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Introduction: Intramuscular fat content (IFC) and meat color are vital indicators
of pork quality.

Methods: A significant positive correlation between IFC and redness of meat
color (CIE a* value) indicates that these two traits are likely to be regulated by
sharedmolecular pathways.To identify candidate genes, hub genes, and signaling
pathways that regulate these two traits, we measured the IFC and CIE a* value in
147 hybrid pigs, and selected individuls with extreme phenotypes for
transcriptome analysis.

Results: The results revealed 485 and 394 overlapping differentially expressed
genes (DEGs), using the DESeq2, limma, and edgeR packages, affecting the IFC
and CIE a* value, respectively. Weighted gene co-expression network analysis
(WGCNA) identified four modules significantly correlated with the IFC and CIE a*
value. Moreover, we integrated functional enrichment analysis results based on
DEGs, GSEA, and WGCNA conditions to identify candidate genes, and identified
47 and 53 candidate genes affecting the IFC and CIE a* value, respectively. The
protein protein interaction (PPI) network analysis of candidate genes showed that
5 and 13 hub genes affect the IFC and CIE a* value, respectively. These genes
mainly participate in various pathways related to lipid metabolism and redox
reactions. Notably, four crucial hub genes (MYC, SOX9, CEBPB, and PPAGRC1A)
were shared for these two traits.

Discussion and conclusion: After functional annotation of these four hub genes,
we hypothesized that the SOX9/CEBPB/PPARGC1A axis could co-regulate lipid
metabolism and the myoglobin redox response. Further research on these hub
genes, especially the SOX9/CEBPB/PPARGC1A axis, will help to understand the
molecular mechanism of the co-regulation of the IFC and CIE a* value, which will
provide a theoretical basis for improving pork quality.
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1 Introduction

Pork is a significant and extensively utilized animal resource that
has emerged as a principal protein source within human diets. In
recent years, China’s yearly pork production has surpassed 50 million
tons. Duroc × (Landrace ×Yorkshire) (DLY) pigs account for over 90%
of the pork market due to their rapid growth and high lean meat rate
(Duan et al., 2023). With improved living standards, high-quality pork
has become more popular among consumers. Meat quality is a crucial
indicator for assessing pork production and quality. Essential
indicators of meat quality include intramuscular fat content (IFC),
meat color, tenderness, and drip loss, which can directly impact pork
quality and market competitiveness (Moeller et al., 2010). Consumers
favor snowflake meat (a reflection of high IFC or marbling), and IFC
deposition is the main cause of snowflake meat (Liu et al., 2020). Meat
color is also one of themost direct sensory indicators of pork quality for
consumers and directly affects their consumption behavior. In the food
industry, the most popular numerical colour space system is the L*
(lightness), b* (yellowness) and a* (redness), which is also referred as
the CIELAB system, originally defined by the CIE (CIE, 1986). The
subjective color scores of the meat showed a stronger correlation with
the CIE a* value (R = 0.80) in one study (Sun et al., 2016). Hence, the
quality of pork color could be directly assessed based on the CIE a*
value. Despite DLY pork effectively meeting the quantitative demand,
its muscle quality falls short of eliciting satisfaction. Both the IFC and
CIE a* value are traits with relatively high heritability (Cabling et al.,
2015; Wang et al., 2022) and are the most intuitive indicators of high-
quality pork. Consequently, increasing the IFC and CIE a* value
through genetic improvement is a major research focal point for
pig breeding enterprises.

IFC refers to the amount of fat that accumulates between muscle
fibers or within muscle cells, mainly composed of phospholipids and
triglycerides (Shi-Zheng and Su-Mei, 2009). It is widely accepted that
changes in meat color in muscles are due to changes in myoglobin
levels. This may be due to higher myoglobin levels in slow/oxidative
myofibers (red muscle fibers) than in fast/glycolytic myofibers (white
muscle fibers). When there is a high proportion of red muscle fibers in
muscle tissue, its muscle color exhibits a more distinct red
characteristic (Kim et al., 2010). This phenomenon is closely
related to the biochemical markers of meat, such as the oxidation
state, cytochrome content, and redox forms. Previous studies have
shown a significant correlation (R = 0.260–0.323) between IFC and
CIE a* (Mortimer et al., 2014; Zhang et al., 2022). Therefore, we
speculated that these two traits might have similar genetic
backgrounds, but the underlying genetic basis was largely unknown.

Differences in phenotype are caused by a variety of factors,
among which changes in gene expression are crucial. Therefore, the
variations in the IFC and CIE a* value within a population might be
driven by differences in the expression levels of critical genes
involved in regulating these two traits. With the development of
next-generation sequencing technologies, the emergence of
transcriptome sequencing (RNA-seq) allowed us to detect the
expression levels of all genes across the entire genome.
Researchers usually use individuals with extreme phenotypes of
the IFC and a * value to perform RNA-seq, allowing them to obtain
many candidate genes and signaling pathways related to the IFC and
CIE a* value (Cardoso et al., 2017; Xing et al., 2021; Fernndez-
Barroso et al., 2022).

However, organisms are complex systemswith interconnected genes
regulating biological activities, forming intricate network systems.
Therefore, it is crucial to consider the interrelationships between
thousands of genes when studying phenotypic variation. Differential
expression analysis may not capture critical biological pathways or gene-
gene interactions relevant to target traits, as it focuses on the impact of
individual genes rather than the influence of gene networks (Xing et al.,
2021). Coexpressed genes often form densely connected subgraphs in
networks, representing functionally related gene groups or signaling
pathways, and exhibit specific biological functions by developing local
substructure modules (Barabasi and Oltvai, 2004). These modules reveal
interactions among genes at a systems level, aiding researchers in further
understanding the mechanisms underlying gene interactions and
identifying regulatory hubs of coexpressed genes (Talukdar et al.,
2016). Weighted gene co-expression network analysis (WGCNA) is
an efficient and accuratemethod for describing the correlation among all
genes or modules within the whole genome with traits. It is particularly
advantageous for simultaneously identifying key genes of multiple
complex traits (Zhang and Horvath, 2005), such as fat deposition
(Xing et al., 2021), meat quality (Zhao et al., 2020), and reproductive
performance (Wu et al., 2022).

