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The burden of Type 1 diabetes (T1D) is vast and as of 2021, an estimated
8.4 million people were living with the disease worldwide. Predictably, this
number could increase to 17.4 million people by 2040. Despite nearly a
century of insulin therapy for the management of hyperglycemia in T1D, no
therapies exist to treat its underlying etiopathology. Adequate dietary intake of
omega-3 fatty acids (ω-3) has been reported in observational studies and
Randomized Controlled Trials to be associated with reduced risk of
developing T1D but results have been inconclusive. We conducted a
Mendelian randomization (MR) study to explore the relationship between ω-3
intake and T1D. We performed a two-sample MR analysis using single nucleotide
polymorphisms associated with ω-3 levels in a sample of 114,999 Europeans and
their effects on T1D from a genome-wide association study meta-analysis of
24,840 European participants. A main MR analysis using the Inverse-variance
weighted (IVW) method was conducted and validated using MR-Egger, Weighted
median, and Weighted mode methods. Sensitivity analyses excluding potentially
pleiotropic single nucleotide polymorphisms were also performed. Main MR
analysis using the IVW method showed no evidence of a causal relationship
between ω-3 levels and T1D risk (OR: 0.92, 95% CI: 0.56–1.51, p = 0.745). MR-
Egger and Weighted mode methods showed similar results while Weighted
median showed a marginally significant association (OR: 1.15, CI: 1.00–1.32,
p = 0.048). Sensitivity analysis revealed heterogeneity in the main analysis MR
estimates (IVW Q > 100, p < 0.0001) and no directional pleiotropy (Egger
intercept: −0.032, p = 0.261). Our study found limited evidence of a causal
association between ω-3 and T1D, with only a marginally significant association
observed in one of the four MR methods. This challenges the proposition that ω-
3-rich diets are of substantial benefit for the prevention andmanagement of T1D.
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Introduction

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease
characterized by the destruction of insulin-producing pancreatic
beta cells and an ensuing lack of or low insulin (Bach, 1994;
Eisenbarth, 2004). The burden of T1D is vast and as of 2021, an
estimated 8.4 million people were living with the disease across the
globe. It is predicted that by 2040, this number could increase to up
to 17.4 million people (Gregory et al., 2022). Despite nearly a century
of insulin therapy for alleviating hyperglycaemia and the
accompanying symptoms of T1D, no therapies exist to treat the
underlying etiopathology of the disease. Nonetheless, several large-
scale trials have been conducted in recent years targeting
interventions to preserve β-cell function and prevent or delay
onset of their auto-destruction. Consortia such as the Type
1 Diabetes TrialNet (Bingley et al., 2018) and The Diabetes
Prevention Trial–Type 1 Diabetes Study Group (2002) have
embarked on coordinated efforts to develop disease-modifying
interventions for at-risk individuals. One such trial from the T1D
TrialNet involved the administration of oral insulin and found
limited benefit of this intervention for preventing or delaying
T1D onset. Additional studies have shown promising results for
the use of immunotherapies that target immune cells or their
pathways, as well as agents that induce immune tolerance to β-
cells (Ke et al., 2020; Rapini et al., 2020; Rathod, 2022; Zhang et al.,
2022) Other interventions such as islet transplantation and stem-cell
therapy have also shown benefit in restoring insulin production, but
these are limited by the short supply of donor islets and stem cells,
and the risks associated with immunosuppression (Kort et al., 2011;
Chen et al., 2020; Wan et al., 2022). Overall, these interventions
present a promising outlook for T1D prevention but are hampered
by their prohibitive costs (Tucker, 2022).

