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T-cell receptor (TCR) plays critical roles in recognizing antigen peptides and
mediating adaptive immune response against disease. High-throughput
technologies have enabled the sequencing of TCR repertoire at the single
nucleotide level, allowing researchers to characterize TCR sequences with
high resolutions. The TCR sequences provide important information about
patients’ adaptive immune system, and have the potential to improve clinical
outcome prediction. However, it is challenging to incorporate the TCR repertoire
data for prediction, because the data is unstructured, highly complex, and TCR
sequences vary widely in their compositions and abundances across different
individuals. We introduce TCRpred, an analytic tool for incorporating TCR
repertoire for clinical outcome prediction. The TCRpred is able to utilize
features that can be extracted from the TCR amino acid sequences, as well as
features that are hidden in the TCR amino acid sequences and are hard to extract.
Simulation studies show that the proposed approach has a good performance in
predicting clinical outcome and tends to be more powerful than potential
alternative approaches. We apply the TCRpred to real cancer datasets and
demonstrate its practical utility in clinical outcome prediction.
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1 Introduction

T cell is one of the most important components of the adaptive immune system and
plays fundamental roles in fighting diseases (Kumar et al., 2018). The functions of T cells
critically depend on the T-cell receptor (TCR), a protein complex that is expressed on the
surface of T cells and can recognize an astronomical number of antigens from pathogens or
tumor cells (Chopp et al., 2022). Recent research has shown that TCR repertoire can be
indicative of the functional activity of tumor infiltrating T cells and predict disease course in
cancer progression (Valpione et al., 2021; Shafer et al., 2022). Indeed, sequencing the TCR
repertoire and utilizing the sequence information for clinical outcome prediction have
become a vital task in cancer research.

The TCR complex is a transmembrane heterodimer linked by disulfide bonds. In
humans, about 95% of T cells are comprised of the alpha and beta chains, and the remaining
5% of T cells consist of the gamma and delta chains (Shah et al., 2021). For the TCR alpha
chain, its diversity is mainly generated by the random rearrangement of the variable (V) and
the joining (J) gene segments, while for the beta chain, the random rearrangement involves
the V and J segments plus the diversity (D) gene segment (Tanno et al., 2020). Due to the
extra D segment, the beta chain is more diverse than the alpha chain, and thus we focused
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on the beta chain. Within the beta chain, a region of particular
interest is the complementarity-determining region 3 (CDR3),
which is generally considered to be the principal binding site for
antigens (Rock et al., 1994). In this article, we focus on the CDR3 of
the TCR beta chain for risk prediction.

It is challenging to incorporate TCR repertoire for clinical
outcome prediction because TCR repertoires are highly diverse
and little overlapped among individuals. In fact, the TCR
diversity involves not only the recombination of the V(D)J gene
segments, but also the random addition or deletion of nucleotides at
the junctions between gene segments. It is estimated that the degree
of TCR diversity can reach up to the order of 1 × 1015 (Clambey et al.,
2014). Meanwhile, TCR repertoires from different individuals generally
have distinct profiles, i.e., their TCR compositions and abundances
differ substantially. Animal model studies showed that the overlap
between TCR repertoires of two genetically identical organisms is
around only 20% (Nikolich-Žugich et al., 2004). Thus, TCR
repertoire data carry few common features that can be used for
clinical outcome prediction. For this reason, a common practice in
TCR analysis is to calculate the Shannon entropy for each individual
and then use this quantity for risk prediction (Li et al., 2020). However,
the Shannon entropy, by its definition, accounts for only the
proportions of TCR sequences, while the rich information
embedded in the TCR amino-acid sequences is largely neglected.
Feature extraction is needed for a more efficient use of the TCR
sequences. In addition, some features hidden in the TCR sequences
may be difficult to extract due to the complexity of the structure and
functions of the TCR. Examples include structural motifs, 3D
conformations, and amino acid interactions (Parras-Moltó et al.,
2013; Stiffler et al., 2020). It is desirable to incorporate these hidden
features in riskmodeling to potentially improve the prediction accuracy.