Based on transcriptomic data, the present study aimed to gain
molecular insights into the hub genes and metabolic pathways that
coregulate the variations in the IFC and CIE a* value. We collected
individuals with divergent IFC and CIE a* values for RNA-seq.
Subsequently, we identified the differentially expressed genes (DEGs),
and performed gene set enrichment analysis (GSEA), WGCNA, and
protein protein interaction (PPI) analysis. We identified the candidate
genes and modules significantly related to these two traits. Through
systematic integration of the above results, we identified the hub genes
and pathways that could co-regulate the changes in the IFC and CIE a*
values. These findings contribute to understanding the genetic
mechanisms of co-regulation changes in the IFC and CIE a* value.
Moreover, the identified hub genes may serve as potential biomarkers
for the synergistic improvement of IFC and meat color in pigs.

2 Materials and methods

2.1 Animals, sample collection, and
phenotype measurement

A total of 147 commercial DLY pigs, consisting of 70 castrated
boars and 77 females, were selected for this study. The experimental
pigs were reared under standardized indoor conditions and provided
ad libitum access to feed and water at Jiangsu Kangle Pig Breeding
Farm (Changzhou, China). All experimental protocols involving
animals were approved by the Nanjing Agricultural University
Animal Care and Use Committee (Certification No.: SYXK (Su)
2022–0031). These pigs were slaughtered in six batches at the same
slaughterhouse within a month, with 20–30 pigs slaughtered in each
batch, with an average live weight of 122.49 ± 16.54 kg (mean ±
standard deviation). Following slaughter, LDmuscle from the last third
and fourth thoracic vertebrae was collected for each pig.
Approximately 0.5 g of LD muscle was placed into a 1.5 mL tube
and frozen at −80 °C for RNA extraction. Another portion of LD
muscle was trimmed to 1 cm × 1 cm × 2 cm along the fiber direction
and fixed in 4% paraformaldehyde solution. The meat color redness
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value of the LD muscle was assessed three times at 24 h post-mortem
using a CR-410 hand-held colorimeter (Kinica Minolta Sensing Inc.,
Shanghai, China). The mean of the three measurements was the final
CIE a* value. Approximately 300 g of LD muscle was utilized for
determining IFC using the Soxhlet extractionmethod (Supakankul and
Mekchay, 2016).

2.2 Sample selection

In order to avoid the influence of sex and carcass weight on the
selected samples, a general linear model in SAS software was used to
analyze the factors affecting the IFC and redness values in 147 DLY
pigs. The results showed that sex and carcass weight did not affect IFC
and CIE a* values. Therefore, based on the extreme values of IFC and
CIE a* values, we selected the high IFC group (H_IFC, n = 6), low IFC
group (L_IFC, n = 6), highCIE a* group (H_a*, n = 6), and lowCIE a*
group (L_a*, n = 6), respectively. During the selection process, we
found that there were 2 samples overlapping between the H_IFC
group and the H_a* group, and 3 samples overlapping between the L_
IFC group and the L_a* group. So, 19 unique samples were used for
transcriptome analysis in this study. The means of the IFC and CIE a*
value in the high and low groups were calculated using the two-tailed
Student’s t-test. Besides, we also calculated the differences of the
samples in the H_IFC and H_a* value groups (H_group, n = 10) and
the samples in the L_IFC and L_a* groups (L_group, n = 9) using the
two-tailed Student’s t-test. All analyses were conducted using SPSS
(v22.0) software (SPSS Inc., Chicago, IL, United States).

2.3 Haematoxylin–eosin staining

Selected LD samples were fixed in 4% paraformaldehyde for 24 h
at room temperature. Muscle tissue was dehydrated using ethanol,
transparently treated with xylene, embedded in paraffin, and cut into
3–4 μm samples for further haematoxylin–eosin (H&E) staining.
Sections were deparaffinized in xylene, rehydrated in ethanol and
stained with hematoxylin for 10 min. The sections were then rinsed in
tap water and stained with eosin for 1 min, dehydrated, transparently
treated with xylene and finally sectioned using neutral gum. The
prepared sections were observed under the microscope, in which the
nuclei and cytoplasm of the muscle cells appeared blue and light red,
respectively, and the adipocytes appeared white.

2.4 RNA extraction, library construction, and
sequencing

Total RNA was extracted from 100 mg of frozen LDmuscle using
TRIzol reagent (Invitrogen, Carlsbad, CA, United States). The total
RNA was quantified and quality controlled using Qubit 2.0 and
Agilent 2,100. RNA with an RNA integrity number (RIN)
of >7 and RNA quality rating of “A” was used for RNA library
construction. RNA libraries were constructed using the VAHTS®
universal V8 RNA-seq Library Prep Kit for Illumina (Vazyme,
China) according to the manufacturer’s instructions. The Illumina
NovaSeq 6,000 platform (Illumina, San Diego, CA, United States) was
used for transcriptome sequencing based on the high-quality RNA

library, and the sequencing read length was paired-end 150 bp. The
obtained raw data were filtered to clean data with FastQC (v0.11.5)
and Trimmomatic (v0.38) software (Bolger et al., 2014) by removing
reads containing adapters, low-quality reads, and reads with an N
content of >5%. The sequencing depth of transcriptome data in this
study exceeded 40 million reads per sample. The average sequencing
depth of the clean reads used for subsequent analysis was
42.91 million reads. The alignment analysis results showed that the
average unique mapping rate was 87.53%. The clustering heatmaps
between samples showed significant stratification between high and
low groups (Supplementary Figure S1). Overall, the sequencing data
exhibited high quality, rendering it suitable for subsequent analyses.

2.5 Identification of DEGs

The obtained clean reads were mapped to the Sus scrofa
11.1 genome from Ensembl 101 using STAR (v2.7.2) software
(Dobin et al., 2013) with settings (–sjdbOverhang 135). Finally, a
transcriptome gene expression count file was converted using
featureCounts (v2.0.0) software (Liao et al., 2014). The DESeq2
(v1.25.9) (Love et al., 2014), limma (Ritchie et al., 2015), and edgeR
packages in R (v4.1) (Robinson et al., 2010) software were used to
identify DEGs between the groups. DEGs were defined as those with
a false discovery rate (FDR) of <0.05 and |log2FoldChange| ≥ 1.
Furthermore, overlapping DEGs detected by the DESeq2, limma,
and edgeR packages were considered true DEGs, and used for
subsequent functional enrichment analysis.

