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Background: Coronary artery disease (CAD) is the most common type of
cardiovascular disease and cause significant morbidity and mortality. Abnormal
coagulation cascade is one of the high-risk factors in CAD patients, but the
molecular mechanism of coagulation in CAD is still limited.

Methods: We clustered and categorized 352 CAD paitents based on the
expression patterns of coagulation-related genes (CRGs), and then we
explored the molecular and immunological variations across the subgroups to
reveal the underlying biological characteristics of CAD patients. The feature
genes between CRG-subgroups were further identified using a random forest
model (RF) and least absolute shrinkage and selection operator (LASSO)
regression, and an artificial neural network prediction model was constructed.

Results: CAD patients could be divided into the C1 and C2 CRG-subgroups, with
the C1 subgroup highly enriched in immune-related signaling pathways. The
differential expressed genes between the two CRG-subgroups (DE-CRGs) were
primarily enriched in signaling pathways connected to signal transduction and
energy metabolism. Subsequently, 10 feature DE-CRGs were identified by RF and
LASSO. We constructed a novel artificial neural network model using these
10 genes and evaluated and validated its diagnostic performance on a
public dataset.

Conclusion: Diverse molecular subgroups of CAD patients may each have a
unique gene expression pattern. We may identify subgroups using a few feature
genes, providing a theoretical basis for the precise treatment of CAD patients with
different molecular subgroups.
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Background

Coronary artery disease (CAD) is a prevalent cardiac illness
characterized by the narrowing or blockage of coronary arteries,
which are the major vessels supplying blood to the heart. This
restriction impedes the delivery of sufficient blood, oxygen, and
nutrients to the heart muscle, leading to the accumulation of
cholesterol deposits (plaque) and inflammation within the arterial
walls (Libby et al., 2021). As a leading cause of death worldwide,
CAD poses significant health risks and requires prompt intervention
and management to mitigate its adverse effects. In 2019, CAD
affected an estimated 197 million patients worldwide, resulting in
9.1 million deaths (16.1% of all deaths) (GBD, 2019 Demographics
Collaborators, 2020; Roth et al., 2020). As with the majority of
complicated disorders, A person’s risk of suffering CAD is
influenced by the interplay of inherited and lifestyle variables
(Khera and Kathiresan, 2017). The latest epidemiological studies
have shown that risk factors for the development of CAD include
smoking, hypertension, dyslipidemia, and lack of physical activity,
while the prevalence of CAD is increasing in elderly, diabetic, and
obese populations (Duggan et al., 2022).

Recent research has shed light on the significant roles of
coagulation Factors II (prothrombin), V, VII, and X in CAD.
Dysregulation levels of these factors are associated with an
increased risk of CAD and adverse cardiovascular events. High
neutrophil and basophil blood cell counts, linked to enhanced factor
II plasma coagulation activity, may predict mortality in clinically
stable CAD patients, indicating underlying prothrombotic
mechanisms (Pizzolo et al., 2021). Additionally, the Factor V
Leiden mutation poses a risk for premature coronary artery
disease, while elevated levels of the coagulation factor VIIa-
antithrombin complex are associated with an increased risk of
ischemic stroke/systemic thromboembolism (Paszek et al., 2022;
Agosti et al., 2023; Valeriani et al., 2023). In related experiments,
high-dose statin therapy has shown effectiveness in reducing levels
of coagulation factors VII, VIII, and XI, all linked to thrombosis
(Stępień et al., 2023). Notably, the reduction in factor XI levels
corresponds to a less prothrombotic fibrin clot phenotype,
suggesting additional antithrombotic effects in CAD patients
(Stępień et al., 2023). Specifically, Factor II promotes thrombus
formation, Factor V facilitates fibrin formation, Factor VII initiates
the coagulation cascade, and Factor X promotes clot formation,
offering potential therapeutic targets for CAD management
(Redondo et al., 1999). Furthermore, targeting fibrinogen and
factor XI has been demonstrated to decrease the risk of venous
thromboembolism and ischemic stroke, supported by Mendelian
randomization analysis (Yuan et al., 2021). Additionally, inhibiting
factors V, VII, and X may reduce the risk of ischemic stroke (Yuan
et al., 2021). These findings underscore promising therapeutic
targets for mitigating cardiovascular disease risk associated with
the inhibition of clotting factors.