Recently, a number of tools have been developed for studying
the TCR repertoire, such as the powerTCR (Desponds et al., 2016),
Immunarch (ImmunoMind Team, 2019), ImSpectR (Cordes et al.,
2020), and VisTCR (Ni et al., 2020). These tools provide a variety of
functionalities for TCR analysis, ranging from comparing clonal
distribution and tracking clonotype to quantifying repertoire
diversity and data visualization. Few methods have been
developed for predicting clinical outcome of interest using the
TCR repertoire information, which is believed to play important
roles in immune responses to tumor progression. The TCR-L
method (Liu et al., 2022) is for conducting genetic association
analysis, not for risk prediction. The DeepTCR (Sidhom et al.,
2021) was proposed to utilize TCR repertoire for prediction, but
does not accommodate adjusting covariates such as demographic
and clinical variables. Here, we propose a powerful approach,
TCRpred, for predicting continuous or binary outcome by
incorporating TCR repertoire with existing demographic and
clinical factors. In TCRpred, the effect of the TCR repertoire is
characterized by two components: 1) the effect from features that
can be extracted from the TCR sequences, such as amino acid k-mers
or V(D)J gene usage, and 2) the effect from hidden features that are
modeled through kernel machine techniques. Then, we relate the
two types of effects (along with other risk factors’ effects) to the
clinical outcome through a generalized linear model. An effective
algorithm is proposed to optimize the objective function to estimate
the regression coefficients, which are then used to predict clinical
outcomes for new observations.

Our article is organized as follows. We describe the TCRpred
method in detail in theModel and method section. In the Simulation
section, we conduct simulation studies under various scenarios to
evaluate the performance of the proposed approach and compare it
to potential alternative methods. In the Real data analysis section, we
apply TCRpred to lung cancer datasets from the Cancer Genome
Atlas (TCGA) and show that the TCRpred method performs well in
practical data analysis.

2 Model and method

2.1 Notation and model

Assume that there are n individuals in a study. For the ith
individual, let Yi be a binary or continuous response, and Xi �
(Xi1, . . . ,Xir)T be a vector of r adjusting variables, such as age,
gender, and lab measurements. Assume that the ith individual
contains mi unique amino acid sequences. Among the mi unique
sequences, let aij denote the jth amino acid sequence, and wij be the
corresponding abundance of aij. Then, the TCR repertoire of the ith
individual can be represented by Ri = {(ai,j, wi,j); j = 1, . . ., mi}.

Given two individuals (i and i′), Ri often differs substantially
from Ri’ in their compositions and abundances, and hence there are few
common features that can be directly used for clinical outcome
prediction. We propose extracting features from the TCR repertoire
based on TCR’s sequence information. Given that each TCR-CDR3
sequence is a string of amino acid letters (such as CASSHGRAEAFF),
we consider the strategy of extracting k-mers from each sequence and
then aggregate the k-mers across all the sequences in a TCR repertoire.
An example is shown in Supplementary Figure S1. This strategy shares
spirit with the natural language processing where k-grams, contiguous
sequences of k items from a given document, are extracted for text
classification (Zhang and Rao, 2020). Because the number of amino
acids is 20, the number of possible k-mers is 20k, which increases rapidly
with k. For example, the number of possible 4-mers is 204 = 160, 000.
The extremely high dimensionality poses tremendous challenges to data
analysis and can potentially harm the prediction accuracy. Hence, in
practical analysis of amino acid sequences, k is often chosen to be
between 2 and 5 (ValizadehAslani et al., 2020). Besides the k-mers
extraction, other ways to extract features from the TCR sequence, such
as counting the V(D)J gene usage, can be adopted as well. Let Z (Ri)
denote the vector of all the features extracted from Ri. For ease of
notation, we use Zi to represent Z (Ri) in the remainder of this article.