As evidenced by several studies, dietary interventions could offer
a cost-effective approach to lowering the risk of T1D. Researchers
have hypothesized that exclusive breastfeeding, delaying the
introduction of cow’s milk and cereals, dietary intake of Vitamin
D & E, zinc and polyunsaturated fatty acids (PUFA) are associated
with T1D (Walter et al., 1991; Beales et al., 1994; Kimpimäki et al.,
2001; Norris et al., 2003; Stene et al., 2003; Cardwell et al., 2012;
Frederiksen et al., 2013). The role of fatty acid status in the
development of T1D has been of notable interest to researchers.
Particularly, adequate dietary intake of omega-3 fatty acids (ω-3) has
been associated with a reduced risk of developing Diabetes (Baidal
et al., 2016; Delpino et al., 2022; Elbarbary et al., 2023; Stene et al.,
2003). A longitudinal, observational study, the Diabetes
Autoimmunity Study in the Young (DAISY), conducted in
1,770 children at increased risk for T1D found that dietary intake
of ω-3 is associated with reduced risk of islet autoimmunity (IA) in
children (Norris et al., 2007). A metabolomic study by Niinistö et al.
(2021) suggested that an altered early life fatty acid profile, which is
somewhat linked with ω-3 intake, may predict risk for IA. While
observational studies suggest an association between reduced ω-3
and increased risk of developing TID, a recent meta-analysis of
randomized controlled trials (RCTs) established that ω-3
supplementation has limited benefit for the prevention of Type
2 diabetes in humans (Brown et al., 2019), and evidence for
preventing T1D remains inconclusive and limited to animal
studies (Bi et al., 2017).

The mechanisms by which ω-3 may have a protective effect
against T1D are not fully understood. However, some studies have
provided evidence for its potential role in allaying T1D through its
anti-inflammatory effects (Delarue and Magnan, 2007; Newsholme
et al., 2019; Poggioli et al., 2023). A recent study conducted in non-
obese diabetic mice showed that mice that were fed on a PUFA-
enriched diet had improved glucose tolerance, suggesting the
possibility of an effect on β-cell function (Fenske et al., 2021).
Some research has also suggested that ω-3 may help to regulate
gut microbiota, which could have an impact on the development of
autoimmune diseases such as T1D (Komaroff, 2017). The gut
microbiome plays an important role in the immune system, and
disturbances in its composition have been linked to the development
of autoimmune diseases (Wu andWu, 2012; Kaliannan et al., 2015).

Although RCTs are considered the gold standard for inference of
causality, the long lead time between exposure (e.g., diet) and
development of disease means that trials may take several years
to produce robust results. Furthermore, the stringent inclusion
criteria in RCTs limit generalizability in that conditions of the
trial do not necessarily typify real life conditions. Mendelian
randomization (MR) offers an alternative approach to inferring
causality between exposures and outcomes (Sheehan et al., 2008;
Davey Smith et al., 2020). These studies can be likened to a ‘natural’
RCT in that genetic factors are randomly assigned by nature at
conception. MR exploits Mendel’s laws of segregation and
independent assortment of alleles from parents to their offspring.
As such, MR utilizes genetic variants related to an exposure of
interest to proxy exposure variables with independence from
confounding influences from other traits (Smith and Ebrahim,
2003). To the best of our knowledge, this approach has not been
used to investigate a causal role for ω-3 deficiency in T1D. Given the
scarcity of evidence from RCTs, we conducted an MR study using
summary data from a GWAS of ω-3 polyunsaturated fatty acids
(Borges et al., 2022) and a meta-analysis of 12 GWAS on T1D of
individuals of European ancestry (Forgetta et al., 2020), to explore
the relationship between ω-3 intake and T1D.

The findings from this study have significant implications for
public health. As the global prevalence of T1D is predicted to
increase over the next few decades, so will the economic burden
associated with long-term management costs. The design and
adoption of dietary and pharmacological interventions to alter
the course of T1D in at-risk groups based on considerations of
ω-3’s effects on T1D requires scientifically sound evidence. This
study lends credence to these interventions in addition to opening
new lines of inquiry for potential preventive and treatment strategies
against T1D.