2.6 Functional annotation and
enrichment analysis

To better understand the functions of overlapping DEGs, the R
package BioMart (Haider et al., 2009) was used to annotate genes
using the reference genome Sus scrofa 11.1. The Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways of overlapping DEGs were subjected to functional
enrichment analysis using the R package clusterProfiler (v4.6.2)
(Wu et al., 2021) with the following default parameters: ont =
“ALL”, nPerm = 1,000, pAdjustMethod = “BH”, minGSSize = 10,
maxGSSize = 500. In addition, we removed redundancy from the GO
terms using the ‘simplify’ function in the clusterProfiler package, with
the following default parameters: cutoff = 0.7, by = “p.adjust”, select_
fun = min. The overlapping DEGs were visualized as a heatmap plot
using the R function heatmap. Additionally, considering that GSEA
does not require an arbitrary cutoff for differential gene expression
and has a more extensive functional range, we also used GSEA on our
datasets based on whole genes of the IFC and CIE a* groups, using the
clusterProfiler package (v4.6.2) (Wu et al., 2021) with the above
default parameters. The threshold of significantly enriched GO
terms and KEGG pathways was a q value of <0.10.

2.7 WGCNA

To construct a co-expression network, we used WGCNA, a
package from R (1.72.1) (Langfelder and Horvath, 2008), with RNA-
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seq data (n = 19), with their counts normalized by transcript per
million (TPM). After the expression matrix input, genes with TPM
values of >1 in more than 10 individuals were selected for a
coexpression network setting. The clean expression matrix
underwent hierarchical clustering using the group average
method to identify outliers, which were samples deviating
significantly from the others. There were no outliers in this
study, and the final expression matrix contained 10,512 genes
and 19 individuals for establishing an unsigned coexpression
network based on the step-by-step method.

This study selected a power value of 18 based on the scale-free
topology criterion, resulting in a scale-free topology index (R2) of
0.90. The hybrid dynamic tree-cutting approach employs a
minimum module size of 30 as the default and commonly used
value. To characterize the module expression, module eigengenes
(MEs) were calculated as the first principal component of the
expression matrix. The WGCNA approach facilitates the
identification of biologically significant modules and potential
critical modules for further analysis by defining the module trait
relationships (MTRs) and gene significance (GS) of each module.
The mean value of GS for the genes within a module represented the
module significance (MS). To select candidate modules for
functional enrichment analysis, modules with MTRs greater than
0.35 and MS exceeding 0.25 were considered based on the criteria
reported in previous studies. The GO and KEGG pathway terms of
all genes within the critical module were subjected to functional
enrichment analysis using the clusterProfiler package (v4.6.2) (Wu
et al., 2021) with the above default parameters.

2.8 Identification of candidate and hub
genes related to the IFC and CIE a* value

To further identify candidate genes affecting the IFC and CIE a*
value, we performed overlap analysis of significantly enriched GO
terms and KEGG pathways in Omicshare platform (https://www.

omicshare.com/) derived from overlapping DEGs, GESA, and
WGCNA, respectively. The results of the overlap analysis are
presented in the Venn network diagram. The selected GO terms
and KEGG pathways had a q value of <0.1 in all three methods and
less than 0.05 in at least two methods. DEGs located in the
overlapping GO terms and KEGG pathways were considered
candidate genes and used for subsequent PPI analysis.

The construction of a PPI network was employed to analyze the
interactions between genes encoding proteins in candidate genes
based on the Search Tool for the Retrieval of Interacting Genes
(STRING) database (v11.5) (Szklarczyk et al., 2015). Cytoscape
software (v3.8.0) (Shannon et al., 2003) was employed to
visualize the entire PPI network. This analysis allowed the
connection patterns between genes in PPI networks to be
explored and visualized. Highly connected genes, also known as
hub genes, may play an essential role in influencing the target traits
of these candidate genes. The criterion for selecting the hub gene was
that the degree of connectivity was greater than 10.

3 Results

3.1 Phenotypes and sequencing data

The phenotypes of the IFC and CIE a* value in 147 DLY pigs are
shown in Figure 1A. The mean and standard error of the IFC and
CIE a* value were 3.20% ± 0.10% and 2.86% ± 0.13%, respectively.
The IFC and CIE a* value showed a significant positive correlation
in 147 DLY pigs (R = 0.309, p < 0.001) (Figure 1B).

Based on the IFC and CIE a* value, the LD muscle samples were
divided into the high IFC (H_IFC, n = 6), low IFC (L_IFC, n = 6),
high CIE a* value (H_a*, n = 6), and low CIE a* value (L_a*, n = 6)
groups. The phenotypic values of selected individuals are shown in
Figure 2 and Supplementary Table S1. The mean IFCs of the high
and low groups were 5.92% and 1.45%, respectively. The mean CIE
a* values of the high and low groups were 4.30 and 1.72, respectively.

FIGURE 1
Statistical analysis of intramuscular fat content (IFC) and meat color redness (CIE a*) values. (A) Phenotypic values of the IFC and CIE a* value. (B)
Correlation analysis of the IFC and CIE a* value.
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The IFC and CIE a* value in the high groups (H_IFC and H_a*)
were significantly higher than in the low groups (L_IFC and L_a*)
(Figures 2C, D). Moreover, the phenotypic information of the
samples in the H_IFC and H_a* groups (H_group, n = 10) and
the samples in the L_IFC and L_a* groups (L_group, n = 9) was
counted, and the results showed that the IFC and CIE a* values in
the H_group were 5.30% ± 0.91% and 4.85 ± 1.27, respectively, and
were 1.75% ± 0.61% and 1.37 ± 1.37, respectively, in the L_
group. The IFC and CIE a* values were significantly higher in
the H_group than in the L-group (Figure 2E). In addition, the results
of general linear model analysis indicated that sex and carcass weight
had no significant impact on the IFC and CIE a* values (Table 1).

Concerning the RNA-Seq data, 37.48–50.63 million raw reads
per sample were generated. After filtering approximately 1.39% of
the raw reads, an average of 42.91 million clean reads were used for
the following analysis. The mean Q30 and GC percentage values of
these clean data were 95.19% and 52.53%, respectively. After
alignment using STAR software, 87.53% of the clean reads were
uniquely mapped to the Sus scrofa 11.1 genome (Supplementary
Table S1). Before DEG detection, low expression levels or non-
expressed genes were removed based on gene expression counts. The
remaining 16,453 genes for IFC and 16,249 for CIE a* were analyzed
in the differential expression analysis.

