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Alternative splicing (AS) is a crucial process in genetic information processing that
generates multiple mRNAmolecules from a single gene, producing diverse proteins.
Accurate prediction of AS events is essential for understanding various physiological
aspects, including disease progression and prognosis. Machine learning (ML)
techniques have been widely employed in bioinformatics to address this
challenge. However, existing models have limitations in capturing AS events in
the presence of mutations and achieving high prediction performance. To
overcome these limitations, this research presents deep splicing code (DSC), a
deep learning (DL)-based model for AS prediction. The proposed model aims to
improve predictive ability by investigating state-of-the-art techniques in AS and
developing a DL model specifically designed to predict AS events accurately. The
performance of the DSCmodel is evaluated against existing techniques, revealing its
potential to enhance the understanding and predictive power of DL algorithms in AS.
It outperforms other models by achieving an average AUC score of 92%. The
significance of this research lies in its contribution to identifying functional
implications and potential therapeutic targets associated with AS, with
applications in genomics, bioinformatics, and biomedical research. The findings of
this study have the potential to advance the field and pave the way for more precise
and reliable predictions of AS events, ultimately leading to a deeper understanding of
genetic information processing and its impact on human physiology and disease.
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1 Introduction

Bioinformatics, a domain that merges computer technology with molecular biology, has
transformed biological research through the utilization of machine learning (ML) and deep
learning (DL) models. These models have substantially enhanced various aspects,
encompassing classification, feature selection, and the analysis of genetic sequences,
including DNA, RNA, and proteins (Siraj et al., 2021). The foundational components of
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genetic information involve DNA, RNA, and protein sequences,
where the flow of genetic information progresses fromDNA to RNA
and subsequently to proteins (Kong et al., 2021). DNAmolecules are
comprised of two strands with adenine (A), cytosine (C), thymine
(T), and guanine (G) as the four bases (Wahab et al., 2021).
Conversely, RNA is single-stranded and features uracil (U)
instead of thymine (T) (Leman et al., 2020). A pivotal process in
the transmission of genetic information is alternative splicing (AS),
also known as differential splicing or alternative RNA splicing. AS
generates multiple messenger RNA (mRNA) molecules from a
single pre-mRNA molecule, resulting in the production of
numerous proteins from a single gene. While reverse
transcription polymerase chain reaction (RT-PCR) is a
conventional method for AS prediction, it is intricate and costly.
Consequently, bioinformatics researchers have turned to ML
techniques for more streamlined and cost-effective predictions
(Nicolaidou et al., 2020). ML algorithms have been widely
applied in genomics due to their capacity to discern patterns and
extract knowledge from extensive datasets (Yusuf et al., 2021). DL, a
popular subfield of ML, utilizes hierarchical learning to extract
increasingly abstract representations of data, enabling the
learning of complex representations directly from raw data
(Mahmud et al., 2021). DL models, such as Convolutional Neural
Networks (CNNs), have gained acceptance in the research
community due to their specificity and accuracy (Ioannis and
Mpesiana, 2020). However, the performance of CNNs heavily
relies on their structure, consisting of different layers, activation
functions, pooling operations, initial parameter settings, and
convolutional kernels (Tian et al., 2020). Splicing, a molecular
biology mechanism, entails the removal of introns (non-coding
regions) from pre-mRNA and the fusion of the remaining exons
(coding regions) to form the final mRNA strand, a crucial step in
protein synthesis. Alternative splicing (AS) brings about alterations
in this process, facilitating the rearrangement of exons and resulting
in a variety of mRNA molecules and a diverse array of protein
products. However, genetic mutations have the potential to interfere
with splicing, causing the production of deleterious proteins rather
than normal ones. Certain cancers, including lung, colorectal, and
breast cancer, as well as diseases like Hutchinson-Gilford progeria
syndrome, which accelerates aging, are caused by these mutations.
The splicing process can be made more difficult by mutations that
take the form of exon skipping, alternative splice site selection, or
intron retention (Louadi et al., 2019).

In recent years, DL techniques have revolutionized various
domains, including genomics, image processing, and natural
language processing. This paradigm shift has led to the
development of innovative models and frameworks aimed at
addressing complex challenges in diverse fields. In this context,
the literature presents a selection of seminal works that harness DL
methodologies to tackle prominent research tasks. From automated
frameworks for genomic analysis to advanced models for disease
identification and translation systems, these studies exemplify the
versatility and efficacy of DL approaches, highlighting key
advancements and contributions in various domains. Zabardast
et al. (Amin et al., 2023) introduced an automated framework for
conducting experiments on various models, architectures, and
settings to streamline the development process and identify
optimal models for RNA splice site detection. This framework