Methods

TheMRmethod uses genetic variants that serve as a proxy for an
environmentally modifiable exposure in order to make causal
inferences about the outcome (Burgess and Thompson, 2017).
Figure 1 below illustrates the theoretical underpinnings of the
MR approach. The assumptions that must hold for a valid MR
analysis are that; 1) the genetic elements chosen as proxies are
robustly associated with the modifiable exposure (ω-3); 2) the
genetic variants are not associated with confounders (e.g., BMI,
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vitamin D) that bias association between the modifiable risk and the
outcome (referred to as horizontal pleiotropy) and; 3) the genetic
variants influence the outcome only through the exposure (Smith
and Ebrahim, 2003).

In this MR study, we used publicly available data obtained from
the OpenGWAS database, a curated repository of complete GWAS
summary datasets (Elsworth et al., 2020). A GWAS of ω-3
polyunsaturated fatty acids in a sample of 114,999 male and
female European participants and a meta-analysis of 12 GWAS
on T1D including a total of 9,358 cases and 15,482 controls of
European ancestry. We identified SNPs associated with ω-3 and
used these as proxies to explore the causal relationship between ω-
3 and T1D.

MR analysis workflow

This study was performed using a conventional two-sample MR
design. The analysis was performed as shown in the workflow in
Figure 2 and findings are reported based on the STrengthening the
Reporting of OBservational studies in Epidemiology using
Mendelian Randomization (STROBE-MR) guidelines
(Skrivankova et al., 2021) (Supplementary Table S6). Ethical
approval was not required for this study since the analysis was
performed using publicly available data.

Selection of genetic instruments associated
with ω-3

To ensure that the instruments were robustly associated with the
exposure of interest and conditionally independent, SNPs at a
genome-wide significance level of p < 5e-8 were clumped at a
distance of 10,000 kb and an r2 cut-off of 0.001. SNPs from the
exposure dataset were then queried against the T1D GWAS
summary statistics, and for those that were not measured in the
outcome dataset, parameters allowed for proxy SNPs to be searched
using the1000 Genomes European reference sample at a minimum
linkage disequilibrium (LD) r2 of 0.8. Palindromic SNPs were
inferred at a minor allele frequency (MAF) threshold of 0.3. To
obtain statistical evidence that the selected SNPs were sufficiently
robust, the F-statistic was computed to measure the strength of the

FIGURE 1
Schematic of the MR study design of the effect of ω-3 on T1D.

FIGURE 2
Analysis workflow for two-sample MR assessing the relationship between ω-3 and T1D.
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instrumental variables to predict the exposure using the formula β2 x
(1–x), where β and x are the effect of the SNP on ω-3 and the MAF,
respectively.

Mendelian randomization analyses

Primary MR analysis was performed using Inverse-variance
weighted (IVW) regression to estimate the genetically predicted
effect of ω-3 levels on T1D susceptibility. The IVW method is
considered the most accurate for the estimation of causal effects for
two-sample MR analyses since it gives similar point estimates to an
individual-level data analysis (Burgess et al., 2013). Specifically, the
Wald ratio was used to estimate the effect of each instrumental variable
on T1D risk weighted by its effect on ω-3 levels (Burgess et al., 2015;
Boehm and Zhou, 2022). MR estimates of each instrumental variable
were thereafter combined using a random effects inverse variance
model. Additional MR analyses using MR-Egger, Weighted median,
andWeightedmodemethods were conducted to examine the validity of
the results and provide more robust evidence for causal inference by
confirming the consistency of results across different methods (Hemani
et al., 2017). While MR-Egger regression estimates may be inaccurate if
all IVs have similar magnitudes of association with the exposure, it can
yield consistent estimates even when all selected IVs are invalid. The
Weighted median method assumes that estimates from IVs without
pleiotropic effects tend towards the median, whereas pleiotropy would
be expected to introduce heterogeneity resulting in outliers. This
method provides a precise causal estimate, even when up to 50% of
theweight is from invalid IVs (Bowden et al., 2016). Theweightedmode
approach is less stringent on IV assumptions, granting pleiotropy even
for the majority of the SNPs (Hartwig et al., 2017).