The coagulation system significantly impacts the development
of atherothrombotic diseases such as atherosclerosis. Coagulation
factors also contribute to plaque instability, inflammatory responses,
and thrombotic events within arterial walls, exacerbating
atherosclerosis progression and elevating the risk of
cardiovascular events like myocardial infarction and stroke (Ajjan
and Grant, 2006; Keihanian et al., 2018). Therefore, targeting

coagulation system regulation presents a promising strategy for
preventing and treating atherothrombotic diseases.

Hence, our study employs artificial neural networks to analyze
coagulation-related gene expression patterns in CAD. This
innovative approach deepens our comprehension of CAD
pathogenesis by revealing intricate molecular signatures and
interactions within the coagulation pathway. Through the
identification of potential biomarkers and therapeutic targets, our
research endeavors to propel personalized treatment strategies for
CAD forward.

Methods

Publicly available cohort datasets and
preprocessing

The “GEOquery” R package (Davis and Meltzer, 2007) was used
to download data, and obtain the expression profiles of chip datasets
GSE20681 (Beineke et al., 2012), GSE20680 (Elashoff et al., 2011),
and GSE12288 (Sinnaeve et al., 2009). The chip probes
corresponding to the platform were taken from the Gene
Expression Omnibus (GEO) database. The “org.Hs.eg.db” R
package was used to conversion to gene symbols. We combined
the GSE20681 and GSE20680 datasets as the training group, and the
GSE12288 dataset as the validation group. The “sva” R package was
used to remove the batch effect of the two datasets due to differences
in time, personnel, and processing methods (Leek et al., 2012).
Principal component analysis (PCA) was used to assess the
distribution of the two expression matrices.

Coagulation pathways were gathered from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (https://
www.genome.jp/kegg/), including hsa04611 (platelet activation) and
hsa04610 (complement and coagulation cascades) (Kanehisa and
Goto, 2000). There are 209 genes in all determined to be
coagulation-related genes (CRGs) in the two pathways.

Consensus clustering analysis of CRG
expression patterns

The k-means algorithm was used to cluster CAD samples with
the same or similar expression levels of CRGs with 1000-times
iteration for classification stability. We used the
“ConsensusClusterPlus” R package to implement the algorithm
for the optimal k-value (number of clusters) in the training
cohort. PCA analysis was performed to reveal differences in the
distribution of CRG-subgroups. We also used external datasets for
validation.

Pathway characteristics and immune
landscape of CRG-subgroups

The heatmap was plotted to display changes in biological
functions between CAD subgroups, gene set variation analysis
(GSVA) was carried out using the “GSVA” R package
(Hänzelmann et al., 2013) to evaluate normalized enrichment
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scores (NES) for pathway and functional annotations. The single-
sample gene set enrichment analysis (ssGSEA) was used to quantity
the degree of infiltration of 23 immune cell signatures in each
coronary patient.

Comparison and enrichment analysis of
CRG-subgroups

The “limma” R program was used to obtain differentially
expressed genes between the C1 and C2 CRG-subgroups (DE-
CRGs). The “org.hs.eg.db” R package was applied to annotate
gene symbols as Entrez IDs, and the “cluster Profiler” R program
was used to perform Gene Ontology (GO) and KEGG pathway
analyses on DE-CRGs.

Identification and validation feature CRGs

First, the least absolute shrinkage and selection operator
(LASSO) regression was used to filter feature DE-CRGs. The
LASSO algorithm’s variable selection and shrinkage were
performed using the “glmnet” R package (Friedman et al., 2010).
For the training cohort, CRG-subgroup (C1/C2) of CAD was the
response variable in the regression, while the independent variable
in the regression was the normalized expression matrix of potential
feature genes (DE-CRGs). The penalty parameter (λ) of the model
was determined by ten-fold cross-validation following the minimum
criterion. Then, a random forest (RF) model of DE-CRGs was
created using the “randomForest” R package (Guidi et al., 2013),
and dimension important values were extracted from the RF model
using the approach of decreasing accuracy (Gini coefficient
method). For further analysis, disease-specific genes with an
importance value (“MeanDecreaseGini” index) higher than
2.0 were chosen. Finally, the feature DE-CRGs were obtained by
intersecting the particular genes provided by the two approaches.