3.2 DEGs

The present study identified 723, 569, and 608 DEGs between
the H_IFC and L_IFC groups using DESeq2, limma, and edgeR,
respectively (Figure 3A). A total of 485 overlapping DEGs were
detected, including 190 upregulated and 295 downregulated DEGs
in the H_IFC group, respectively. For the CIE a* value, 590, 481, and
455 DEGs were identified using DESeq2, limma, and edgeR,
respectively (Figure 3C). Three hundred and ninety-four DEGs
were shared among the three methods, including 153 upregulated
and 241 downregulated DEGs in the H_CIE a* group. Figures 3B,D
exhibit the heatmap of these overlapping DEGs, fromwhich it can be
seen that the expression patterns of overlapping DEGs were
consistent within groups and different between groups.
Moreover, 201 DEGs were shared between these two traits.

3.3 Functional enrichment analysis

There were 106 significantly enriched GO (GO_DEGs) terms
(Supplementary Table S4; Figure 4A) and 20 significantly enriched
KEGG (KEGG_DEGs) pathways (Supplementary Table S5;
Figure 4B) based on overlapping DEGs between the H_IFC and
L_IFC groups. Among these 106 enriched GO_DEGs terms, most
belonged to the biological process (BP) category, and only 1 and
6 terms belonged to the cellular component (CC) and molecular
function (MF) categories, respectively. In terms of KEGG_DEGs
pathways, more than half of the 20 significantly enriched pathways
were closely associated with lipid metabolism and lipolysis, such as
the adipocytokine signaling pathway (ssc04920), MAPK signaling
pathway (ssc04010), PI3K-Akt signaling pathway (ssc04151) and
regulation of lipolysis in adipocytes (ssc04923). For the CIE a* value,
138 significantly enriched GO_DEGs terms (Supplementary Table

S6; Figure 4C) and 22 significantly enriched KEGG_DEGs pathways
(Supplementary Table S7; Figure 4D) were detected. Similarly, most
of these enriched GO_DEGs terms belonged to the BP category.
KEGG_DEGs enrichment analysis revealed that 9 of 12 significant
pathways were strongly associated with redox and antioxidant
responses, such as the insulin signaling pathway (ssc04910),
AMPK signaling pathway (ssc04152), FoxO signaling pathway
(ssc04068), adipocytokine signaling pathway (ssc04920), and
MAPK signaling pathway (ssc04010). Furthermore, 12 of these
22 significantly enriched pathways were shared with the
significantly enriched pathways found in the IFC group. This
suggests that there was some similarity in the genetic background
between the IFC and CIE a* value.

To further understand the mechanisms of genetic differences
between the high and low groups, GSEA was used. The results
showed that 168 significantly enriched GO_GSEA terms
(Supplementary Table S8) and 61 significantly enriched KEGG_
GSEA pathways (Supplementary Table S9) were identified between
the H_IFC and L_IFC groups. Among these enriched GO_GSEA
terms, the top five were related to mitochondrial metabolism and
organismal oxidoreductase activity. In terms of KEGG_GSEA,
several significant pathways associated with lipid and fatty acid
metabolism were enriched, such as oxidative phosphorylation
(ssc00190), fatty acid metabolism (ssc01212), the adipocytokine
signaling pathway (ssc04920), and ether lipid metabolism
(ssc00565). For the CIE a* value, 390 significantly enriched GO_
GSEA terms Supplementary Table S10) and 76 significantly
enriched KEGG_GSEA pathways (Supplementary Table S11)
were identified between the H_a* and L_a* groups. Redox
reactions are an essential factor influencing the CIE a* value; the
top five significantly enriched GO_GSEA terms were mainly related
to the cellular response to an organic substance, oxidoreductase
activity, and positive regulation of the developmental process.
KEGG_GSEA results showed that more than 60% of the
significantly enriched pathways in the H_a* and L_a* groups
were consistent with those significantly enriched in the high and
low IFC groups. These overlapping pathways included the above-
mentioned lipid metabolic pathways, such as ssc00190, ssc01212,
and ssc00565. These results suggested that lipid and fatty acid
metabolism are essential factors influencing changes in the CIE
a* value.

3.4 Co-expressed gene modules associated
with the IFC and CIE a* value

The expression matrix containing 10,512 genes from
19 individuals was used for WGCNA. Hierarchical cluster
analysis revealed no outliers among the19 samples
(Supplementary Figure S2A). To build a scale-free network, we
chose a soft threshold of = 18, with a scale-free topology fitting index
R2 of >0.90 (Supplementary Figure S2B). In this study, nine gene
coexpression modules were identified (Figure 5A). The module with
the minimum number of genes among these modules was the dark
orange module, containing 82 genes, while the maximum number of
genes was in the dark red module, including 4,367 genes (Figure 5B).
Correlation analysis between module eigengene and the IFC or CIE
a* value was performed, and four modules, including purple, dark
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grey, dark red, and black, were significantly correlated with the IFC
and CIE a* value (Figure 5C; Supplementary Figure S3;
Supplementary Figure S4). Among these four significant modules,
the purple module positively correlated with both the IFC and CIE
a* value. In contrast, the dark grey, dark red, and black modules
exhibited negative correlations with the IFC and CIE a* value. These
four modules contained a total of 6,045 genes encoding proteins.
Subsequently, we focused on 6,045 genes for subsequent functional

enrichment analysis. Details of the 6,045 genes are shown in
Supplementary Table S12.

3.5 Functional enrichment analysis for the
four key modules

The significant GO_WGCNA terms and KEGG_WGCNA
pathways are presented in Supplementary Tables S13 and S14.
The GO_WGCNA results showed that genes in the black red
module were significantly enriched in 35 GO terms, which were
mainly related to IFC and CIE a*, such as regulation of the catabolic
process (GO:0009894), RNA binding (GO:0003723), negative
regulation of lipid localization (GO:1905953), and
oxidoreduction-driven active transmembrane transporter activity
(GO:0015453). From the KEGG_WGCNA analysis results,
156 pathways were significantly enriched, and most of the

FIGURE 2
IFC and CIE CIE a* value comparison between the high and low groups. (A) Representative plots of latissimus dorsi (LD) tissue and H&E staining of
shared samples from the low IFC group and low CIE a* group, scale bar = 100 μm. (B) Representative plots of LD tissue and H&E staining of shared
samples from the high IFC group and high CIE a* group, scale bar = 100 μm. (C–E) Comparasion of the IFC and CIE a* value in different groups. The H_
group represents the sample combination of H_IFC and H_a*, n = 10; The L_group represents the sample combination of the L_IFC and L_a* value
group, n = 9. Error bars represent the standard deviation (SD), where yellow bars represent the IFC and blue bars represent the CIE a* value. *p < 0.05,
**p < 0.01, ***p < 0.001, two-tailed Student’s t-test.

