5B BMI

1 HMGA1 BMI, BMI in physically active
individuals, Waist-to-hip
ratio adjusted for BMI, Waist-
to-hip ratio adjusted for BMI

1 MAN2C1 Weight

1 SP2 BMI

1 GATAD2A Triglycerides
levels

1 CD151 BMI

1 POM121 Triglycerides
levels

1 MUC2 BMI

1 AIF1 A body shape index, Hip
circumference adjusted for
BMI, Waist-hip index, Waist-
to-hip ratio adjusted for BMI,
Weight

1 ACKR1 Triglycerides
levels

1 MUC5AC BMI

1 CKLF BMI

1 HLA-
DPB1

Hip circumference adjusted
for BMI

1 CTXN2 BMI

1 CD300H Triglyceride
levels in HDL,
Triglyceride
levels in
medium HDL,
Triglyceride
levels in
small HDL
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SIDT2 gene implications in LDL cholesterol
and lipid metabolism

The SIDT2 (SID1 transmembrane family, member 2) gene,
known for its involvement in cellular double-stranded RNA
(dsRNA) uptake and studied in viral RNA transport and
immune responses, exhibits a significant upregulation in
individuals with higher LDL cholesterol (Qian et al., 2023). The
SIDT2 gene has been implicated in lipid metabolism through its role
in autophagy and transport of cholesterol and triglycerides.
Additionally, our eQTL analysis links SIDT2 to lipid metabolism
traits through its association with a SNP that decreases its
expression. This SNP (rs236911) is implicated in GWAS studies
with triglycerides and total cholesterol levels, emphasizing its
regulatory role in lipid metabolism (Hoffmann et al., 2018). The
SNP is a non-coding exonic variant located in PCSK7, a gene whose
perturbations have been linked to dyslipidemia (Dongiovanni et al.,
2019). The combined evidence from eQTL and GWAS underscores

the significance of the SNP in lipid-related traits, providing insights
into the interplay of genetic variations, gene expression, and lipid
metabolism.

These findings align with previous research highlighting
SIDT2’s crucial role in lipid autophagy and metabolism,
especially in cholesterol and triglyceride transport in mammalian
cells, notably the liver (Leon-Mimila et al., 2021). SIDT2-knockout
experiments further support its influence on lipid traits. SNPs in
SIDT2 have significant associations with LDL levels in GWAS and
gene expression studies (Chen et al., 2018). The observation that
SIDT2 is primarily associated with triglycerides in human cohorts is
consistent with SIDT2 knockout mice, indicating its pivotal role in
lipid metabolism and potential impact on cardiovascular risk factors
(Leon-Mimila et al., 2021).

The literature on the role of SIDT2 in liver cells supports its
systemic effect on lipid levels, as the liver is a central organ in lipid
metabolism (Chen et al., 2018). Our findings in whole blood are
consistent with these roles, suggesting that alterations in

TABLE 4 Results of pathway enrichment analysis across the 32 mRNA associated with eQTL reported in GWAS of LDL and related traits.

Pathway ID Subcategory Pathway description p-value mRNAs in pathway

hsa04940 Endocrine and metabolic disease Type I diabetes mellitus 1.64e-05 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

hsa05320 Immune disease Autoimmune thyroid disease 2.88e-05 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

hsa05416 Cardiovascular disease Viral myocarditis 5.92e-05 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

hsa04612 Immune system Antigen processing and presentation 9.03e-05 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

hsa04672 Immune system Intestinal immune network for IgA production 4.37e-04 HLA-DRB1, HLA-DRB5, HLA-DPB1

hsa04145 Transport and catabolism Phagosome 7.33e-04 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

hsa04514 Signaling molecules and interaction Cell adhesion molecules 7.60e-04 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

hsa05321 Immune disease Inflammatory bowel disease 7.60e-04 HLA-DRB1, HLA-DRB5, HLA-DPB1