facilitates the evaluation of several DL-based splice site detectors,
eliminating time-consuming development efforts. Holst et al. (Holst
et al., 2023) utilized DL for gene calling, aiming to develop a fully
applicable, quick, and user-friendly tool for generating primary gene
models from DNA sequence alone. Their approach yields state-of-
the-art quality predictions, closely aligning with references on most
metrics compared to other de novo techniques. The integration of
Helixer’s predictions into pipelines or standalone usage offers
further enhancements in quality. Additionally, the potential for
growth and development in gene calling using DL remains
substantial. Kumar et al. (Kumar et al., 2023) highlighted the
utility of a reference genome in maintaining data quality while
compressing FastQ files. Initially, FastQ files are divided into three
streams: quality score, sequence, and identifier, with each stream
utilizing a different compression method. Sharma et al. (Sharma
et al., 2023) offer a comprehensive analysis of machine translation
models, aiming to provide insights into various architectures,
comparative evaluations, and future perspectives for translation
tasks. Their study critically examines existing models in
comparison to the current state-of-the-art. Agrawal et al.
(Agrawal et al., 2024) introduced MultiFeNet, a CNN-based DL
model, for brain tumor classification. MultiFeNet utilizes multi-scale
feature scaling to extract features from magnetic resonance imaging
(MRI) images. Kaur et al. (KAUR et al., 2023) introduced a deep
ensemble learning model (DELM) for autonomous plant disease
identification. Their study utilizes transfer learning to enhance pre-
trained models and combat overfitting through various
augmentation methods such as image enhancement, rotation, and
scaling. The research provides a comprehensive taxonomy of single
model and ensemble learning model performance in the
classification of high-resolution photos of tomato plant leaf
disease. Nazari et al. (Nazari et al., 2018) proposed a hybrid DL
model, combining CNN and RNN, to identify the location of branch
points in RNA splicing. Their model achieved impressive results on
two publicly available datasets, with AUC-ROC scores of 97.29%
and 96.86% and prAUC scores of 67.08% and 69.62%, respectively.
An additional remarkable study conducted by Huang et al. (Huang
et al., 2021) presented theWeakRMweakly supervised deep learning
model. This model was designed for the detection of RNA
modifications from low-resolution epitranscriptome datasets. The
application of this model to three distinct types of RNA
modifications demonstrated a substantial enhancement in
prediction performance when compared to existing models. A
CNN model specifically designed for categorizing alternative
splicing patterns based on exon junction sequences was created
by Louadi et al. (Louadi et al., 2019). The model displayed varying
AUC scores for different inclusion levels, averaging at a substantial
AUC score of 90.8%. Exon inclusion levels refer to the extent to
which exons are included in a gene’s final mRNA transcript. These
recent studies contribute significantly to the field of AS prediction
and highlight the potential of DL models in addressing the
challenges associated with RNA splicing. While previous research
has made strides in accurately predicting AS events, limitations
remain to overcome. For instance, existing models struggle to
capture AS events in the presence of mutations that disrupt the
DNA or RNA base sequence, known to contribute to multiple types
of cancer. Additionally, the performance of these models, including
a CNN-based approach proposed by Louadi et al. (Louadi et al.,
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2019), yielded relatively low AUC scores for various AS events and
subsets. Hence, there exists an urgent necessity to explore the
intricate layers of DL models in order to comprehend the
behavior of mutations and their repercussions on AS prediction.
The primary goal of this research is to augment the predictive
capabilities of DL models for alternative splicing. To achieve this
aim, the study will pursue the following objectives:

i. Examine cutting edge methods for alternative splicing.
ii. Build a customized deep learning model to effectively forecast

AS events.
iii. Assess the performance of the proposed model in comparison

to existing techniques.

AS plays a pivotal role in fundamental physiological processes
like homeostasis, cell division, and tissue maintenance. Notably, AS
has been linked to cancer progression and prognosis (Zhao et al.,
2020), underscoring its significance in understanding and
addressing complex diseases. Existing challenges in accurately
predicting AS events, particularly in the presence of mutations,
necessitate innovative approaches. This study is motivated by the
imperative to improve the predictive capabilities of DL models in
AS, aiming to unravel functional implications and potential
therapeutic targets associated with AS, thereby advancing our
understanding of genetic information processing and its
implications for human health. By achieving the above objectives,
the contributions of this study are:

• Introduction of the deep splicing code (DSC) model, a novel
deep learning-based approach for AS prediction.

• Evaluation of DSC against existing techniques, demonstrating
superior performance with an average AUC score of 92%.

• Advancement in the field by enhancing the precision and
reliability of AS event predictions.

• Potential applications in genomics, bioinformatics, and
biomedical research, offering a valuable tool for researchers
and clinicians.

• Identification of functional implications and potential
therapeutic targets associated with AS, aiding in the
broader understanding of genetic information processing
and its impact on human physiology and disease.

Section 2 discusses the method and methodology used. Section 3
presents the results.