While some features can be explicitly extracted from the TCR
sequences, other features that involve tertiary structure or long-
range amino acid interactions are often difficult to extract. To
accommodate such hidden features, we consider the following
semi-parametric model where the effect of the hidden features is
modeled through kernel machines. Let π(·) denote a link function.
For continuous traits, π(·) is the identity function, and for binary
traits, π(x) = exp(x)/(1 + exp(x)). Then the mean of Yi can be
represented by

E Yi( ) � π β0 +XT
i β + ZT

i γ + h Ri( )( ), (1)
where β0 is an intercept, β and γ are regression coefficients, and h
(Ri) represents the effect of the hidden features. Under the kernel
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machine framework, we assume that h (·) belongs to a
reproducing kernel Hilbert space HK generated by a kernel
function k (·, ·). Here, k (Ri, Ri’) measures the homology
between individuals i and i′ based on their TCR repertoires.
We adopt the TCRhom approach to calculate k (Ri, Ri’) (Liu
et al., 2022). Briefly, let s (ai,j, ai′,j′) be the similarity between
two TCR sequences ai,j and ai′,j′, where the similarity is
calculated based on sequence alignment and a subtitution
matrix (such as the BLOSUM62 or PAM250). Then, the
homology between two individuals’ TCR repertoires is
calculated by

k Ri, Ri′( ) �
∑mi

j�1wi,j max
j′∈Mi′

s ai,j, ai′,j′( ) +∑mi′
j′�1wi′,j′ max

j∈Mi

s ai,j, ai′,j′( )
∑mi

j�1wi,j +∑mi′
j′�1wi′,j′

,

whereMi = {1, . . .,mi} andMi’ = {1, . . .,mi′} for i, i′ = 1, . . ., n. Let K
be an n × n matrix defined based on k (Ri, Ri’). The k (Ri, Ri’)
accounts for both the amino acid information and the abundances of
the TCR sequences, and fully characterizes the functional space of
the hidden effect h (Ri). A workflow of the TCRpred is shown
in Figure 1.

2.2 Continuous outcome

To build the prediction model, we need to estimate parameters
in Eq 1 and obtain an explicit form for h (·). First, considering that
the extracted features can be high dimensional, we impose a penalty
to the regression coefficients γ to reduce dimensions (i.e., remove
noise features). Then, under the kernel machine framework, the
estimation proceeds by minimizing the following penalized
loss function

∑n
i�1

Yi − β0 −XT
i β − ZT

i γ − h Ri( )( )2 + λ0|γ|1 + λ1‖h‖2HK
,

where λ0 and λ1 are regularization parameters, |·|1 is the L1 norm,
and ‖ · ‖HK

is the norm under the generated functional space HK.
Here, λ0|γ|1 is for conducting variable selection for the extracted
features, while λ1‖h‖2HK

is for balancing goodness of fit and
complexity of the model.

We propose the following procedure to solve the above
optimization problem. Notice that when β0, β, γ are fixed, by the
Representer’s Theorem, a general solution for h (Ri) can be
expressed as h(Ri) � KT

i α, where Ki is the ith column of K, and
α is an n × 1 vector. Then, the objective function becomes

∑n
i�1

Yi − β0 −XT
i β − ZT

i γ −KT
i α( )2 + λ0|γ|1 + λ1α

TKα.

Let Y � (Y1, . . . , Yn)T, X � (X1, . . . , Xn)T, andZ � (Z1, . . . , Zn)T. Let
Z(t) denote the updated version of Z in the tth iteration. Let p(t) denote the

number of columns in Z(t), and let β̂
(t)
0 , β̂

(t)
, γ̂(t) and α̂(t) denote the coefficient

estimates in the tth iteration.

For initialization, let Z(0) = Z and the starting value α̂(0) � 0. For
iteration t = 1, 2, . . ., do the following steps:

Step 1. Fix α̂(t−1), then minimizing the objective function is
equivalent to minimizing the following function with respect to β0,
β, γ:

∑n
i�1

Yi − KT
i α̂

t−1( ) − β0 −XT
i β − Z t−1( )T

i γ( )2 + λ0|γ|1. (2)

By minimizing Eq 2, we obtain estimates β̂
(t)
0 , β̂

(t)
and γ̂(t). For

features in Z(t−1), we retain features that have nonzero coefficients in
γ̂(t), and then use the retained features to form a new matrix Z(t).