hsa04658 Immune system Th1 and Th2 cell differentiation 1.53e-03 HLA-DRB1, HLA-DRB5, HLA-DPB1

hsa04970 Digestive system Salivary secretion 1.53e-03 MUC5B, MUC5AC, LYZ

hsa04659 Immune system Th17 cell differentiation 2.01e-03 HLA-DRB1, HLA-DRB5, HLA-DPB1

hsa05322 Immune disease Systemic lupus erythematosus 3.60e-03 HLA-DRB1, HLA-DRB5, HLA-DPB1

hsa04657 Immune system IL-17 signaling pathway 1.79e-02 MUC5B, MUC5AC

hsa00511 Glycan biosynthesis and metabolism Other glycan degradation 3.78e-02 MAN2C1

hsa04940 Endocrine and metabolic disease Type I diabetes mellitus 1.64e-05 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

TABLE 5 Results of GO enrichment analysis across the 32 mRNA associated with eQTL reported in GWAS of LDL and related traits.

GO ID Description Adjusted p-value mRNA

GO:0042605 peptide antigen binding 6.03e-05 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

GO:0023026 MHC class II protein complex binding 3.46e-04 HLA-DRB1, HLA-DRB5, HLA-DPB1

GO:0023023 MHC protein complex binding 6.07e-04 HLA-DRB1, HLA-DRB5, HLA-DPB1

GO:0042277 peptide binding 2.36e-03 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1, POM121

GO:0003823 antigen binding 2.36e-03 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1

GO:0033218 amide binding 4.69e-03 HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPB1, POM121

GO:0004553 hydrolase activity, hydrolyzing O-glycosyl compounds 7.00e-02 LYZ, MAN2C1
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SIDT2 expression could reflect systemic changes in lipid handling.
This integration of human cohort data with experimental models
underscores SIDT2’s importance as a research target for
understanding and potentially managing lipid-related disorders
(Song et al., 2023).

Differential expression of TTC38 in relation
to LDL cholesterol levels and population-
specific genetic variation

Beyond the notable findings pertaining to SIDT2, our
investigation has identified the gene TTC38 (tetratricopeptide
repeat domain 38) as differentially expressed in relation to LDL
cholesterol levels. The data indicate a significant upregulation of
TTC38 in individuals with elevated LDL cholesterol. The observed
upregulation of TTC38 in the context of heightened LDL cholesterol
levels suggests a potential regulatory role in lipid profiles,
contributing to the comprehension of genetic influences on lipid
metabolism and associated cardiovascular risks. In contrast to the
extensively studied SIDT2, which is recognized for its role in lipid
autophagy and metabolism, the specific functions, and mechanisms
of TTC38 in lipid homeostasis remain less elucidated.

The association of TTC38 with lipid metabolism is further
underscored by our findings and supported by existing literature,
indicating a potential role in regulating lipid profiles and
cardiovascular health. Emphasizing the gene’s significance, a
African ancestry-specific eQTL, rs6008712, showed association
with TTC38 expression in African Americans (AA) and
displayed a suggestive trend in the broader GTEx liver cohort.
This population-specific SNP (present only in African and
admixed-American, in the 100 Genomes project) highlights
ethnic-specific genetic regulation of TTC38 (Zhong et al., 2020).
The observation that TTC38’s expression is influenced by genetic
variants, particularly in AAs, underscores the complex interplay
between genetic background and lipid metabolism. This emphasizes
the necessity for more inclusive genetic studies for advances in
precision medicine and understanding ethnic disparities in disease
prevalence and drug response.

While the precise functional role of TTC38 in lipid metabolism
remains incompletely elucidated, its significant association with
LDL cholesterol in our study, coupled with the identification of
specific eQTLs in diverse populations, positions TTC38 as a
promising candidate gene for further exploration in the context
of lipid-related disorders and cardiovascular risk management.