2 Materials and methods

The intricate methodology employed in the current study is
described in this section. The goal is to present a comprehensive
explanation of the recommended methodology, beginning with an
overview of the testing dataset. The configuration of the
computational environment will be described in detail, with an
emphasis on the use of the Google Colab platform and the benefits of
using a Tesla T4 GPU to boost computational capacity. After that,
we will discuss the deep learning-based model DSC in detail as it is
the primary focus of this work. This section will also address the
evaluation methodology, highlighting the significance of the Area

under the ROC (AUC-ROC) curve as the primary evaluation
statistic. By making these important elements clear, we intend to
lay a strong foundation for a careful and comprehensive analysis of
our research objectives and conclusions. The suggested
methodology is illustrated visually in Figure 1.

2.1 Dataset selection

The utilized dataset consists of human internal exons and has
undergone preprocessing as detailed by Louadi et al. (2019). It
comprises three categories of alternative splicing (AS) events: Exon
Skipping (ES), Alternative 3’ (Alt3), and Alternative 5’ (Alt5) splice
sites. The dataset features three variables representing the length of
exons and neighboring introns. This dataset was chosen due to its
comprehensive coverage of diverse AS events in the human genome,
ensuring the model’s ability to generalize across various biological
contexts. Table 1 provides a summary of the dataset, offering
insights into its characteristics and composition.

2.2 Preprocessing steps

Preprocessing of sequence data for modeling involved employing
a one-hot-encoding technique, resulting in a 140 × 4 matrix
representation. This technique converts categorical variables, such
as nucleotide sequences, into a numerical format suitable for input
into machine learning models. The implementation of the deep
learning-based CNN model was carried out in Python using
Google Colab. During the training process, a 10-fold cross-
validation strategy was employed to assess the model’s
performance. Ten folds with identical sizes were randomly selected
from the dataset. The models were trained on eight of these folds,
allowing them to identify patterns and connections in the data. An
additional fold was designated for early stopping to prevent overfitting
and enhance model performance. Regular monitoring of the early
stopping fold occurred, halting the training process if the model’s
performance did not surpass a predefined threshold. Finally, the
remaining fold was used as the test set to independently assess the
model’s performance on unseen data. This method ensured a
thorough evaluation of the model’s generalization ability and
accuracy in making predictions across various subsets of the
dataset. Throughout the training process, a 10-fold cross-validation
strategy was employed. Ten folds with identical sizes were randomly
selected from the dataset. The models were trained on eight of these
folds, which helped them identify patterns and connections in the
data. An additional fold was designated for early stopping to prevent
overfitting and enhance model performance. Regular monitoring of
the early stopping fold took place, and if the model’s performance did
not surpass a predefined threshold, the training process was halted.
Finally, the remaining fold was used as the test set so that the model’s
performance could be independently assessed on data that had not yet
been seen. This method of partitioning the dataset ensured a thorough
assessment of performance by taking into account several dataset
subsets. It comprehensively gauged the model’s generalization ability
and accuracy in making predictions.

Cross-validation is a powerful technique used in machine
learning and statistical analysis to assess models’ performance
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and generalization ability. In this research, we employed the widely
used 10-fold cross-validation method to ensure reliable and robust
evaluations of our DL-based model for predicting AS events. Within
the context of 10-fold cross-validation, the dataset undergoes
division into ten equally sized subsets or folds. Throughout the
training stage, the model undergoes training on eight folds,
facilitating the acquisition of intricate patterns and relationships
within the data. The retention of the remaining fold is designated for
early stopping, involving consistent monitoring of the model’s
progress. Should the performance of the early stopping fold not
exhibit improvement beyond a predefined threshold, the training
process is ceased to forestall overfitting. Once the training phase is
complete, the model is tested on the fold kept aside during training,
serving as an independent evaluation set. This test set provides an
unbiased assessment of the model’s performance on never-before-
seen data, demonstrating its ability to generalize and produce precise
predictions. By employing 10-fold cross-validation, we ensure
comprehensive evaluations of our DL model’s performance,
considering different subsets of the dataset. This approach allows
us to obtain reliable performance metrics and gain insights into the
model’s effectiveness in predicting AS events. It enhances confidence
in the model’s performance by validating its performance across
multiple subsets of the data, ultimately contributing to our research
findings’ overall reliability and robustness.

2.3 DSC architecture

Figure 2 displays the CNN’s structure that was used in this
investigation, comprising three primary layers: the convolutional
block, the fully connected layers, and the output layer. CNNs are
inspired by the architecture of the visual system and its

computational models, emphasizing local connectivity between
neurons and hierarchically organized image transformations. This
design allows CNNs to achieve translational invariance by
employing neurons with identical parameters for patches from
the preceding layer at different locations. The foundational work
by Yann LeCun and his team (LeCun et al., 1998) utilized the error
gradient to develop CNNs, showcasing remarkable performance in
various pattern recognition applications. Our proposed model
encompasses two architectures, labeled as 2 (A) and 2 (B) as
shown in Figure 2. One RNA sequence is the input for the first
architecture, while two RNA sequences are the input for the second
architecture. As seen in Figures 2A, B, these designs contain three
different kinds of neural layers: output layers, fully connected layers,
and convolutional layers. Each layer in the CNN has a
distinct purpose.