FIGURE 1
The workflow of the TCRpred.
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With slight abuse of notation, the nonzero part of γ̂(t) is still named
as γ̂(t).

Step 2. Fix β̂
(t)
0 , β̂

(t)
and γ̂(t), we estimate α. Then, the objective

function becomes

∑n
i�1

Yi − β̂
t( )
0 −XT

i β̂
t( ) − Z t( )T

i γ̂ t( ) − KT
i α( )2

+ λ1α
TKα.

Then, we estimate α as follows,

α̂ t( ) � λ t( )
1 I + K( )−1 Y − β̂

t( )
0 −Xβ̂

t( ) − Z t( )γ̂ t( )( ),
where I is an identity matrix. In line with He et al. (2016), we set λ(t)1

as














(p(t) + r + 1)/n

√
, where r is the number of adjusting variables.

Step 3. Compute the error term

ê t( ) � Y − β̂
t( )
0 +Xβ̂

t( ) + Z t( )γ̂ t( ) +Kα̂ t( )( ),
and then calculate the MSE(t) � ê(t)Tê(t)/n.

Define MSE(0) to be +∞. Iterate Steps 1 - 3 until a convergence
criterion is met, i.e., |MSE(t) − MSE(t−1)| ≤ ϵ for a small value of ϵ or
the maximum number of iterations is reached.

Once the model has been trained, we can use the trained model
to conduct prediction tasks. Suppose that a new sample consists of
Xi’ and Ri’. We first extract features from Ri’. Based on the features in
the final Z(t), we extract the corresponding features from Ri’ to form a
feature vector Zi’. Then, we calculate the TCR homology between the
new individual and the previous n training individuals, yielding a n ×
1 vector which is denoted by Ki’. Then, we plug in Xi’, Zi’, and Ki’ into
the trained model,

β̂
t( )

0 +XT
i′ β̂

t( ) + ZT
i′ γ̂

t( ) + KT
i′ α̂

t( ),

to obtain the predicted value ŷi′.

2.3 Binary outcome

For the binary outcome, we have the objective function as

∑n
i�1
[ − Yi β0 +XT

i β + ZT
i γ + h Ri( )( ) + log 1 + exp β0 +XT

i β({
+ ZT

i γ + h Ri( ))}] + λ2|γ|1 + λ3‖h‖2HK
,

where λ2 and λ3 are regularization parameters.
As for the linear outcome, we propose an iterated procedure to solve

the optimization problem. With a similar argument and by the
Representer’s Theorem, we aim to solve the following objective function

∑n
i�1

−Yi β0 +XT
i β + ZT

i γ +KT
i α( ) + log 1 + exp β0({[

+ XT
i β + ZT

i γ + KT
i α)}] + λ2|γ|1 + λ3α

TKα.

To minimize this objective function, we propose to transform the
binary outcome into a linearized form (Park and Hastie, 2008) and
then conduct the optimization accordingly. For initialization, we fit a
regularized logistic regression for Y with respect to X and Z, i.e.,

arg min
β0 ,β,γ

∑n
i�1

−Yi β0 +XT
i β + ZT

i γ( ) + log 1 + exp β0 +XT
i β + ZT

i γ( ){ }[ ]
+ λ2|γ|1,

to obtain estimates β̂
(0)
0 , β̂

(0)
and γ̂(0). Let Y(0)

w � Y, Z(0) � Z,
α̂(0) � 0, and ĥ(Ri)(0) � 0. For iteration t = 1, 2, . . ., compute
the following:

Step 1. Compute the working response

Y t( )
w,i � Δ t( )

i + Yi − π Δ t( )
i( )

π Δ t( )
i( ) 1 − π Δ t( )

i( )( ),
where Δ(t)

i � β̂
(t−1)
0 +Xiβ̂

(t−1) + Z(t−1)
i γ̂(t−1) + ĥ(Ri)(t−1).