Construction of CAD classification model by
artificial neural network

Artificial neural network is a computing structure proposed
based on the mechanism of biological neuron network, which is a
kind of simulation, simplification and abstraction of biological
neural network. Neurons (feature DE-CRGs) are the “nodes” of
this network, the “processing units”. We constructed a topological
network with layered connections. The neural network with layered
structure can be separated into input layer (reception of external
input information), hidden layer (exchange and transmission of
internal information) and output layer (output of information
processing results). Each layer is connected in sequence, and the
signal is transmitted in one direction.

We used the training set dataset to establish the neural network
disease classification prediction model, and another external data set
(validation group) is selected for neural network model validation.
The model of feature DE-CRGs was constructed using the
“neuralnet” R package (Beck, 2018). Prior to training the neural
network, normalization and min-max processing were performed

on the two groups of data. In the neural network model, we set a
hidden layer as a model parameter, and constructed a CAD
classification model through the obtained gene weight
information. In this model, the sum of the product of the weight
score and the expression level of important genes is used as the
disease classification score. The confusion matrix function was used
to do the five-fold cross-validation and acquire the model accuracy
results. The AUC classification performance verification results were
calculated using the “pROC” software package. The accuracy, recall,
precision, and F1 scores were evaluated to assess the validity and
reliability of the model.

Statistical analysis

All data analysis in this study was based on R software (version
4.2.1). Pearson and Spearman correlation analysis was used to test
the correlation between two variables. Bayesian testing with
Benjamini–Hochberg procedure were used for differential
analysis to screen the genes with significant differences between
the two groups. All tests were two-sided, and p < 0.05 was considered
statistically significant.

Results

Characteristics of CRG-subgroups with
coronary artery disease

The workflow diagram of the study is displayed in Figure 1. We
obtained 242 CAD patients (excluding controls) from
GSE20680 and GSE20681 datasets as the training group, and
110 CAD patients from GSE12288 as the validation group. We
combined the data from the two datasets in order to eliminate the
batch effect and get a consistent classification for the training
group. Before removing batch effects, samples were clustered
across datasets according to the first two principal components
(PCs) of unnormalized expression values (Figure 2A). In contrast,
the scatterplots of PCA analysis based on normalized expressions
showed that the batch effect produced by different platforms was
significantly eliminated (Figure 2B). The outcomes demonstrated
that batch effect removal via cross-platform normalization is
successful.

Identification of CRG-subgroups in coronary
artery disease

Two distinct expression patterns, comprising 117 instances in
the coagulation-related cluster C1 and 125 cases in cluster C2, were
found by employing an unsupervised clustering approach to analyze
the expression levels of CRGs from CAD patients in the training
group (Figures 3A, B). In accordance with the PCA analysis, all
patients could be roughly divided into two parts, which further
confirmed two distinct subgroups (Figure 3C). Furthermore, we
performed subgroup identification in the validation dataset.
Similarly, the validation dataset can also be divided into two
different coagulation subgroups (Figures 3D–F).
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Immune landscape of CRG-subgroups

We used GSVA analysis to compare the regulatory pathway
between the two coagulation subgroups in the training dataset, and
we discovered that the two subgroups showed clear biological
functional differences. The enrichment heatmap revealed that the
signaling pathways involved in the metabolism of tyrosine, retinol,
linoleic acid, and other biological compounds were significantly
enriched in the C1 subgroup (Figure 4A). At the same time, we
discovered that the C1 subgroup also had enriched calcium
channels and ECM receptor interaction (Figure 4A). In 2022, it
was proven that extracellular matrix proteins have a regulatory
function on natural killer cells (Bunting et al., 2022). Calcium
serves as both a signal and a nutrient in the regulation of numerous

immunological responses linked to B cells and plasma cells
(Newman and Tolar, 2021). Taking into account the
relationships between CRG-subgroups and the immune system
in CAD, we used the ssGSEA method andWilcoxon test to analyze
the abundance of immune cell infiltration of two CRG-subgroups
based on the CRGs expression of the training group. The
C1 subgroup is characterized by a higher degree of infiltration
of natural killer cells and type 17 T helper cells; while the
C2 subgroup is characterized by a higher degree of infiltration
of immune cells such as activated B cells, activated CD4 T cells,
activated CD8 T cells, eosinophil, and immature B cells
(Figure 4B). We also calculated immune-related indicators
using ssGSEA and found that the expression levels of antigen-
presenting cell (APC) co-stimulation, check-point-related