TABLE 1 Influencing factors of intramuscular fat content (IFC) and redness
value in 147 DLY pigs.

Trait IFC CIE a* value

Sex NS NS

Carcass weight NS NS

NS, not significant.
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significant pathways were related to lipid deposition, decomposition,
and oxidation-reduction reactions. These pathways are critical in the
regulation of both IFC and CIE a*, such as the adipocytokine
signaling pathway (ssc04920), FoxO signaling pathway
(ssc04068), MAPK signaling pathway (ssc04010), and oxidative
phosphorylation (ssc00190).

In the black module, the functional enrichment results showed
that 41 GO_WGCNA terms and 86 pathways were significantly
enriched. These significant GO_WGCNA terms were mainly
involved in phosphorylation (GO:0016310), response to oxygen-
containing compounds (GO:1901700), the actin cytoskeleton (GO:
0015629), and calcium ion binding (GO:0005509). The significant
pathways related to lipid metabolism and oxidative reactions mainly
included regulation of lipolysis in adipocytes (ssc04923),
glycerolipid metabolism (ssc00561), the PI3K-Akt signaling
pathway (ssc04151), the MAPK signaling pathway (ssc04010),
and the Wnt signaling pathway (ssc04310).

Genes in the purple module were significantly enriched with
6 GO_WGCNA terms and 14 KEGG_WGCNA pathways. These

GO terms were mainly involved in extracellular matrix organization
(GO:0030198) and collagen binding (GO:0005518). Among the
significant KEGG_WGCNA pathways, four were associated with
IFC, such as fatty acid metabolism (ssc01212), insulin resistance
(ssc04931), calcium signaling pathway (ssc04020), and fatty acid
degradation (ssc00071). Genes in the black grey modules were not
significantly enriched in GO terms and KEGG pathways, which
might have been due to the limited number of genes in this module.

3.6 Identification of candidate genes related
to the IFC and CIE a* value

To determine the candidate genes affecting the IFC and CIE a*
value, we first screened the overlapping GO terms and KEGG
pathways for each trait based on the functional enrichment
analysis results of overlapping DEGs, GSEA, and WGCNA. The
DEGs in the overlapping GO terms and KEGG pathways were
selected as candidate genes. Finally, hub genes with a connectivity

FIGURE 3
Identification of differentially expressed genes (DEGs). (A) Venn diagram of DEGs identified using the DESeq2, limma, and edgeR packages for the
IFC. (B) Heatmap of overlapping DEGs between the H_IFC and L_IFC groups. (C) Venn diagram of DEGs identified using the DESeq2, limma, and edgeR
packages for the CIE a* value. (D) Heatmap of overlapping DEGs between the H_a* and L_a* groups.
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value exceeding ten were obtained by constructinga PPI network of
candidate genes. For IFC, 2 overlapping GO terms and
11 overlapping pathways were identified (Figures 6A, B). Most of
these overlapping GO terms and pathways were involved in lipid
metabolism, such as response to oxygen-containing compounds
(GO:1901700), DNA-binding transcription factor activity (GO:
0003700), insulin resistance (ssc04931), the MAPK signaling

pathway (ssc04010), adipocytokine signaling pathway (ssc04920),
the HIF-1 signaling pathway (ssc04066), and the FoxO signaling
pathway (ssc04068). For the CIE a* value, 6 overlapping GO terms,
and 10 overlapping pathways were identified (Figures 6C, D). Most
of these overlapping GO terms, and pathways were involved in
oxidative phosphorylation, system development, and lipid
metabolism, such as response to oxygen-containing compounds

FIGURE 4
GO and KEGG enrichment analysis of overlapping DEGs. (A) Top five GO terms of overlapping DEGs for the IFC in the BP, CC, and MF categories. (B)
Significantly enriched KEGG pathways of overlapping DEGs for IFC. (C) Top five GO terms of overlapping DEGs for CIE a* value in the BP, CC, and MF
categories. (D) Significantly enriched KEGG pathways of overlapping DEGs for the CIE a* value. The size of the dot represents the number of overlapping
DEGs enriched to this GO termor pathway. The colour of the dot represents the significance of the enrichment, where a redder dot indicates greater
significance.
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(GO:1901700), negative regulation of signaling (GO:0023057),
response to wounding (GO:0009611), circulatory system
development (GO:0072359), the FoxO signaling pathway
(ssc04068), the adipocytokine signaling pathway (ssc04920), the
MAPK signaling pathway (ssc04010), and the HIF-1 signaling
pathway (ssc04066).

We selected terms and pathways associated with lipid
metabolism and redox in overlapping GO terms and KEGG
pathways, and DEGs located in these terms and pathways were
considered candidate genes. The selected GO terms and KEGG
pathways for the IFC and CIE a* value are shown in Table 2 and
Table 3. The results showed that 47 and 53 genes can be considered
candidate genes for the IFC and CIE a* value, respectively. These
candidate genes were used for subsequent PPI network
construction. It was worth noting that among these two traits,
there was one GO term (response to oxygenated compounds) and
three KEGG pathways (adipocyte cytokine signaling pathway,
MAPK signaling pathway, and HIF-1 signaling pathway) that
were consistent, and these two traits shared 18 candidate genes
(Supplementary Table S15).

3.7 Hub genes

The interaction relationships of candidate genes affecting the IFC
and CIE a* value were obtained by constructing PPI networks
(Figure 7). According to the degree of connectivity, five hub genes
(ATF3, SOX9, PPARGC1A, CEBPB, and MYC) with a connectivity
value greater than ten were identified as hub genes for IFC trait.
Functional enrichment analysis showed that CEBPB, SOX9, and
PPARGC1A were mainly involved in the transcriptional regulation
of white adipocyte differentiation and the regulation of fatty acid
oxidation. For the CIE a* value, 13 hub genes (IL6, MYC, EGR1,
CEBPB, JUNB, THBS1, SERPINE1, SOCS3, DUSP1, SOX9,
PPARGC1A, CCL2, and FOXO1) were identified as hub genes.
Functional enrichment analysis showed that SOCS3, IL6, FOXO1,
CEBPB, SOX9, and PPARGC1A were mainly involved in the
adipocytokine signaling pathway, insulin resistance, FoxO signaling
pathway, AMPK signaling pathway, and PI3K-Akt signaling pathway.
Notably, MYC, CEBPB, SOX9, and PPARGC1A were considered hub
genes (transcription factors) affecting both traits, and their expression
levels were significantly higher in the low group than in the high group.