While the specific functions of TTC38 in lipid metabolism are
not fully understood, its association with LDL cholesterol in our
study points to a potential regulatory role. Given that blood lipids
are indicators of metabolic health, genes like TTC38 that show
differential expression in relation to lipid levels are of systemic
interest. Recent research demonstrates that genetic variants
associated with blood lipid levels can affect cardiovascular risk,
further supporting the relevance of our findings in whole blood
(Smith et al., 2014).

Finally, a broader group of genes, including CTSW, STAB1,
CD37, CLIP2, LIMK1, GATAD2A, POM121, ACKR1, CPSF1,
NPRL3, MUC5B, HMGA1, MAN2C1, SP2, CD151, MUC2, AIF1,
MUC5AC, CKLF, HLA-DPB1, CTXN2, and CD300H, unveils a

nuanced interplay through their associations with lipid metabolism
and anthropomorphic traits. CTSW, notably linked to HDL
cholesterol and diverse body size metrics, hints at a potential
involvement in lipid processing and anthropometric
characteristics (Joehanes et al., 2013). The broader group of genes
discussed, including CTSW and STAB1, have been linked to lipid
processing and cardiovascular health. For example, CTSW has been
studied for its role in HDL cholesterol metabolism and its potential
impact on atherosclerosis (Cheng et al., 2023), while STAB1 has been
implicated in the clearance of atherogenic lipoproteins (Verwilligen
et al., 2022). These associations reinforce the systemic nature of blood
as a reflection of lipid metabolic health. Additionally, the eQTL
rs11205277 on chromosome 1 demonstrates a significant impact on
LDL cholesterol levels through its association with the
ADAMTSL4 gene. This variant’s influence extends to body fat
distribution, specifically waist circumference adjusted for BMI,
evident in both the general population and non-smokers. Its
consistent correlation with these traits across various GWAS
studies (Gudbjartsson et al., 2008; Justice et al., 2017; Galvan-
Femenia et al., 2018), suggests a potential role in lipid metabolism
and anthropometric variations. Our findings illuminate a complex
genetic architecture underlying lipid metabolism and body shape
index. The eQTL’s significant association with LDL cholesterol aligns
with patterns observed in other genes, highlighting genetic influences
on lipid levels and cardiovascular risk factors (Willer and Mohlke,
2012). The consistent correlation with waist circumference and BMI,
as discussed earlier regarding the genetic basis of anthropometric
traits, reinforces the multifaceted nature of genetic contributions to
lipid metabolism and body shape (Shen et al., 2006). This
underscores the significance of considering a broad spectrum of
genetic variants to comprehend these intricate traits
comprehensively.

Conclusion

In summary, our study employs a systems genetics approach,
integrating genetic information with transcriptomic insights from
eQTL analysis, to unravel the complex relationships between
genetic variants and phenotypes and provide a detailed genetic
landscape influencing lipid metabolism (Allayee et al., 2023). Our
investigation delineates an approach for unraveling variant-trait
relationships within GWAS by (a) establishing the relationships
that exist between gene expression patterns and traits, (b)
identifying genetic variants linked to the genes associated with
these traits, and (c) substantiating the correlation between the
genetic variants and the traits in the context of GWAS studies.
While the present analysis is specifically centered on LDL
cholesterol and its subclasses, the outlined approach holds
applicability across a broad spectrum of traits.

While our study offers valuable insights, it is crucial to
acknowledge its limitations. The intricate nature of lipid
metabolism implies the involvement of numerous genetic factors
beyond the scope of this study. Subsequent research endeavors
should seek to validate these SNP associations using both in vitro
and in vivo models to comprehensively understand their roles in
gene-trait relationships. The differential analysis was conducted
with mRNA expression from whole blood which is composed of
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multiple cell types. Hence the differential expression differential
could be biased by potential differences in cell type composition.

Data availability statement

The datasets presented in this article cannot be publicly shared
due to privacy restrictions. Requests to access the datasets should be
directed to the corresponding author.