In the convolutional block, many kernels convolve over the
whole picture and intermediate feature maps, producing a variety of
feature maps. This method replaces fully connected layers and has
the advantage of faster learning times. Neural networks that employ
fully connected layers for higher-order reasoning come after the
convolutional and pooling layers. Every neuron in these layers is
linked to every activation in the layer below, and the activation of
each neuron is calculated by multiplying a matrix with a bias offset.
The 2D feature maps from the preceding layers are transformed into
a 1D feature vector using completely connected layers. After that,
this vector can be used for categorization or subjected to additional
processing. Basic ideas like spatial subsampling, linked weights, and
local receptive fields are all incorporated into the CNN design.
Convolutional layer neurons extract basic visual components like
edges and corners by receiving inputs from adjacent units in the
layer below. These retrieved features are combined with subsequent
convolutional layers to discover higher-order features. With tied
weights, several units share the same weights since it is anticipated
that elementary feature detectors that are successful for a section of
an image will be useful throughout the full image. A convolutional
layer’s units are arranged in planes and use the same set of weights to
build distinct features for each unit. Multiple feature maps can be
created at each place since the feature maps collectively represent the
results of these planes. The output layer, the final layer of the CNN,
receives input from the preceding layers, performs calculations
through its neurons, and produces an output. It plays a crucial

FIGURE 1
Proposed methodology.

TABLE 1 Dataset statistics.

As types HEvents MREvents

Alternative 3’ 1,388 944

Alternative 5’ 1,568 602

Exon Skipping 4,952 6,838
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role in generating the desired predictions or classifications. The
proposed model architecture employs a dual-branch structure, each
branch processing a distinct input. To introduce non-linearity, both
branches start with a rectified linear unit (ReLU) activation function,
a regularization dropout layer, and a convolutional layer. The
features are then downsampled by applying max-pooling layers
with a pool size of 2 and a stride of 2 after each convolutional
layer. The first branch comprises four convolutional layers,
sequentially increasing the number of filters (8, 16, 32, and 64)
and utilizing corresponding kernel sizes (7, 4, 3, and 2). The second
branch mirrors the architecture of the first branch. The outputs of
both branches are then concatenated to capture the combined
information. The multi-dimensional data is flattened and then
combined with a third input to create a one-dimensional feature
vector. The resulting combined features are then input into a dense

layer that has 1,024 units and a rectified linear unit (ReLU)
activation function to help the model capture complex patterns
and representations. After the dense layer, a dropout layer with a
dropout rate of 0.5 is used to prevent overfitting. The model’s final
layer is made up of a dense layer with a sigmoid activation function
and a single unit. With this design, binary categorization is made
easier by producing a probability score that falls between 0 and 1.
The binary cross-entropy loss function, which is especially useful for
applications involving binary classification, is used by the model
during training. With a learning rate of 0.0005, beta parameters of
0.9 and 0.999, an epsilon value of 1e-08, and no decay, the Adam
optimizer is used. Accuracy is used to evaluate the model’s
performance by measuring the percentage of correctly
categorized samples and assessing the model’s classification
power. The details of each layer are broken down as follows:

FIGURE 2
Proposed DSC Architecture with (A) a a single layer and (B) as a multiple layer architecture.
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FIGURE 3
Performance comparison of proposed model across different epochs.

FIGURE 4
Performance comparison of proposed model and existing model across different epochs.
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2.3.1 Convolutional layer
The convolutional layer applies a set of filters to the input data

and performs a convolution operation. For each filter, the output
feature map is calcualted using Eq. 1.

outputi � ∑
j

inputij.filterj( ) + bias (1)

2.3.2 Dropout layer
The dropout layer helps prevent overfitting by randomly

dropping out a fraction of the input units during training. Eq. 2
represents the dropout layer.

outputi � inputi.mask, ifmaski � 1
0, otherwise

{ (2)

2.3.3 Activation function
The activation function introduces non-linearity into the model,

enabling it to learn complex relationships. In this model, the ReLU
activation function is calculated as Eq. 3.

output � max 0, input( ) (3)

2.3.4 Max pooling layer
The max pooling layer downsamples the spatial dimensions of

the input feature maps by selecting the maximum value within a
pooling window. The Eq. 4 calculates the max pooling layer.

outputi � max inputpi( ) (4)