TABLE 1 Classification error (C.Err) and AUC for the binary outcome. Data
were simulated based on 3-mers (k = 3) and BLOSUM62.

c0 = 1 c0 = 3 c0 = 5

C.Err AUC C.Err AUC C.Err AUC

Basic-GLM 0.355 0.655 0.371 0.628 0.380 0.613

tcrRidge 0.342 0.678 0.333 0.696 0.328 0.708

tcrLASSO 0.345 0.674 0.329 0.700 0.321 0.718

TCRpred_B 0.321 0.715 0.307 0.739 0.297 0.755

TCRpred_P 0.324 0.708 0.310 0.733 0.302 0.748

TABLE 2 Classification error (C.Err) and AUC for the binary outcome. Data
were simulated based on 4-mers (k = 4) and BLOSUM62.

c0 = 1 c0 = 3 c0 = 5

C.Err AUC C.Err AUC C.Err AUC

Basic-GLM 0.356 0.655 0.366 0.632 0.375 0.614

tcrRidge 0.343 0.678 0.325 0.703 0.318 0.719

tcrLASSO 0.343 0.677 0.317 0.715 0.305 0.736

TCRpred_B 0.319 0.717 0.296 0.753 0.284 0.772

TCRpred_P 0.323 0.711 0.300 0.745 0.287 0.765

TABLE 3 Classification error (C.Err) and AUC for the binary outcome. Data
were simulated based on 3-mers (k = 3) and PAM250.

c0 = 1 c0 = 3 c0 = 5

C.Err AUC C.Err AUC C.Err AUC

Basic-GLM 0.353 0.659 0.370 0.633 0.380 0.615

tcrRidge 0.341 0.678 0.332 0.699 0.327 0.710

tcrLASSO 0.344 0.675 0.330 0.703 0.321 0.719

TCRpred_B 0.324 0.708 0.311 0.734 0.300 0.751

TCRpred_P 0.320 0.716 0.309 0.739 0.298 0.754
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Step 2. Let ](t)i � π(Δ(t)
i )(1 − π(Δ(t)

i )), and let Ω(t) be a n × n
diagonal matrix with its diagonal elements being ](t)i . Then, conduct
the following penalized regression,

arg min
β0 ,β,γ

∑n
i�1

] t( )
i Y t( )

w,i −KT
i α̂

t−1( ) − β0 −XT
i β − Z t−1( )T

i γ( )2 + λ2|γ|1,

to obtain estimates β̂
(t)
0 , β̂

(t)
and γ̂(t). For features in Z(t−1), the

ones that have non-zero coefficient estimates are selected and form a
new matrix Z(t). Then, the nonzero part of γ̂(t) is named as γ̂(t).

Step 3. Following a similar argument to the linear outcome, we
estimate α by

α̂ t( ) � λ t( )
I +Ω t( )1/2K( )−1Ω t( )1/2 Y t( )

w − β̂
t( )

0 −Xβ̂
t( ) − Z t( )γ̂ t( )( ),

where Y(t)
w � (Y(t)

w,1, . . . , Y
(t)
w,n)T, and λ(t) �















(p(t) + r + 1)/n

√
.

Let ĥ(Ri)(t) � KT
i α̂

(t).
Step 4. Compute the cross entropy ê(t) for performance

evaluation. Let

ê t( ) � −1
n
∑
i

Yi log π Δ t( )
i( )( ) + 1 − Yi( )log 1 − π Δ t( )

i( )( )[ ].
Iterate Steps 1 - 4 above until a convergence criterion is met,

i.e., |ê(t) − ê(t−1)|≤ ϵ for a small value of ϵ or the maximum number
of iteration is reached.

In practice, because the number of extracted features is ultra
high dimensional, one may need to conduct a feature-screening step
before applying the above algorithm. To do this, we propose to first
exclude k-mers whose frequencies are less than 5%. Then, we

conduct a sure-independence screening to reduce the dimension
of Z to a moderate number, e.g., n/(2 log n).

3 Simulation

In this section, we conducted simulation studies to examine the
performance of the proposed approach. We first built a pool of TCR
repertoires using the Cancer Genome Atlas (TCGA) data. We
extracted TCR beta-chain’s CDR3 sequences from TCGA’s RNA-
Seq data following Chen et al. (2021). We removed TCR sequences
that had abundance equal to 1 or contained abnormal amino acid
letters. Individuals with a single TCR sequence were excluded. After
data processing, we obtained 8,044 individuals’ TCR repertoires as a
TCR pool for the subsequent numerical experiments.