FIGURE 1
Workflow diagram.
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immune factors, and CCR gene family were higher in the
C1 subgroup; the expression levels of HLA gene family,
inflammation-promoting and parainflammation-related factors

were higher in C2 subgroup (Figure 4C). This suggests that
different coagulation subgroups of CAD have different immune
microenvironments.

FIGURE 2
Principal component analysis (PCA) of the training group datasets. Visualization samples of the first two principal components before (A) and after (B)
batch-effect removal.

FIGURE 3
Identification of coagulation-related subgroups. (A, B) Consensus clustering matrix for k = 2 (optimal cluster number) of the training group. (C) PCA
analysis of the training group. Cluster analysis (D, E) and PCA analysis (F) of the validation group.
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Functional enrichment analysis of DE-CRGs

DE-CRGs between the C1 and C2 subgroups of the training set
dataset were identified by Bayesian testing using the “limma” R

package. We screened with |log2FC|>1 and adj. p < 0.05 as the
threshold to identify 95 DE-CRGs related to the coagulation
function of CAD, and the DE-CRGs are shown in the heatmap
(Figure 5A; Supplementary Table S1).

FIGURE 4
Immune landscape of coagulation subgroups. Gene set variation analysis (GSVA) (A) and differences in immune cell abundance (B) and immune
indicators (C) between CRG-subgroups.
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GO enrichment analysis of 95 significant DE-CRGs was
implemented using the “clusterProfiler” R package with the
thresholds at p-values <0.01 and FDR values < 0.01. The
outcomes of the GO analysis revealed that these DE-CRGs were
mostly enriched in signal transduction-related biological functions
such as G protein−coupled peptide receptor activity, serine−type
endopeptidase activity, intermediate filament cytoskeleton, calcium
ion homeostasis, and transmission of nerve impulse; they were also
enriched in regulation of blood pressure, blood vessel diameter
maintenance, positive regulation of vasoconstriction related to
coagulation and vascular blood pressure regulation (Figure 5B;
Supplementary Table S2). According to KEGG analysis, it was
found that 95 DE-CRGs were enriched in neuroactive ligand-
receptor interaction, cAMP signaling pathway, calcium signaling
pathway, notch signaling pathway, complement and coagulation
cascades and other signaling pathways (Figure 5C;
Supplementary Table S3).

Screening and validation of feature
DE-CRGs

First, LASSO regression analysis was performed on 95 DE-
CRGs, and the cross-validation method was used for iterative
analysis. The results showed that the model’s root means square
error was lowest when there were 19 variables (Figure 6A). Then, we
performed recurrent random forest classification on all possible
numbers in 95 variables and calculated the average error rate of the
model. Referring to the model error graph, it was found that when
the number of classification trees is around 100, the error in the
model tends to remain stable (Figure 6B). As the random forest
model is being created, the Gini coefficient method was used to
reduce the precision and mean square error, and the top
30 characteristic genes of variable importance were output, and
the 22 characteristic genes whose “MeanDecreaseGini” index was
greater than 2.0 were analyzed (Figure 6C). Finally, we intersected
the genes acquired by the two methods to obtain 10 feature DE-
CRGs (Figure 6D).

We used unsupervised clustering to compare the expression
levels of 10 feature DE-CRGs in CAD patients, and the findings

revealed that C1 subgroup patients had high gene expression,
whereas C2 subgroup patients had low gene expression.
(Figure 7A). Subsequently, we constructed ROC curves for
10 feature DE-CRGs one by one to predict CAD coagulation-
related subgroups, and found that the AUC values of 10 genes
were all greater than 0.9 (Figures 7B–K). These results show that our
feature DE-CRGs have an excellent ability to diagnose and predict
molecular subgroups.