Ethics statement

The studies involving humans were approved by National
Institutes of Health Institutional Review Board (IRB). The
studies were conducted in accordance with the local
legislation and institutional requirements. The participants
provided their written informed consent to participate in
this study.

Author contributions

MA: Writing–original draft, Writing–review and editing. AD:
Writing–original draft, Writing–review and editing. GG: Data
curation, Writing–review and editing. AG: Conceptualization,
Formal Analysis, Methodology, Supervision, Writing–original
draft, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This

research was supported by the Intramural Research Program
of the National Human Genome Research Institute, National
Institutes of Health.

Acknowledgments

The authors are thankful to Dr. Gary H. Gibbons, the previous
PI of the GENEFORECAST study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1345541/
full#supplementary-material

References

Allayee, H., Farber, C. R., Seldin, M. M., Williams, E. G., James, D. E., and Lusis, A. J.
(2023). Systems genetics approaches for understanding complex traits with relevance
for human disease. Elife 12, e91004. doi:10.7554/eLife.91004

Aryal, B., Singh, A. K., Rotllan, N., Price, N., and Fernandez-Hernando, C. (2017).
MicroRNAs and lipid metabolism. Curr. Opin. Lipidol. 28, 273–280. doi:10.1097/MOL.
0000000000000420

Blackler, G., Akingbasote, J., Cairns, E., Howlett, C., Kiser, P., and Barra, L. (2023).
The effect of HLA-DRB1*04:01 on a mouse model of atherosclerosis. J. Transl.
Autoimmun. 7, 100203. doi:10.1016/j.jtauto.2023.100203

Broad Institute. (2015). broadinstitute/gtex-pipeline: GTEx v8, 2018.

Caillier, S. J., Briggs, F., Cree, B. A. C., Baranzini, S. E., Fernandez-Viña, M.,
Ramsay, P. P., et al. (2008). Uncoupling the roles of HLA-DRB1 and HLA-DRB5
genes in multiple sclerosis. J. Immunol. 181, 5473–5480. doi:10.4049/jimmunol.
181.8.5473

Cantey, E. P., and Wilkins, J. T. (2018). Discordance between lipoprotein particle
number and cholesterol content: an update. Curr. Opin. Endocrinol. Diabetes Obes. 25,
130–136. doi:10.1097/MED.0000000000000389

Chen, X., Gu, X., and Zhang, H. (2018). Sidt2 regulates hepatocellular lipid
metabolism through autophagy. J. Lipid Res. 59, 404–415. doi:10.1194/jlr.M073817

Cheng, X. W., Narisawa, M., Wang, H., and Piao, L. (2023). Overview of
multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease:
from insights into molecular functions to clinical implications. Cell Biosci. 13, 91. doi:10.
1186/s13578-023-01040-4

Civelek, M., and Lusis, A. J. (2014). Systems genetics approaches to understand
complex traits. Nat. Rev. Genet. 15, 34–48. doi:10.1038/nrg3575

Cromwell, W. C., Otvos, J. D., Keyes, M. J., Pencina, M. J., Sullivan, L., Vasan, R. S.,
et al. (2007). LDL particle number and risk of future cardiovascular disease in the
Framingham offspring study - implications for LDL management. J. Clin. Lipidol. 1,
583–592. doi:10.1016/j.jacl.2007.10.001

Dehghan, A. (2018). Genome-wide association studies. Methods Mol. Biol. 1793,
37–49. doi:10.1007/978-1-4939-7868-7_4

Dieleman, J. L., Cao, J., Chapin, A., Chen, C., Li, Z., Liu, A., et al. (2020). US health
care spending by payer and health condition, 1996-2016. JAMA 323, 863–884. doi:10.
1001/jama.2020.0734

Dongiovanni, P., Meroni, M., Baselli, G., Mancina, R. M., Ruscica, M., Longo, M.,
et al. (2019). PCSK7 gene variation bridges atherogenic dyslipidemia with hepatic
inflammation in NAFLD patients. J. Lipid Res. 60, 1144–1153. doi:10.1194/jlr.
P090449