FIGURE 5
Weighted gene co-expression network analysis (WGCNA). (A) The gene dendrogram was obtained by clustering the dissimilarity based on
consensus Topological Overlap with the corresponding module colors indicated by the color row. (B) Matrix with module trait relationships (MTRs) and
corresponding p values between the detected modules on the y-axis and traits (IFC and CIE a* value) on the x-axis, where blue represents a negative
correlation, red represents a positive correlation, and white represents no correlation. (C) The number of genes contained in each module.
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4 Discussion

DLY pork is dominant in the pork industry; however, its IFC is
low, and the meat has a paler color, resulting in limited
competitiveness within the premium pork market segment (Chen
et al., 2018; Wang et al., 2020). As a result, breeders are eager to
undertake genetic improvements in both IFC and redness (CIE a*)
meat color concurrently to cater to consumer market demands. In
this study, a highly significant positive correlation (R = 0.309, p <
0.001) between the IFC and the CIE a* value was observed, similar to
previous reports by Mortimer et al. (Mortimer et al., 2014) and
Zhang et al. (Zhang et al., 2022), in which they discovered the
correlation coefficients of the IFC and CIE a* value was 0.260 and
0.323, respectively. The interaction between IFC and meat color is
intricate. Several studies have shown that muscles with a higher
percentage of red muscle fibers (higher CIE a* values) tend to have a
higher IFC (Karlsson et al., 1999; Guo et al., 2011). On the one hand,

this is because red muscle fibers contain more neutral fat. On the
other hand, the red muscle fiber contains more mitochondria, which
are the prominent organelles for fatty acid β-oxidation. Therefore,
more lipids may accumulate around the red muscle fibers (internally
and externally) to ensure β-oxidation and provide energy to the
body. However, the relationship between IFC and muscle redness
has not been fully demonstrated. Numerous studies have found
significant correlations between IFC and CIE a*, suggesting that
there might be similarities in the genetic background regulating
changes in both the IFC and redness value. Consequently,
transcriptome analysis was conducted using individuls with
extreme IFC and CIE a* values to identify hub genes and
metabolic pathways co-regulating IFC and the redness of pork.

Conducting transcriptomic analysis based on extreme
phenotypes is a commonly employed method to identify key
genes influencing target traits. For instance, Wang et al. (2023) in
the Anqing Six-end-white pigs, employed RNA-seq on high and low

FIGURE 6
Venn network diagrams of enrichment analysis. (A) Venn network diagram of significantly enriched GO terms under three conditions for IFC. (B)
Venn network diagram of significantly enriched KEGG pathways under three conditions for IFC. (C) Venn network diagram of significantly enriched GO
terms under three conditions for the CIE a* value. (D) Venn network diagram of significantly enriched KEGG pathways under three conditions for CIE
a* value.
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IFC groups to discern critical genes affecting intramuscular fat
deposition. Ninety-seven DEGs obtained in their study
overlapped with those identified in our high and low IFC groups,
including MYC, ATF3, and LEP, which have been reported as
candidate genes related to lipid metabolism. Furthermore,
Fernández-Barroso et al. (2022) conducted RNA-seq in the LD
muscle of Iberian pigs based on extreme phenotypes of myoglobin
(CIE a* value). Among the 57 DEGs they obtained, three genes, such

as CCL2, VSTM1, and ACKR2, were consistent with our results, and
these genes might participate in metabolic pathways linked to redox
reactions. Thus, we can conclude that conducting RNA-seq based on
extreme phenotypes is an effective strategy.

In this study, WGCNA was used to detect the vital genes and
modules associated with the IFC and CIE a* values using
transcriptome data from 19 samples. The results of the WGCNA
showed that the purple module demonstrated a positive correlation

TABLE 2 Overlapping significantly enriched GO terms based on GO enrichment of DEGs, GSEA, and WGCNA.

Trait GO ID Description GO_DEGs
q value

GO_GSEA
q value

GO_WGCNA
q value

Overlapping DEGs

IFC GO:
1901700

response to oxygen-
containing compound

0.069 0.047 0.005 APOD, INHBB, CEBPB, NR4A3, SOX9, MYOD1,
CYP26B1, BGLAP, PANX1, THBS1, PCK1

GO:
0003700

DNA-binding
transcription factor
activity

0.078 0.001 0.050 TGIF1, RUNX1, FOSL2, KLF10, MAFK, SMAD1, MAFF,
CSRNP1, CEBPB, NR4A3, SIM1, ATF3, SOX9, MYOD1,
CREM, ZSCAN20, KLF5, FOSL1

CIE a* GO:
1901700

response to oxygen-
containing compound

0.023 <0.001 0.005 THBS1, INHBB, FOXO1, EGR1, PLSCR4, PLK3, CEBPB,
SOCS1, SOX9, GJA1, SLC25A33, SLC11A1, NOCT, CCL2,
SLC1A1, APOD

GO:
0023057

negative regulation of
signaling

0.034 0.004 0.012 ADRB2, THBS1, SLC25A5, ADM, SIAH2, SPRY1, SOCS3,
INHBB, EGR1, ARRDC3, DUSP5, SOCS1, SOX9, GJA1,
APOD

GO:
0009611

response to wounding 0.043 0.001 0.035 CCN1, PPL, SERPINE1, THBS1, F3, INHBB, SLC1A1,
ITGA5, APOD

GO:
0072359

circulatory system
development

0.043 <0.001 <0.001 CCN1, SERPINE1, JUNB, THBS1, ADM, VEGFA,
TIPARP, ITGA5, ANGPTL4, F3, EGR2, SOX9, GJA1,
SLC1A1

TABLE 3 Overlapping significantly enriched KEGG pathways based on KEGG enrichment of DEGs, GSEA, and WGCNA.