Construction of artificial neural
network model

We extracted a matrix of 10 feature DE-CRGs expression levels
and CAD outcome variables (C1/C2) of 243 samples in the training
group to establish a neural network prediction model (Figure 8A).
10 input layers, 5 hidden layers, and 2 output layers are set up for the
artificial neural network. The area under the ROC curve (AUC) of
the five-fold cross-validation results was 0.999 (Figure 8B). The
accuracy, recall, precision, and F1 score of the training group were
0.979, 0.984, 0.976, and 0.980 (Figure 8C). Similarly, the
classification effectiveness of the model scoring model created
using gene expression and gene weights was confirmed using the
validation group, and the AUC value of the ROC curve of the
validation group also reached 0.999 (Figure 8D). The accuracy,
recall, precision, and F1 score of the validation group were 0.927,
0.951, 0.921, and 0.936 (Figure 8E), which is confirmed that the
artificial neural network model we established has excellent
predictive robustness for the classification of C1/C2 CRG-
subgroups in CAD patients.

We performed Spearman correlation analysis on the gene
expression levels of 10 feature DE-CRGs for constructing
artificial neural networks and the relative abundance and
immune function of immune cells. Among them, 10 genes were
positively correlated with the contents of natural killer cells and
type-17 T helper cells, and positively regulated the expression level
of CCR family, the functions of APC co-stimulation and check-
point; while 10 genes are negatively correlated with γδ T cells and
type-2 T helper cells, and antagonize the immune function
associated with inflammation-promoting and so on. All 10 genes

FIGURE 5
Functional analysis of DE-CRGs between two subgroups. Significance of difference analysis (A), Gene Ontology (GO) enrichment analysis (B), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis (C) between C1 and C2 CRG-subgroups.
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were weakly correlated with immune-related indicators (|cor|<0.5,
Figures 9A, B). Moreover, the correlation coefficients between the
expression levels of different feature DE-CRGs and the content of a
certain immune marker follow the nearly same pattern (a row of
similar colors). We speculate that these 10 genes may collaboratively
contribute to the immunological program of CAD patients.

Discussion

In recent years, research on molecular subgroups and particular
illness biomarkers has been intensively conducted due to the
advancement of whole-genome sequencing technology and the
demand for individualized treatment. For example, molecular
characterization and typing of triple-negative breast cancer
(Bareche et al., 2018; Zhao et al., 2020), colorectal cancer
(Menter et al., 2019; Hu et al., 2021), lung adenocarcinoma

(Wang et al., 2020), pancreatic ductal carcinoma (Topham et al.,
2021), and other solid tumors based on tumor multi-omics datasets
from the Cancer Genome Atlas (TCGA) database (Tomczak et al.,
2015); molecular typing of non-neoplastic diseases are commonly
used in immune-related diseases such as HIV (Patil et al., 2020;
Amer et al., 2021). However, other diseases are limited by the lack of
large-scale sequencing data, and molecular diagnosis and typing are
still in the preliminary development. Therefore, we focused on the
molecular characteristics of a special physiological activity
(coagulation) in CAD patients using gene expression data from
individuals in the GEO database. It is hoped that from the molecular
level, as a supplement to traditional clinical diagnosis methods, it
can improve the prediction accuracy of patient prognosis and
diagnosis, and provide clinicians with improved decision-
making tools.

In our study, an artificial neural network is introduced, and the
model can accurately predict the molecular subgroups of CAD

FIGURE 6
Identification feature DE-CRGs between two coagulation-related subgroups. (A) Cross-validation for selecting optimal parameter (λ) in LASSO
regression. (B) Model error during building (C) and importance of top 30 genes in random forest model. (D) Intersection genes of 19 genes obtained by
LASSO regression and 22 genes with “MeanDecreaseGini” index >2.0 in the random forest model.
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patients. An artificial neural network is an algorithm based on
artificial intelligence and machine learning that consists of a
densely linked network of computer processors that were
inspired by biological nerve systems (Steimann, 2001).
Backpropagation and Bayesian inference techniques are used in
data mining andmachine learning for artificial intelligence to handle
gathered medical data (Salari et al., 2014). Artificial intelligence
facilitates the clinical diagnostic and prognosis prediction processes
by classifying and organizing medical knowledge and clinical data