Dorsch, M. P., Lester, C. A., Ding, Y., Joseph, M., and Brook, R. D. (2019). Effects of
race on statin prescribing for primary prevention with high atherosclerotic
cardiovascular disease risk in a large healthcare system. J. Am. Heart Assoc. 8,
e014709. doi:10.1161/JAHA.119.014709

Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E.,
et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1.
Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from
the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472.
doi:10.1093/eurheartj/ehx144

Fernando, M. M., Stevens, C. R., Walsh, E. C., De Jager, P. L., Goyette, P.,
Plenge, R. M., et al. (2008). Defining the role of the MHC in autoimmunity: a
review and pooled analysis. PLoS Genet. 4, e1000024. doi:10.1371/journal.pgen.
1000024

Frontiers in Genetics frontiersin.org12

Abbas et al. 10.3389/fgene.2024.1345541

https://www.frontiersin.org/articles/10.3389/fgene.2024.1345541/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1345541/full#supplementary-material
https://doi.org/10.7554/eLife.91004
https://doi.org/10.1097/MOL.0000000000000420
https://doi.org/10.1097/MOL.0000000000000420
https://doi.org/10.1016/j.jtauto.2023.100203
https://doi.org/10.4049/jimmunol.181.8.5473
https://doi.org/10.4049/jimmunol.181.8.5473
https://doi.org/10.1097/MED.0000000000000389
https://doi.org/10.1194/jlr.M073817
https://doi.org/10.1186/s13578-023-01040-4
https://doi.org/10.1186/s13578-023-01040-4
https://doi.org/10.1038/nrg3575
https://doi.org/10.1016/j.jacl.2007.10.001
https://doi.org/10.1007/978-1-4939-7868-7_4
https://doi.org/10.1001/jama.2020.0734
https://doi.org/10.1001/jama.2020.0734
https://doi.org/10.1194/jlr.P090449
https://doi.org/10.1194/jlr.P090449
https://doi.org/10.1161/JAHA.119.014709
https://doi.org/10.1093/eurheartj/ehx144
https://doi.org/10.1371/journal.pgen.1000024
https://doi.org/10.1371/journal.pgen.1000024
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1345541


Galvan-Femenia, I., Obón-Santacana, M., Piñeyro, D., Guindo-Martinez, M., Duran,
X., Carreras, A., et al. (2018). Multitrait genome association analysis identifies new
susceptibility genes for human anthropometric variation in the GCAT cohort. J. Med.
Genet. 55, 765–778. doi:10.1136/jmedgenet-2018-105437

Glavinovic, T., Thanassoulis, G., de Graaf, J., Couture, P., Hegele, R. A., and
Sniderman, A. D. (2022). Physiological bases for the superiority of apolipoprotein B
over low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol
as a marker of cardiovascular risk. J. Am. Heart Assoc. 11, e025858. doi:10.1161/JAHA.
122.025858

Gudbjartsson, D. F., Walters, G. B., Thorleifsson, G., Stefansson, H., Halldorsson, B.
V., Zusmanovich, P., et al. (2008). Many sequence variants affecting diversity of adult
human height. Nat. Genet. 40, 609–615. doi:10.1038/ng.122

Hoffmann, T. J., Theusch, E., Haldar, T., Ranatunga, D. K., Jorgenson, E., Medina, M.
W., et al. (2018). A large electronic-health-record-based genome-wide study of serum
lipids. Nat. Genet. 50, 401–413. doi:10.1038/s41588-018-0064-5

Ivanova, E. A., Myasoedova, V. A., Melnichenko, A. A., Grechko, A. V., and Orekhov,
A. N. (2017). Small dense low-density lipoprotein as biomarker for atherosclerotic
diseases. Oxid. Med. Cell Longev. 2017, 1273042. doi:10.1155/2017/1273042