Following the outline of Eq 1, we simulated an adjusting variable
Xi1 fromN (0, 1) for i = 1, . . ., n. The intercept and the coefficient for
Xi1 were set as β0 = 2, β1 = −1, respectively. For each individual, we
randomly sampled a TCR repertoire, i.e., Ri, from the TCGA-TCR
pool. We considered k = 3, 4 for the binary outcome and k = 3, 4, 5
for the continuous outcome. Then, for a given k, we extracted all k-
mers from Ri (i = 1, . . ., n), and recorded the frequencies of the k-
mers as a feature matrix Z. Since Zmay have uneven variances for its
columns, we normalized Z by dividing each column by its
0.75 quantile of values. Then, the six most frequent k-mers were
set as important features. The corresponding regression coefficients
for the 6 features, γj (j = 1, . . ., 6), were simulated from c0×Uniform
(-1, 1). We considered c0 = 1, 3, 5 for the binary outcome, and c0 = 1
for the continuous outcome. Given Ri (i = 1, . . ., n), we calculated the
n × n TCRhom matrix K (Liu et al., 2022). The homology matrix K
was constructed based on the BLOSUM62 or the PAM250. The ith
column of K represents the similarities between the ith individual
and the other individuals. Then, in line with Sun et al. (2013), we
simulated the hidden effects h (Ri) ~ N (0, τK), where τ is a scale
factor. We set τ to 5 in our simulations. A low-rank approximation
via eigen-decomposition was used to ensure that the homology
matrix K is positive semi-definite. For the binary outcome, the
proportion of cases was between 0.3 and 0.7 for the analyzed
datasets. For each replicate, we simulated 500 training samples
and 500 testing samples. We replicated 500 times for each
parameter setting. For performance evaluation, we used
classification error and area under the ROC curve (AUC) for the
binary outcome, and the mean squared error (MSE) for the
continuous outcome.

We compared the proposed TCRpred with potential alternative
approaches: Basic-GLM, tcrLASSO, tcrRidge, and DeepTCR. Since
the DeepTCR does not consider adjusting-covariates X, we first
simulated data without adjusting-covariates to compare the
considered approaches. For the Basic-GLM, we fitted a GLM
model with an intercept. The true underlying value of k was used
to extract the feature matrix Z. For the tcrLASSO and tcrRidge, we
conducted a screening on the extracted features Z to obtain the top
n/(2 log n) k-mers, and then fit a regularized regression (via either
LASSO or Ridge) for the top k-mers. For TCRpred, depending on
whether K was based on BLOSUM62 or PAM250, this approach
yielded two versions, TCRpred_B and TCRpred_P. Our simulation
results are shown in Supplementary Tables S1, 2, and it can be seen

TABLE 4 Classification error (C.Err) and AUC for the binary outcome. Data
were simulated based on 4-mers (k = 4) and PAM250.

c0 = 1 c0 = 3 c0 = 5

C.Err AUC C.Err AUC C.Err AUC

Basic-GLM 0.354 0.659 0.368 0.634 0.373 0.618

tcrRidge 0.341 0.681 0.328 0.705 0.316 0.720

tcrLASSO 0.341 0.681 0.320 0.716 0.304 0.738

TCRpred_B 0.321 0.713 0.302 0.746 0.287 0.767

TCRpred_P 0.317 0.721 0.298 0.750 0.285 0.770

TABLE 5 Mean squared error for the continuous outcome. Data were
simulated based on BLOSUM62 (left panel) or PAM250 (right panel).

BLOSUM62 PAM250

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

Basic-GLM 8.077 8.163 8.166 7.636 7.768 7.857

tcrRidge 7.129 7.343 7.298 6.711 6.917 6.719

tcrLASSO 6.913 6.513 6.196 6.434 6.237 5.963

TCRpred_B 5.426 4.879 4.406 5.503 5.067 4.636

TCRpred_P 5.814 5.294 4.827 5.045 4.631 4.230
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that the proposed TCRpred achieved the highest prediction accuracy
among the compared approaches.