Trait KEGG
ID

Description KEGG_DEGs q
value

KEGG_GSEA q
value

KEGG_WGCNA q
value

Overlapping DEGs

IFC ssc04931 Insulin resistance <0.001 0.07 <0.001 INSR, PPARGC1A, PTPN1, TRIB3,
IRS2, PRKAG2, SOCS3, GFPT2

ssc04010 MAPK signaling
pathway

0.002 0.052 <0.001 MAP2K3, FLNC, VEGFA, GADD45A,
INSR, HSPB1, MAP3K8, GADD45G,
MYC, IL1RAP

ssc04920 Adipocytokine
signaling pathway

0.002 0.071 <0.001 PPARGC1A, IRS2, PRKAG2, SOCS3

ssc04066 HIF-1 signaling
pathway

0.006 0.021 <0.001 VEGFA, INSR, IL6R, SERPINE1, HK3,
TIMP1

ssc04068 FoxO signaling
pathway

0.02 0.029 <0.001 GADD45A, INSR, GABARAPL1, IRS2,
PRKAG2, GADD45G

CIE a* ssc04068 FoxO signaling
pathway

0.002 <0.001 <0.001 GADD45A, GABARAPL1, IRS2,
PRKAG2, GADD45B, FOXO1, IL6,
PLK3, FBXO32

ssc04920 Adipocytokine
signaling pathway

0.005 0.097 <0.001 PPARGC1A, IRS2, PRKAG2, CPT1A,
SOCS3

ssc04010 MAPK signaling
pathway

0.043 0.013 <0.001 GADD45A, FLNC, GADD45B, VEGFA,
FGF6, DUSP1, IL1RAP, DUSP4, MYC,
DUSP5, DUSP2

ssc04066 HIF-1 signaling
pathway

0.074 0.021 <0.001 SERPINE1, VEGFA, TIMP1, IL6, HK2
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with both th1e IFC and CIE a* value. In contrast, the dark grey, dark
red, and black modules exhibited negative correlations with the IFC
and CIE a* value. These four modules contained a total of
6,045 genes encoding proteins. Based on the overlap analysis
between the DEGs (DEGs of the IFC and DEGs of the CIE a*
value) and the WGCNA results, more than 70% of the DEGs could
be detected byWGCNA, indicating the similarity between these two
analysis methods and further proving the reliability of the results of
this study. However, some genes associated with the IFC and CIE a*
value identified by WGCNA did not exhibit differential expression
in the high and low groups. This observation suggests that WGCNA
recognized additional information by establishing interconnected
networks between genes, aligning well with the foundational
principles of WGCNA. This was consistent with the findings of
Xing et al. (2021).

The IFC and CIE a* groups shared four significantly enriched
pathways: the FoxO signaling pathway (ssc04068), adipocytokine
signaling pathway (ssc04920), MAPK signaling pathway (ssc04010),
and HIF-1 signaling pathway (ssc04066) (Table 3). The FoxO
signaling pathway governs glucose and lipid metabolism by
controlling genes associated with gluconeogenesis, glycogenolysis,
and lipid metabolism (Lee andDong, 2017). It also impacts fatty acid
oxidation and storage across diverse tissues (Chen et al., 2023a).
Although the direct connection between the FoxO pathway and
myoglobin oxidation has not been extensively documented, it is
conceivable that this pathway may indirectly influence oxidative
processes by regulating energy metabolism and responses to
oxidative stress (Egan and Zierath, 2013). The adipocytokine
signaling pathway is linked with adipocyte-related functions and
metabolism. It modulates insulin sensitivity, glucose uptake, and

lipid metabolism, affecting the release of adipokines that influence
lipid homeostasis and inflammation (Gu et al., 2019). This pathway
likely indirectly affects myoglobin oxidation by influencing factors
connected to metabolism and inflammation, thus potentially
impacting oxidative processes in muscle tissues (Jorge et al.,
2011). The MAPK signaling pathway is integral to various
cellular processes, encompassing cell growth, differentiation, and
metabolism. It can impact lipid metabolism by regulating genes
related to lipogenesis, lipolysis, and fatty acid oxidation (Chen et al.,
2023b; Wang et al., 2023). This pathway may contribute to muscle
oxidative processes by mediating cellular reactions to stress, lipid
peroxidation, and growth cues, thereby influencing myoglobin
oxidation under specific conditions (Xu et al., 2018). Activated in
response to low oxygen levels, the HIF-1 signaling pathway
orchestrates adaptive responses to hypoxia. It influences
glycolysis, lipid, and energy metabolism when oxygen levels are
low (Zhang et al., 2023). The HIF-1 pathway can affect myoglobin
oxidation by regulating the response to hypoxia, potentially
influencing oxidative metabolism and the role of myoglobin in
oxygen transport and storage (Elkholi et al., 2022). In summary,
these pathways may play pivotal roles in both fatty acid metabolism
and myoglobin oxidation.

The DEGs in Table 2 and Table 3 were considered candidate
genes influencing the IFC and CIE a* values, and the PPI network
was constructed based on them (Figure 7). Based on the degree of
connectivity, 5 hub genes (ATF3, SOX9, PPARGC1A, CEBPB, and
MYC) with a connectivity value exceeding ten were regarded as hub
genes potentially influencing IFC. Similarly, 13 hub genes impacting
the CIE a* value were identified, including IL6,MYC, EGR1, CEBPB,
JUNB, THBS1, SERPINE1, SOCS3, DUSP1, SOX9, PPARGC1A,

FIGURE 7
Protein protein interaction (PPI) network for the candidate genes affecting the IFC and CIE a* value. Edges (gray lines) between nodes indicate the
interaction of genes in the network. Green circles represent candidate DEGs for IFC, and blue circles represent candidate DEGs for CIE a*. Brown hexagos
represent overlapping candidate DEGs for IFC and CIE a*. Red circles and V-shapes represent DEGs with connectivity greater than 10 and are considered
hub genes. Hub genes shared by the IFC and CIE a* value are represented by V-shapes.
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CCL2, and FOXO1. ATF3 (activating transcription factor 3), a
member of the CREB family of basic leucine zipper transcription
factors (TFs). It has been found that the deletion of ATF3 results in
increased lipid body accumulation, and ATF3 directly regulates
transcription of the gene encoding cholesterol 25-hydroxylase
(Gold et al., 2012).