Jacobson, E. M., Huber, A., and Tomer, Y. (2008). The HLA gene complex in thyroid
autoimmunity: from epidemiology to etiology. J. Autoimmun. 30, 58–62. doi:10.1016/j.
jaut.2007.11.010

Jeyarajah, E. J., Cromwell, W. C., and Otvos, J. D. (2006). Lipoprotein particle analysis
by nuclear magnetic resonance spectroscopy. Clin. Lab. Med. 26, 847–870. doi:10.1016/
j.cll.2006.07.006

Joehanes, R., Ying, S., Huan, T., Johnson, A. D., Raghavachari, N., Wang, R., et al.
(2013). Gene expression signatures of coronary heart disease. Arterioscler. Thromb.
Vasc. Biol. 33, 1418–1426. doi:10.1161/ATVBAHA.112.301169

Justice, A. E., Winkler, T. W., Feitosa, M. F., Graff, M., Fisher, V. A., Young, K., et al.
(2017). Genome-wide meta-analysis of 241,258 adults accounting for smoking
behaviour identifies novel loci for obesity traits. Nat. Commun. 8, 14977. doi:10.
1038/ncomms14977

Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N. P., Rieder, M. J., et al.
(2008). Six new loci associated with blood low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40, 189–197.
doi:10.1038/ng.75

Klein, I., and Danzi, S. (2016). Thyroid disease and the heart. Curr. Probl. Cardiol. 41,
65–92. doi:10.1016/j.cpcardiol.2015.04.002

Krychtiuk, K. A., Kastl, S. P., Pfaffenberger, S., Lenz, M., Hofbauer, S. L., Wonnerth,
A., et al. (2015). Association of small dense LDL serum levels and circulating monocyte
subsets in stable coronary artery disease. PLoS One 10, e0123367. doi:10.1371/journal.
pone.0123367

Leon-Mimila, P., Villamil-Ramírez, H., Macías-Kauffer, L. R., Jacobo-Albavera,
L., López-Contreras, B. E., Posadas-Sánchez, R., et al. (2021). Genome-wide
association study identifies a functional SIDT2 variant associated with HDL-C
(High-Density lipoprotein cholesterol) levels and premature coronary artery
disease. Arterioscler. Thromb. Vasc. Biol. 41, 2494–2508. doi:10.1161/
ATVBAHA.120.315391

Liou, L., and Kaptoge, S. (2020). Association of small, dense LDL-cholesterol
concentration and lipoprotein particle characteristics with coronary heart disease: a
systematic review and meta-analysis. PLoS One 15, e0241993. doi:10.1371/journal.pone.
0241993

Liu, C., Zhu, X., Zhang, J., Shen, M., Chen, K., Fu, X., et al. (2022). eQTLs play critical
roles in regulating gene expression and identifying key regulators in rice. Plant
Biotechnol. J. 20, 2357–2371. doi:10.1111/pbi.13912

Otvos, J. D., Jeyarajah, E. J., and Cromwell, W. C. (2002). Measurement issues related
to lipoprotein heterogeneity. Am. J. Cardiol. 90, 22i–29i. doi:10.1016/s0002-9149(02)
02632-2

Porto, I., Leone, A. M., Crea, F., and Andreotti, F. (2005). Inflammation, genetics, and
ischemic heart disease: focus on the major histocompatibility complex (MHC) genes.
Cytokine 29, 187–196. doi:10.1016/j.cyto.2004.09.010

Qian, D., Cong, Y., Wang, R., Chen, Q., Yan, C., and Gong, D. (2023). Structural
insight into the human SID1 transmembrane family member 2 reveals its lipid
hydrolytic activity. Nat. Commun. 14, 3568. doi:10.1038/s41467-023-39335-2

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140. doi:10.1093/bioinformatics/btp616

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol. 11, R25. doi:10.1186/
gb-2010-11-3-r25