2.3.5 Fully connected layer
The neural network employs fully connected layers for higher-

order reasoning, following a series of convolutional and pooling
layers. A fully connected layer’s neurons are connected to the
activations of the layers below them. Neuron activations are
computed by multiplying matrices with a bias offset. The 2D
feature maps from previous levels are transformed into a 1D
feature vector using these fully connected layers. This final vector
can be utilized as a feature vector for additional processing or input
into a collection of categories for classification. Three fundamental
concepts underpin CNN architecture: shared weights, local receptive
fields, and spatial subsampling. Based on their local receptive fields,
nearby units in the layer below provide inputs to each unit in a
convolutional layer. This makes it possible for neurons to
distinguish basic visual components like edges and corners. These
retrieved features are combined with subsequent convolutional
layers to discover higher-level, more complicated features. Tied
weights, another name for shared weights, assume that basic
feature detectors that work well in one area of an image will
work similarly well in the entire image. As a result, a collection
of units—referred to as tied weights—shares the same set of weights.
A convolutional layer’s units are organized into planes, and each
plane builds a certain feature using the same set of weights. The
products of these planes, or feature maps, serve as the fundamental
building blocks of every convolutional layer in the network, enabling
the production of multiple feature maps at each node (Voulodimos
et al., 2018). The fully connected layer is calculated as Eq. 5.

output � activation input.weights + bias( ) (5)

2.3.6 Output layer
The output layer employs a sigmoid activation function to

generate a probability value within the range of 0 and 1,
indicating the likelihood of the input belonging to a particular
class. The formula for output layer is shown in Eq. 6.

output � σ input.weights + bias( ) (6)

2.3.7 Model loss
The binary cross-entropy loss function is employed by the

model. When classifying inputs into one of two classes is the
goal of a binary classification task, binary cross-entropy is a
frequently used metric. The difference between the actual labels
and the expected probabilities is measured by this metric. To
calculate the binary cross-entropy loss, utilizes Eq. 7.

Loss � − 1
N

∑N
i�1

yilog ŷi( ) + 1 − yi( )log 1 − ŷ( )[ ] (7)

Where:

- N is the number of samples in the dataset.
- yi is the true label of the i-th sample (either 0 or 1).
- ŷi is the predicted probability of the i-th sample belonging
to class 1.

Adam, a popular optimization algorithm for training deep
neural networks, is used to minimize this loss function. It adapts
the learning rate based on the gradients to speed up convergence. By
minimizing the binary cross-entropy loss using the Adam optimizer,
this model aims to learn the optimal set of weights and biases that
can accurately classify the inputs into their respective classes.

2.3.8 Model summary
The proposed model is a DL architecture designed for AS

prediction. It takes three types of inputs: “inputs1” and “inputs2”
represent sequences with four features per element, and “inputs3”
represents an additional input with three features. The model
consists of eight hidden layers, with four layers for each input.
Each hidden layer consists of a convolutional layer (“Conv1D”)
followed by a dropout layer for regularization and an activation layer
using the ReLU activation function. Max pooling layers
(“MaxPooling1D”) are incorporated to downsample the spatial
dimensions of the feature maps. The convolutional layers have
different filter sizes and kernel sizes, enabling the model to
capture varying levels of information and patterns. The outputs
from the convolutional layers are then concatenated using the
“keras.layers.concatenate” function. This concatenated
representation is flattened and combined with “inputs3” through
another concatenation operation. This combined representation is
passed through a fully connected layer (“Dense”) with 1,024 units
and ReLU activation. Dropout is applied to this layer to prevent
overfitting and enhance generalization. The final output layer
consists of a single unit with a sigmoid activation function,
making the model suitable for binary classification tasks. The
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TABLE 2 Model summary.

Layer (type) Output shape Param # Connected to

input_5 (InputLayer) [(None, 140, 4)] 0 []

input_4 (InputLayer) [(None, 140, 4)] 0 []

conv1d_12 (Conv1D) (None, 134, 8) 232 [“input_5[0][0]”]

conv1d_8 (Conv1D) (None, 134, 8) 232 [“input_4[0][0]”]

dropout_13 (Dropout) (None, 134, 8) 0 [“conv1d_12[0][0]”]

dropout_9 (Dropout) (None, 134, 8) 0 [“conv1d_8[0][0]”]

activation_12 (Activation) (None, 134, 8) 0 [“dropout_13[0][0]”]

activation_8 (Activation) (None, 134, 8) 0 [“dropout_9[0][0]”]

max_pooling1d_12 (MaxPooling1D) (None, 67, 8) 0 [“activation_12[0][0]”]

max_pooling1d_8 (MaxPooling1D) (None, 67, 8) 0 [“activation_8[0][0]”]

conv1d_13 (Conv1D) (None, 64, 16) 528 [“max_pooling1d_12[0][0]”]

conv1d_9 (Conv1D) (None, 64, 16) 528 [“max_pooling1d_8[0][0]”]

dropout_14 (Dropout) (None, 64, 16) 0 [“conv1d_13[0][0]”]