Next, we simulated data that included adjusting-covariates, and
then compared TCRpred with Basic-GLM, tcrLASSO, and tcrRidge
by incorporating X. The DeepTCR was omitted because it does not
accommodate adjusting covariates. The results are shown in Tables
1-4 for the binary outcome, and in Table 5 for the continuous
outcome. TCRpred tends to have a better prediction performance in
terms of lower classification errors and higher AUC than the
compared approaches. When the data were simulated based on
BLOSUM62, the TCRpred_P still performed well. Similarly, when
the data were simulated based on PAM250, the TCRpred_B also
performed well. This indicated that TCRpred was robust to the
choice of the substitution matrices. We also simulated data with τ =
8, and the results showed a similar pattern (Supplementary Tables
S3–7). In order to examine the influence of choice of k in model
fitting on the performance of the considered methods, we used k = 2,
4 in method application for the binary outcome when 3-mers were
employed in data generation. The results showed that the proposed
methods still performed well even when k was misspecified
(Supplementary Tables S8, 9).

4 Real data analysis

Lung cancer is the leading cause of cancer-associated death, and
non-small cell lung cancer (NSCLC) accounts for approximately
85% of total lung cancer cases (Blandin Knight et al., 2017). Both
lung squamous cell carcinoma (LUSC) and lung adenocarcinoma

(LUAD) are common subtypes of NSCLC. Evaluating prediction
errors requires large sample sizes. Since each of the two datasets has
a limited sample size, we used LUSC as the training dataset and
LUAD as the testing dataset to evaluate the proposed approach.

We obtained TCR β-chain’s CDR3 sequences of LUSC and
LUAD by following the same processing and filtering procedure
described in Section 3. The details of data processing were given in
Supplementary Material S5. We focused on stage I patients because
the immune profiles of early stage patients were less likely to be
altered by clinical treatments. Following Liu et al. (2022), we
dichotomized the overall survival (OS) time into short/long-term
survival based on the median survival time in the LUSC and the
LUAD data, respectively. We wish to compare the performance of
the consideredmodels on the classification of the survival status. The
Basic-GLM model included age, gender and Shannon entropy. We
adjusted for age, gender and Shannon entropy for tcrLASSO,
tcrRidge, and TCRpred. After removing individuals with missing
adjusting covariates, 78 and 65 individuals remained in the training
and the testing datasets, respectively. The Shannon entropy was
computed as −∑mi

j�1qi,j logqi,j, where qi,j � wi,j/∑mi
j�1wi,j and wi,j is

the abundance of the jth unique amino acid sequence in the TCR
repertoire Ri.

We considered k = 3 for constructing the extracted-feature
matrix Z. Each column in Z was scaled by the 0.75 quantile of
the non-zero entries in the corresponding column. PAM250 was
used to construct the homology matrix for TCRpred. For DeepTCR,
the V(D)J gene usages were included and the default setting was
used. The results of the prediction performance for the compared
methods were included in Table 6. Our results showed that the
TCRpred had the lowest classification error and highest AUC
among these methods. Compared to the tcrLASSO and tcrRidge,
the TCRpred additionally considered the TCR-repertoire homology,
which harnesses the effects of the hidden features to improve the
prediction performance.

The effect of the hidden features for the LUAD dataset is shown
in Figure 2. The two survival groups appeared to have different
means in their effects of the hidden features. Specifically, for the
short survival group, the mean for the effects of the hidden features
is close to 0, while for the long survival group, the counterpart is
0.114. For the extracted features, the TCRpred approach identified
7 TCR-sequence features, GNE, ETQ, AGG, GGR, GDT, RYN, and
PDR. The tcrLASSO also identified the same set of 3-mers as the
TCRpred. The estimated regression coefficients for these 3-mers in
the TCRpred model were included in Supplementary Table S10.
Further analysis indicated that the GNE was often harbored in the
longer motif GNEQFF, and the ETQ was often included in the motif
ETQYF (Figure 3). Themotif GNEQFF belongs to the T cell receptor
beta joining 2-1 (TRBJ2-1) segment (Demarest, 1996). The TRBJ2-1
segment is enriched in lymphoid tissue (Farmanbar et al., 2019)
which is closely related to tumor metastasis in resected NSCLC

TABLE 6 Classification error and AUC in TCGA’s LUAD data.