Scicali, R., Bosco, G., Scamporrino, A., Di Mauro, S., Filippello, A., Di Giacomo
Barbagallo, F., et al. (2024). Evaluation of high-density lipoprotein-bound long non-
coding RNAs in subjects with familial hypercholesterolaemia. Eur. J. Clin. Invest. 54,
e14083. doi:10.1111/eci.14083

Shabalin, A. A. (2012). Matrix eQTL: ultra fast eQTL analysis via large matrix
operations. Bioinformatics 28, 1353–1358. doi:10.1093/bioinformatics/bts163

Shen, W., Punyanitya, M., Chen, J., Gallagher, D., Albu, J., Pi-Sunyer, X., et al. (2006).
Waist circumference correlates with metabolic syndrome indicators better than
percentage fat. Obes. (Silver Spring) 14, 727–736. doi:10.1038/oby.2006.83

Smith, J. G., Luk, K., Schulz, C. A., Engert, J. C., Do, R., Hindy, G., et al. (2014).
Association of low-density lipoprotein cholesterol-related genetic variants with aortic
valve calcium and incident aortic stenosis. JAMA 312, 1764–1771. doi:10.1001/jama.
2014.13959

Song, Y., Gu, J., You, J., Tao, Y., Zhang, Y., Wang, L., et al. (2023). The functions of
SID1 transmembrane family, member 2 (Sidt2). FEBS J. 290, 4626–4637. doi:10.1111/
febs.16641

Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M.,
Koseki, M., et al. (2010). Biological, clinical and population relevance of 95 loci for blood
lipids. Nature 466, 707–713. doi:10.1038/nature09270

Toth, P. P. (2014). Insulin resistance, small LDL particles, and risk for atherosclerotic
disease. Curr. Vasc. Pharmacol. 12, 653–657. doi:10.2174/15701611113119990125

Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M.
S., et al. (2022). Heart disease and stroke statistics-2022 update: a report from the
American heart association. Circulation 145, e153–e639. doi:10.1161/CIR.
0000000000001052

Verwilligen, R. A. F., Mulder, L., Rodenburg, F. J., Van Dijke, A., Hoekstra, M.,
Bussmann, J., et al. (2022). Stabilin 1 and 2 are important regulators for cellular uptake
of apolipoprotein B-containing lipoproteins in zebrafish. Atherosclerosis 346, 18–25.
doi:10.1016/j.atherosclerosis.2022.02.018

Vosa, U., Claringbould, A., Westra, H. J., Bonder, M. J., Deelen, P., Zeng, B., et al.
(2021). Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and
polygenic scores that regulate blood gene expression.Nat. Genet. 53, 1300–1310. doi:10.
1038/s41588-021-00913-z

Wierbowski, S. D., Fragoza, R., Liang, S., and Yu, H. (2018). Extracting
complementary insights from molecular phenotypes for prioritization of disease-
associated mutations. Curr. Opin. Syst. Biol. 11, 107–116. doi:10.1016/j.coisb.2018.
09.006

Willer, C. J., and Mohlke, K. L. (2012). Finding genes and variants for lipid levels after
genome-wide association analysis. Curr. Opin. Lipidol. 23, 98–103. doi:10.1097/MOL.
0b013e328350fad2

Wysocki, T., Olesinska, M., and Paradowska-Gorycka, A. (2020). Current
understanding of an emerging role of HLA-DRB1 gene in rheumatoid arthritis-from
research to clinical practice. Cells 9, 1127. doi:10.3390/cells9051127

Zhang, D., Gao, B., Feng, Q., Manichaikul, A., Peloso, G. M., Tracy, R. P., et al. (2023).
Proteome-wide association studies for blood lipids and comparison with transcriptome-
wide association studies. bioRxiv.