dropout_10 (Dropout) (None, 64, 16) 0 [“conv1d_9[0][0]”]

activation_13 (Activation) (None, 64, 16) 0 [’dropout_14[0][0]”]

activation_9 (Activation) (None, 64, 16) 0 [“dropout_10[0][0]”]

max_pooling1d_13 (MaxPooling1D) (None, 32, 16) 0 [“activation_13[0][0]”]

max_pooling1d_9 (MaxPooling1D) (None, 32, 16) 0 [“activation_9[0][0]”]

conv1d_14 (Conv1D) (None, 30, 32) 1,568 [’max_pooling1d_13[0][0]”]

conv1d_10 (Conv1D) (None, 30, 32) 1,568 [“max_pooling1d_9[0][0]”]

dropout_15 (Dropout) (None, 30, 32) 0 [“conv1d_14[0][0]”]

dropout_11 (Dropout) (None, 30, 32) 0 [“conv1d_10[0][0]”]

activation_14 (Activation) (None, 30, 32) 0 [“dropout_15[0][0]”]

activation_10 (Activation) (None, 30, 32) 0 [“dropout_11[0][0]”]

max_pooling1d_14 (MaxPooling1D) (None, 15, 32) 0 [“activation_14[0][0]”]

max_pooling1d_10 (MaxPooling1D) (None, 15, 32) 0 [“activation_10[0][0]”]

conv1d_15 (Conv1D) (None, 14, 64) 4,160 [“max_pooling1d_14[0][0]”]

conv1d_11 (Conv1D) (None, 14, 64) 4,160 [“max_pooling1d_10[0][0]”]

dropout_16 (Dropout) (None, 14, 64) 0 [“conv1d_15[0][0]”]

dropout_12 (Dropout) (None, 14, 64) 0 [“conv1d_11[0][0]”]

activation_15 (Activation) (None, 14, 64) 0 [“dropout_16[0][0]”]

activation_11 (Activation) (None, 14, 64) 0 [“dropout_12[0][0]”]

max_pooling1d_15 (MaxPooling1D) (None, 7, 64) 0 [“activation_15[0][0]’]

max_pooling1d_11 (MaxPooling1D) (None, 7, 64) 0 [“activation_11[0][0]”]

concatenate_2 (Concatenate) (None, 7, 128) 0 [“max_pooling1d_15[0][0]”, “max_pooling1d_11[0][0]”]

flatten_1 (Flatten) (None, 896) 0 [“concatenate_2[0][0]”]

input_6 (InputLayer) [(None, 3)] 0 []

concatenate_3 (Concatenate) (None, 899) 0 [“flatten_1[0][0],” “input_6[0][0]”]

(Continued on following page)
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model is trained using the binary cross-entropy loss function and the
Adam optimizer with a learning rate 0.0005. The proposed model
demonstrates improved performance compared to existing models
for AS prediction. It balances model capacity and computational
efficiency using eight hidden layers, achieving high AUC scores. The
model’s architecture and parameters have been fine-tuned through
extensive experimentation to optimize its predictive performance on
the given task. The following Table 2 presents the model summary.

2.4 Results evaluation

Our research model’s performance evaluation relies on a pivotal
metric known as the Area Under the Curve (AUC). AUC is a widely
acknowledged and extensively utilized evaluation measure in deep
learning and predictive modeling. It imparts valuable insights into
the model’s proficiency in distinguishing between positive and
negative instances, rendering it particularly suitable for
classification tasks. AUC scrutinizes the quality of the model’s
predictions across various decision thresholds, capturing the
trade-off between the true positive rate and false positive rate.
The AUC score spans from 0 to 1, with a higher value signifying
superior discrimination power and classification accuracy. By
employing AUC as our primary evaluation metric, we can
effectively measure the predictive capability of our deep learning
model for alternative splicing events. A higher AUC score indicates a
more accurate and reliable model, showcasing its potential
contribution to advancements in bioinformatics, genomics, and
biomedical research.

3 Experiments and results

This section offers comprehensive details, which entails
enhancing the CNN-based DSC model’s predictive capabilities
for AS event forecasts. Compared to the original model’s six
layers, the research presents a modified model with an original
architectural layout made up of eight layers. After giving
considerable thought to the model’s capability, computational
complexity, and overfitting prevention, the choice was reached to
include eight layers. After experimenting with several layer
configurations, we found that there were diminishing returns
after 8 layers, suggesting that 8 layers was the ideal combination
of model depth and performance. We evaluated the two models’
performances throughout a range of epochs, from 10 to 200, in order
to fully compare them. It should be noted that the average AUC-
ROC scores served as our main performance metric. Through this
comparative investigation, we were able to determine that the
updated 8-layer model outperformed the original 6-layer design

in terms of prediction. We highlight the efficacy of our suggested
improvement and its capacity to outperform the current model by
presenting and analyzing these comparison data. This section
provides a critical connection between the original problem
description and the thorough analysis of our suggested solution,
demonstrating how the eight-layer modified CNN model skillfully
tackles the difficulties given by mutations in AS event predictions.