Basic-GLM tcrLASSO tcrRidge DeepTCR TCRpred

Classif. Err 0.492 0.431 0.446 0.492 0.400

AUC 0.501 0.625 0.614 0.555 0.661

FIGURE 2
Effect of hidden features in the LUAD dataset (the means are
indicated by dots).
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(Rakaee et al., 2021). The motif ETQYF belongs to the TRBJ2-5
segment (Demarest, 1996) which plays potential prognostic roles in
predicting postoperative recurrence of NSCLC (Song et al., 2020). It
will be interesting to study the potential antigen targets for these
motifs, i.e., GNEQFF and ETQYF. Further experimental studies are
needed to shed light on the functional importance of the identified k-
mers and motifs.

5 Discussion

We have developed an approach, TCRpred, for incorporating
TCR repertoire data for predicting clinical outcomes. Our approach
harnesses information from both extracted features and hidden
features in the TCR repertoire, and is applicable to both binary
and continuous outcomes. With TCR profiling being increasingly
used in diagnosis and monitoring of cancer patients, our proposed
approach provides a powerful tool for assessing patients’ disease
risks and informing decision making in clinical treatment.

It is worth to note that the problem of predicting antigen-
cognate for TCR sequences (Hudson et al., 2023) is different from
the problem of using TCR repertoire to predict clinical outcome. For
the former problem, the predictor is a single TCR sequence, while for
the latter, the predictors are a large set of TCR sequences with
different lengths and compositions, along with demographic and
clinical variables. The latter problem requires aggregating
information across different TCR sequences and further integrate
genetic and clinical variables for predicting the outcome.
Nevertheless, both problems are highly challenging, and more
research efforts are needed to study these important problems.

In our analysis, the extracted feature matrix was constructed based
on an exhaustive search of amino acid k-mers in the studied TCR
repertoire. Such an agnostic approach ensures that every possible k-
mers is interrogated, but on the other hand, the exhaustive search brings
in the high-dimensionality issue. The dimension of the extracted
features increases exponentially with k, posing tremendous
challenges to data analysis when k is large. To overcome such

challenges, a possible strategy is to utilize prior biological knowledge
to narrow down the scope of k-mers being searched, and then focus on a
smaller set of k-mers for risk prediction. Multiple databases have been

built to include both antigen information and the corresponding TCR

sequences, such as the VDJdb (Bagaev et al., 2020). While many of the

collections in these databases are derived from infectious disease studies,

collections on tumor antigens and their TCR sequences are expected to

grow significantly in the coming years. It will be highly meaningful to

explore the use of such databases for improving the power of risk

prediction.
TCR repertoire involves dynamic changes along disease progression

and clinical treatment, and some studies have been designed tomonitor

the TCR repertoire at multiple time points (Öjlert et al., 2021). Such

studies capture not only the immuno profiles at different stages, but also

the shift of certain sub-populations of the T cells which may be critical

for evaluating treatment responses. On the other hand, the involvement

of longitudinal data adds one more layer of complexity to the TCR

repertoire analysis, and how to effectively analyze such data remains to

be investigated.
To conclude, the proposed method, TCRpred, can be used for

clinical outcome prediction by harnessing both the compositions
and the sequence information of the TCR repertoire. Our simulation
studies showed that the TCRpred outperformed the compared
alternative approaches under various parameter settings. In real
data analysis, the proposed method performed well and identified a
group of k-mers that are potentially related to the survival status of
lung cancer patients. Overall, the TCRpred adds a useful tool to the
existing toolbox for the analysis of TCR repertoire.

Data availability statement

Clinical data can be accessed at https://xenabrowser.net/
datapages/. The TCR data were extracted from RNASeq data,
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FIGURE 3
Longer motifs that harbor the GNE or ETQ in the LUSC and LUAD datasets.
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