Zhong, Y., De, T., Alarcon, C., Park, C. S., Lec, B., and Perera, M. A. (2020). Discovery
of novel hepatocyte eQTLs in African Americans. PLoS Genet. 16, e1008662. doi:10.
1371/journal.pgen.1008662

Zmora, N., Bashiardes, S., Levy, M., and Elinav, E. (2017). The role of the immune
system in metabolic health and disease. Cell Metab. 25, 506–521. doi:10.1016/j.cmet.
2017.02.006

Zubair, N., Graff, M., Luis Ambite, J., Bush, W. S., Kichaev, G., Lu, Y., et al. (2016).
Fine-mapping of lipid regions in global populations discovers ethnic-specific signals and
refines previously identified lipid loci. Hum. Mol. Genet. 25, 5500–5512. doi:10.1093/
hmg/ddw358

Frontiers in Genetics frontiersin.org13

Abbas et al. 10.3389/fgene.2024.1345541

https://doi.org/10.1136/jmedgenet-2018-105437
https://doi.org/10.1161/JAHA.122.025858
https://doi.org/10.1161/JAHA.122.025858
https://doi.org/10.1038/ng.122
https://doi.org/10.1038/s41588-018-0064-5
https://doi.org/10.1155/2017/1273042
https://doi.org/10.1016/j.jaut.2007.11.010
https://doi.org/10.1016/j.jaut.2007.11.010
https://doi.org/10.1016/j.cll.2006.07.006
https://doi.org/10.1016/j.cll.2006.07.006
https://doi.org/10.1161/ATVBAHA.112.301169
https://doi.org/10.1038/ncomms14977
https://doi.org/10.1038/ncomms14977
https://doi.org/10.1038/ng.75
https://doi.org/10.1016/j.cpcardiol.2015.04.002
https://doi.org/10.1371/journal.pone.0123367
https://doi.org/10.1371/journal.pone.0123367
https://doi.org/10.1161/ATVBAHA.120.315391
https://doi.org/10.1161/ATVBAHA.120.315391
https://doi.org/10.1371/journal.pone.0241993
https://doi.org/10.1371/journal.pone.0241993
https://doi.org/10.1111/pbi.13912
https://doi.org/10.1016/s0002-9149(02)02632-2
https://doi.org/10.1016/s0002-9149(02)02632-2
https://doi.org/10.1016/j.cyto.2004.09.010
https://doi.org/10.1038/s41467-023-39335-2
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1111/eci.14083
https://doi.org/10.1093/bioinformatics/bts163
https://doi.org/10.1038/oby.2006.83
https://doi.org/10.1001/jama.2014.13959
https://doi.org/10.1001/jama.2014.13959
https://doi.org/10.1111/febs.16641
https://doi.org/10.1111/febs.16641
https://doi.org/10.1038/nature09270
https://doi.org/10.2174/15701611113119990125
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1016/j.atherosclerosis.2022.02.018
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1016/j.coisb.2018.09.006
https://doi.org/10.1016/j.coisb.2018.09.006
https://doi.org/10.1097/MOL.0b013e328350fad2
https://doi.org/10.1097/MOL.0b013e328350fad2
https://doi.org/10.3390/cells9051127
https://doi.org/10.1371/journal.pgen.1008662
https://doi.org/10.1371/journal.pgen.1008662
https://doi.org/10.1016/j.cmet.2017.02.006
https://doi.org/10.1016/j.cmet.2017.02.006
https://doi.org/10.1093/hmg/ddw358
https://doi.org/10.1093/hmg/ddw358
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1345541

	Leveraging the transcriptome to further our understanding of GWAS findings: eQTLs associated with genes related to LDL and  ...
	Introduction
	Material and methods
	Data description
	Statistical analyses
	Differential expression analyses
	eQTL analysis
	Overlap with GWAS variants associated with LDL and LDL-related traits

	Results
	Differential expression analysis
	eQTL analysis and overlap with GWAS reported associations

	Discussions
	Associations of MHC-Related genes with LDL cholesterol, cardiovascular disease, and immune responses
	SIDT2 gene implications in LDL cholesterol and lipid metabolism
	Differential expression of TTC38 in relation to LDL cholesterol levels and population-specific genetic variation

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