IL6 (interleukin-6) is a pivotal regulatory factor for lipolysis and
beta-oxidation. Numerous in vitro studies have substantiated that
treatment with IL6 enhances lipolysis and beta-oxidation in both
myotubes and adipocytes (Bae et al., 2023; Jackson et al., 2023).
EGR1 (Early growth response 1) is a transcription factor. Mohtar
et al. found that insulin/mTORC1-inducible EGR1 binds to the
leptin promoter and activates leptin expression in 3T3-L1
adipocytes, regulating lipid metabolism (Mohtar et al., 2019).
The results of Yan et al. suggested that inhibition of JUNB
might be a key indicator of the regulation of the APOA2-
associated PPARα pathway (Yan et al., 2020). APOA2 is a well-
known member of the apolipoprotein family (Ballester et al., 2016),
and the PPARα pathway is also a key pathway in regulating lipid
metabolism (Cao et al., 2023). THBS1 (thrombospondin-1) is a
prototypical matricellular protein. THBS1-null mice exhibited
elevated free fatty acids and triglycerides compared to wild-type
mice, suggesting impaired fatty acid uptake (Kong et al., 2013).
SERPINE1 (Serpin Family E Member 1), also known as
plasminogen activator inhibitor type 1 (PAI-1), is a member of
the serine proteinase inhibitor (serpin) superfamily. Several
findings have shown that PAI-1 might promote the
differentiation of mesenchymal stem cells toward adipogenesis,
and PAI-1 deficiency attenuates changes in the levels of adipogenic
genes such as PPARγ and aP2 (Tamura et al., 2013; Hu et al., 2019).
SOCS3 (suppressor of cytokine signaling 3) plays an important role
in regulating energy metabolism processes. In recent years,
researchers have found that SOCS3 is involved in the AMPK
signaling pathway, insulin resistance, adipocytokine signaling
pathway, and JAK/STAT pathway, is activated/triggered by
leptin signals, and plays important roles in lipid metabolism
processes (Liu et al., 2014; Fang et al., 2020; Yang et al., 2020).
DUSPs (dual-specificity phosphatases) are the key phosphatases in
the MAPK pathway. Recently, DUSP1 was suggested to play a
critical role in the switch from oxidative to glycolytic myofibers
(Flach et al., 2011), and can regulate fatty acid oxidation (Roth et al.,
2009). CCL2 (chemokine ligand 2) is a member of the C–C motif
family of chemokines. Kang et al. found that after CCL2 binds to its
receptor CCR2, it can reduce lipid peroxidation by inhibiting CCR2,
indicating its important regulatory role in lipid oxidation
metabolism (Roth et al., 2009). Current studies suggest that the
transcription factor FOXO1 (forkhead box protein O1) is involved
in lipid metabolism and lipolysis in adipocytes (Chakrabarti and
Kandror, 2009; Chakrabarti et al., 2011). Song et al. found that
interfering with FOXO1 negatively regulated the expression of
adipogenic differentiation marker genes and lipid anabolism
marker genes, thus reducing triglyceride content and inhibiting
the generation of lipid droplets in bovine adipocytes (Song
et al., 2023).

It is worth noting that these two traits share four hub genes:
MYC, CEBPB, SOX9, and PPARGC1A. MYC is a transcription
factor that regulates cell proliferation and differentiation in
healthy cellular processes. Hall et al. revealed that the

activation of MYC led to the accumulation of cholesteryl esters
stored in lipid droplets (Hall et al., 2020). A previous study found
thatMYC is involved in the MAPK signaling pathway, promoting
the glycolysis process in fish T cells (Wei et al., 2020). In addition,
MYC is involved in the WNT signaling pathway and serves as a
target gene/transcriptome factor for WNT, regulating myogenesis
(Karczewska-Kupczewska et al., 2016). CEBPB (CCAAT/
enhancer binding protein β) is a member of the transcription
factor family of CEBP. Several studies have reported that
PPARGC1A (PPAR coactivator-1α, also known as PGC1α), a
transcriptional co-activator of PPARγ, can bind to CEBPB and
form a transcription complex. This complex may promote the
transcription of CPT1A (carnitine palmitoyl transferase 1 A) and
activate fatty acid β-oxidation (Du et al., 2019; Wu et al., 2020).
SOX9 (Sex-determining region Y-type box-9) is a member of the
Sox supergene family and has been proven to be an essential
transcription factor in cartilage formation during chondrocyte
proliferation (Akiyama, 2008). Wang et al. confirmed that SOX9
can directly bind to the promoters of CEBPB and CEBPD, inhibit
their promoter activity, and prevent adipocyte differentiation
(Wang and Sul, 2009). This evidence indicated that the SOX9/
CEBPB/PPARGC1A axis might play an essential regulatory role in
fatty acid β-oxidation. Myoglobin is an oxygen-binding
hemeprotein generally localized to oxidative muscle and
functions as an oxygen store and reactive oxygen species
scavenger (Gödecke, 2010). Schlater et al. confirmed that an
increase in lipids could stimulated an increase in myoglobin
content in muscle cells of C2C12 mice, which was closely
related to fatty acid beta oxidation (Schlater et al., 2014). In
summary, we speculated that the SOX9/CEBPB/PPARGC1A axis
plays a vital role in the co-regulation of IFC deposition and
changes in the redness of meat color. The expression levels of the
upstream gene STAT3 (signal transducer and activator of
transcription 3) and downstream CPT1A genes (log2FC =
1.17) in the SOX9/CEBPB/PPARGC1A axis were also
significantly different in the high and low groups in this study,
further supporting the importance of this pathway in the
synergistic regulation of lipid and myoglobin metabolism.
Thererore, it will be particularly interesting to investigate the
co-regulatory mechanism of the SOX9/CEBPB/PPARGC1A axis
in IFC and CIE a* value traits in further studies.

5 Conclusion

In this study, we identified 5 hub genes influencing the IFC
and 13 hub genes affecting the CIE a* value through integrating
differential gene expression analysis, WGCNA, functional
enrichment under various conditions, and PPI network
analysis. These genes maninly participate in multiple lipid
and myoglobin metabolism pathways. Moreover, we
discovered that the SOX9/CEBPB/PPARGC1A axis is the
potential pathway co-regulating lipid deposition and the
myoglobin redox reaction. These hub genes and the SOX9/
CEBPB/PPARGC1A axis may be critical for the IFC and CIE
a* value; however, the functions and regulatory mechanism of
these hub genes, particularly the SOX9/CEBPB/PPARGC1A axis,
still need to be further elucidated.
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