The DSCmodel, a deep learning framework based on CNN built
in Python 3.10, a language commonly used in the machine learning
area, was the means by which the research was carried out. We
leveraged the power of the Google Colab platform for this inquiry,
which offered an intuitive virtual environment with powerful
hardware resources. Colab’s computing efficiency was
significantly increased by the easy incorporation of the Tesla
T4 GPU’s processing power into the environment. Additionally,
the abundance of pre-installed packages and open accessibility of
Google Colab provided researchers with a simple way to browse and
execute the recommended methodology with exceptional efficacy.

This section presents the results of our experiments conducted with
the proposed DSC model, followed by a comparison with the existing
model (Louadi et al., 2019). The results highlight the enhanced
performance of the proposed model, which achieves higher average
AUC scores across various inclusion levels. Throughout our research,
we explored various modifications to the existing model, including
adjustments to kernel sizes, strides and incorporating a hybrid CNN
model with DT and SVM. We also experimented with activation
functions such as ReLU, Sigmoid, and Tanh. However, these
modifications yielded fewer results compared to the existing model.
We experimented with different layer depths using the human internal
exon dataset for AS prediction to determine an optimal configuration.
We observed that increasing the layer depth beyond eight resulted in
diminishing returns in performance improvement. Deeper models
offered increased capacity but also introduced additional
computational complexity and a higher risk of overfitting.
Conversely, shallower models with fewer than eight layers
demonstrated a decline in performance, as they needed to capture
the intricate patterns and relationships in the dataset, leading to
underfitting. Given the intrinsic complexity of the human internal
exon dataset, we opted for the model with eight hidden layers (four
layers for each input) to achieve a balance between capacity and
computational efficiency. The model has 32 filters with a first layer
kernel size of 7, 8 filters with a second layer kernel size of 4, 8 filters with
a third layer kernel size of 3, and 8 filters with a final layer kernel size of
1. The strides remain consistent at 1 across all layers for both inputs.We
trained the model for various epochs using the same approach as the
existing model. The proposed model demonstrated improved
performance by comparing the results with the existing model.

For example, with 10 epochs, the proposed model achieved an
average AUC score of 87.4%. Furthermore, training the model for

TABLE 2 (Continued) Model summary.

Layer (type) Output shape Param # Connected to

dense_2 (Dense) (None, 1,024) 921,600 [“concatenate_3[0][0]”]

dropout_17 (Dropout) (None, 1,024) 0 [“dense_2[0][0]”]

dense_3 (Dense) (None, 1) 1,025 [“dropout_17[0][0]”]
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50 epochs resulted in an average AUC score of 89.8%. For
100 epochs, the model achieved an average AUC score of 91.2%.
Similarly, training the model for 150 epochs resulted in an average
AUC score of 91.4%. Finally, the model was trained for 200 epochs,
resulting in an average AUC score of 92%, as illustrated in Figure 3.

3.1 Comparison with existing DSC model

The model described in (Louadi et al., 2019) consists of six
hidden layers. Using the current model, we ran numerous tests at
epoch intervals of 10, 50, 100, 150, and 200. The model setup
employed by the authors made use of particular parameters. Three
convolutional layers were added to each block as part of their
methodology. The first layer consisted of 32 filters with a
window size of seven units; the second layer included 8 filters
with a window size of four units; and the last layer had 8 filters
with a window size of three units. For both inputs, a stride of 1 was
used in all layers. They used a Rectified Linear Unit (ReLU) to apply
an activation layer after each convolutional layer. A dropout layer
with a probability of 0.2 was added to address overfitting. They also
included a max-pooling layer with a 2 unit stride and window size.
The architecture and performance of the model were greatly
impacted by these parameters.

When the existing model was trained for 10 epochs, varying
AUC scores were obtained, resulting in an average score of 84.6%.
When trained over distinct epochs, the current model yields
inconsistent results. Interestingly, it performed better than the
model trained for 10 epochs after 50 epochs of training on the
provided dataset. Different results were obtained, it achieved an
average AUC score of 88.8%. The researchers noticed better
performance when training the current model with 100 epochs as
opposed to the model trained with 50 epochs. In particular, they

obtained an average AUC score of 90%. In a similar vein, after
training for 150 epochs, the current model obtained an average AUC
score of 90%. During our experiments with the existing model, the
most noteworthy outcome was observed when the model was
trained for 200 epochs, surpassing the results of all previous
training runs with 10, 50, 100, and 150 epochs. The average
AUC score attained by the existing model after 200 epochs was
90.8%. Figure 4 presents comparison of the proposed model with the
existing model across different epochs.