(Wong and Monaco, 1995; Jiang et al., 2017). The combined model
of machine learning and artificial neural networks utilizing genetic
polymorphisms in this study outperforms previous ANN models
(Cheng et al., 2022) and other machine learning approaches (Peng
et al., 2022) based solely on clinical features when diagnosing CAD
patient subgroups. This enhanced diagnostic performance
underscores the importance of integrating genetic information
into predictive models for CAD. By leveraging genetic
polymorphisms alongside ANN technology, this joint model

FIGURE 7
Evaluation and validation of the prediction performance of feature DE-CRGs. Unsupervised clustering (A) of 10 feature genes for C1 and
C2 subgroups. ROC curves ofOR10A5 (B), FOXL1 (C), FBN1 (D), PROKR1 (E), SFTPA1 (F), LHFPL5 (G), KLKB1 (H),HUMBINDC (I),CYP2B6 (J) andMAPK11 (K)
for predicting the coagulation-related subgroups.
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offers improved accuracy in identifying CAD patients, thus
potentially advancing personalized diagnostic approaches in
clinical settings.

However, the limitations of the model are mainly reflected in the
fact that the model may have overfitting problems when the training
sample size is relatively small; at the same time, the initialization
parameters of the neural network have a certain impact on the
performance of the model, and the way to set the parameters is a
non-deterministic polynomial problem. Therefore, one of the main

directions that need to be explored in the next step is how to set the
optimal initialization parameters of the model. This may involve
combining regularization techniques with swarm intelligence
optimization algorithms and ensemble methods to develop more
reliable and generalizable models for genomic analysis. For example,
the initial parameters of the model can be further optimized through
the swarm intelligence optimization algorithm, such as the whale
optimization algorithm (Brodzicki et al., 2021), Harris Hawks
optimization algorithm (Qu et al., 2021), and wolf pack

FIGURE 8
Construction and validation of the artificial neural network. Artificial neural network pattern plot (A) for predicting coagulation-related C1/
C2 subgroups. ROC curves of training (B) and validation groups (D) for the model. The accuracy, F1-score, precision and recall of training (C) and
validation groups (E) for the model.
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optimization algorithm (Chen et al., 2021), to obtain more accurate
results. Additionally, efforts to improve data quality and increase
sample sizes can help reduce the risk of overfitting and enhance the
robustness of artificial neural network-based predictive models in
clinical applications.

Among the feature genes for constructing artificial neural
networks, KLKB1 and PROKR1 have been confirmed to be
related to coagulation function and the angiogenesis process.
KLKB1 is usually synthesized in hepatocytes and secreted into
the blood and is involved in the surface-dependent activation of
blood coagulation, fibrinolysis, kinin production, and biological
processes of inflammation, which can reflect the severity of liver

injury (Che et al., 2021). The TBX20-PROK2-PROKR1 pathway
may also be a target for the treatment of diseases associated with
dysregulation of angiogenesis, benefit on patients with ischemic
heart failure (Lichtenauer and Jung, 2018). Comparisons with
similar studies might involve investigations into other receptor
genes, such as PROK2 (Lichtenauer and Jung, 2018), EDN1
(Liang et al., 2018), and NOS3 (Teralı and Ergören, 2019), which
play roles in vascular function and inflammation regulation andmay
have similar implications in CAD.

SFTPA1, FOXL1, and MAPK11 are tumor-characteristic
molecular markers. SFTPA1 variant carriers are at increased
risk of inherited lung disease (Benusiglio et al., 2021), and this