These results demonstrate the superiority of the proposed
model, which outperforms the existing model (Louadi et al.,
2019) in terms of AUC score. The findings support the
effectiveness of the proposed model architecture and parameter
configurations in handling the complexities of AS prediction.
Table 3 summarises the results for both the existing and
updated models.

Our study introduces the DSC model, leveraging DL techniques
to enhance the prediction of AS events. By addressing the limitations
of existing approaches, the DSC model achieves superior predictive
performance, with an average AUC score of 92%. This innovative
model aims to uncover disease-associated splice variants and
elucidate the regulatory mechanisms underlying AS, offering
valuable insights into the molecular basis of various diseases,
including cancer. Through collaborative efforts with clinicians,
biologists, and pharmaceutical companies, the DSC model’s
predictions can be validated in clinical or experimental settings,
translating into tangible outcomes for patient care and biomedical
research. Thus, our research not only advances the field of AS
prediction but also holds promise for improving disease diagnosis
and treatment strategies, ultimately contributing to a deeper
understanding of genetic information processing and its impact
on human health. The Table 4 summarizes the performance of
DeepSplice compared to these models across the selected metrics:

The findings of this study hold significant implications for real-
world genomic research and the understanding of AS. By
introducing the DSC model, our research offers a promising
avenue for advancing the field of AS prediction. Beyond
reporting improved performance metrics, the practical
implications of these advancements are manifold. Firstly, the
DSC model’s enhanced predictive ability holds promise for
identifying disease-associated splice variants and elucidating the
regulatory mechanisms underlying AS events, thus offering valuable
insights into the molecular basis of various diseases, including
cancer. Furthermore, the model’s potential clinical relevance is
underscored by its capacity to aid in disease diagnosis and
prognosis, guide personalized medicine approaches, and identify

TABLE 3 Updated vs. existing model’s result summary.

Epochs Average AUC

Existing model Updated model

10 84.6 87.4

50 88.8 89.8

100 90 91.2

150 90 91.4

200 90.8 92

TABLE 4 Comparison with the existing state-of-the-art models from the literature.

Model AUC score (%) Precision Recall F1 score

DeepSplice 92 0.90 0.89 0.895

Siraj et al. (2021) 85 0.83 0.81 0.820

Kong et al. (2021) 88 0.86 0.84 0.850

Wahab et al. (2021) 90 0.87 0.88 0.875

Leman et al. (2020) 89 0.88 0.87 0.875
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biomarkers for disease monitoring. Collaborative efforts with
clinicians, biologists, and pharmaceutical companies can further
validate the model’s predictions in clinical or experimental settings,
translating them into tangible outcomes for patient care and
biomedical research.

4 Conclusion

Alternative splicing (AS) is a crucial process in which exons, the
coding regions of genes, are rearranged to produce various mature
messenger RNAs, producing multiple proteins from a single gene.
Disruptions in AS can lead to various diseases, including brain
tumours, lung cancer, and breast cancer. In this study, we examined
different ML and DL techniques employed for accurate and efficient
AS prediction. While these techniques have shown promising
results, the reported average AUC score of 90.8% indicates room
for improvement. One of the major challenges lies in the detection of
the remaining 9.2% of AS events that were missed by the applied
techniques, potentially leading to the misdiagnosis of cancerous
cases. To address this, we proposed a DL-based model CNN. Our
study concentrated on the CNN model’s deep layers to improve its
capacity for AS prediction. The suggested model was tested on a
publicly accessible dataset of human internal exons after being built
in Python using the Google Colab platform. Through numerous
experiments, we observed that adding two hidden layers resulted in
eight hidden layers significantly improved the model’s performance
compared to the existing approaches. Our proposed model achieved
an excellent result, surpassing the existing model and increasing the
average AUC score from 90.8% to 92%. This improvement reduces
the risk of missing cancerous cases, making our proposed model
highly valuable for cancer prognosis research and related
stakeholders.

5 Future work

To address the need for further exploration into scalability and
adaptability aspects to solidify DeepSplice’s foundational and
forward-looking contributions, future research should focus on
several key areas. Firstly, investigating the integration of multi-
omics data, including gene expression profiles and epigenetic
changes, can enhance predictive models for AS and yield
insightful information. Incorporating additional molecular
information has the potential to uncover hidden patterns and
improve the accuracy of AS prediction models. Secondly,
developing ensemble models that combine different algorithms
or architectures holds great potential for further improving
prediction accuracy. By leveraging the strengths of multiple
models, the risk of false positives or negatives in AS
identification can be reduced. Lastly, using transfer learning
strategies can help with AS prediction in novel biological
settings. Leveraging knowledge from pre-trained models on
large-scale datasets can enhance the efficiency and
effectiveness of AS prediction on limited or specific datasets.
Addressing these areas of future work will contribute to
advancing the field, further our understanding of the role of

AS in diseases, and ultimately improve diagnostic and prognostic
capabilities in cancer research and beyond.
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