FIGURE 9
Immunological characterization of 10 feature DE-CRGs in artificial neural networks. Correlation of the 10 geneswith immune cell abundance (A) and
immune function (B).
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gene may be a viable prognostic biomarker since it is connected to
immune cell infiltration and the effectiveness of immunotherapy
in lung cancer (Yuan et al., 2022). It has been established that
FOXL1 is intricately linked to the onset and progression of glioma
(Chen et al., 2019), renal cancer (Yang et al., 2014), and
pancreatic cancer (Zhang et al., 2013). MAPK11 plays a role in
a variety of female tumors (breast cancer (He et al., 2014), uterine
endometrial cancer (Li et al., 2019), cervical cancer, ovarian
cancer, and uterine carcinosarcoma), and its expression levels
are significantly reduced (Katopodis et al., 2021). In addition,
CYP2B6 is the only gene encoding a functional enzyme in the
human CYP2B subfamily (Desta et al., 2021), genetic variation in
this gene locus affects the metabolism or bioactivation of
clinically important drugs bupropion (Kirchheiner et al., 2003)
and efavirenz (Haas et al., 2004; Desta et al., 2007). Pathogenic
mutations in FBN1 are the cause of Marfan syndrome, a life-
threatening autosomal dominant disorder of connective tissue
(Wang et al., 2022). Lipoma HMGIC fusion partner-like 5
(LHFPL5) is an important molecule in the normal auditory
system involved in mechanotransduction pathways in sensory
hair cells of the ear (Yu et al., 2020).

It is noteworthy that these feature genes have been implicated in
various biological processes relevant to immune function and CAD
pathogenesis. For instance,KLKB1 encodes for plasma kallikrein, which
plays a role in the kinin-kallikrein system and has been associated with
inflammation and thrombosis (Hayama et al., 2016). PROKR1 has been
linked to angiogenesis and vascular development, both of which are
closely intertwined with immune response modulation (Goryszewska
et al., 2020). Furthermore,MAPK11 is involved in the MAPK signaling
pathway, which regulates immune cell activation and cytokine
production (Roche et al., 2020). By elucidating the interplay between
these genes and immune cells, we gain insights into the complex
immunological mechanisms underlying CAD development and
progression. This understanding may inform the development of
novel immunomodulatory therapies and precision medicine
approaches targeting immune-inflammatory pathways in CAD.

The evolution of precision therapeutics in the context of disease
genomics offers promising avenues for enhancing patient care in
various medical conditions, including coronary artery disease
(CAD). By leveraging extensive data analysis and molecular
classification, precision medicine approaches aim to tailor
treatments to individual patients based on their specific genetic
makeup and disease characteristics.

In the study mentioned, the use of artificial neural networks
represents a novel approach to identifying characteristic genes
associated with CAD from large-scale genomic data. These genes
can serve as diagnostic biomarkers, allowing for more accurate
diagnosis and even risk prediction of CAD. The ability of artificial
neural networks to analyze complex gene interactions enhances our
understanding of the genetic mechanisms underlying CAD, thereby
improving diagnostic accuracy, particularly in patients with diverse
genetic backgrounds.However, despite the potential benefits, challenges
remain. Large-scale, high-quality genomic data are essential for training
and optimizing artificial neural network models, highlighting the need
for continued investment in data collection and curation efforts.
Additionally, further validation of the effectiveness and reliability of
the identified feature genes in real-world clinical settings is necessary to
ensure their utility in improving patient outcomes.

Future research directions could explore integrating multi-omics
data, such as proteomics, to enhance artificial neural network model’s
recognition capabilities further. Additionally, combining artificial
neural networks with other advanced technologies like single-cell
sequencing and gene editing may offer synergistic advantages in
achieving more accurate and personalized diagnosis and treatment
of CAD. In summary, precision therapeutics driven by advancements
in disease genomics, coupled with innovative approaches like artificial
neural networks, hold great promise for revolutionizing the diagnosis
and treatment of CAD. Continued research efforts and technological
advancements are crucial for overcoming existing challenges and
realizing the full potential of precision medicine in cardiovascular
healthcare.

Conclusion

In summary, our study identified two distinct molecular
subgroups in coronary artery disease (CAD) related to
coagulation function through gene expression profiling of CAD
patients. We further investigated the biological function and
immunological characteristics of these subgroups, revealing
differing immunological roles between them. Utilizing LASSO
and RF, we screened feature genes associated with coagulation
function and developed an artificial neural network model for
subgroup classification. The model exhibited excellent prediction
accuracy, providing a theoretical framework for precision
medicine in CAD by identifying patients with different
molecular subgroups and suggesting novel medication therapy
targets. This research significantly advances precision medicine
in CAD by aligning with personalized treatment strategies and
offering new avenues for improving patient outcomes. Future
directions involve validating these molecular subgroups in
larger patient cohorts and exploring their implementation in
clinical settings to realize the full potential of precision
medicine in CAD management.
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