Sensitivity analyses

In addition to a robust association between the IVs and the
exposure, MR assumes that the genetic instruments affect the
outcome only through the exposure and that they are not
associated with traits that could bias the association between the
exposure and outcome (Lawlor et al., 2008; Smith and Hemani,
2014). Violation of these assumptions is evidenced by the presence
of heterogeneity and horizontal pleiotropy. Sensitivity analyses
assessing for potential violation of these assumptions were
conducted using the IVW and MR-Egger regression methods.
Presence of heterogeneity was evaluated using the Cochran’s Q
statistic and the existence of horizontal pleiotropy was evaluated
using the Egger-intercept, considered at a significant p-value <0.05.
Additionally, in order to identify IVs associated with potentially
confounding GWAS traits, we queried the PhenoScanner database
for each ω-3-associated SNP considering positive associations at a
cut-off p-value of 5e-08 for genome-wide significant associations.
This was done using the PhenoScanner package (Staley et al., 2016;
Kamat et al., 2019) in R. The approach to analysing the
PhenoScanner SNP-trait associations was adopted from a
Mendelian randomization study by Manousaki et al. (2021)
which investigated Vitamin-D levels and risk for T1D. SNP-trait
associations from the PhenoScanner search were grouped into nine
categories and those that did not belong to any of the categories were

assigned to the ‘others’ category. SNP-trait associations occurring
multiple times for each SNP from different GWASs were captured
once (e.g., Total cholesterol, Cholesterol total and Cholesterol). The
number of SNP-trait associations was determined for each category
and five categories were selected to be included in the sensitivity
analysis. Two categories with the highest number of SNP-trait
associations (lipid- and blood-associated traits) were selected
along with three categories chosen based on a biologically-
plausible association (inflammation, body composition and Type
2 diabetes) that could confound the causal relationship between ω-3
and T1D. Sensitivity analyses were performed excluding SNPs
associated with traits in each selected category respectively. The
purpose for this exclusion was to examine any existing vertical
pleiotropy in the relationship between the SNPs and ω-3. Further
evaluation for horizontal pleiotropy was conducted using the
Mendelian Randomization Pleiotropy RESidual Sum and Outlier
(MR-PRESSO) method that detects horizontal pleiotropy (global
test), corrects horizontal pleiotropy via outlier removal (outlier test)
and performs testing of significant distortion in the causal estimates
before and after outlier removal (distortion test) (Verbanck
et al., 2018).

All MR analyses were implemented using the “TwoSampleMR”
package (version 0.5.6) (Hemani et al., 2018) in R statistical software
(version 4.2.1). The results of the analysis were presented as odds
ratios (OR) with 95% confidence intervals (CI) and visualizations
were presented using a scatter plot and forest plots. To test whether
our study was sufficiently powered to estimate the causal effect of ω-
3 on T1D risk, we used the method published by Brion et al. (2013),
setting the alpha level at 0.05 and the variance in ω-3 levels explained
by the IVs as calculated by the previously stated formula.

Results

Genetic instruments

After excluding SNPs in LD, clumped at a distance of 10,000 kb
and an r2 cut-off of 0.001 using the 1,000 Genomes European
reference panel, 52 SNPS that were significantly associated with
the exposure and conditionally independent were identified as
potential genetic instruments. 48 of the SNPs in the exposure
instrument were available in the T1D GWAS data and proxies
were found for two of the SNPs that were not available in the
outcome dataset. Details on the specific SNPS used as genetic
instruments including rs numbers, genomic positions, effect
alleles, and their frequencies are captured in Supplementary
Table S1. At the harmonization stage, seven palindromic SNPs
and 1 SNP with incompatible alleles were removed leaving a total
of 42 SNPs that were used as IVs in the main MR analysis. The
variance in ω-3 levels explained by the genetic instruments was
estimated at 10.2% and thus the IVs were robustly associated with
the modifiable exposure.

Mendelian randomization analysis

From our main MR analysis using the IVW method, there was
no evidence of a causal relationship between ω-3 levels and risk of
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developing T1D (OR = 0.92 per 1SD increase in ω-3 levels, 95%
confidence interval (CI): 0.56–1.51, p = 0.745). Further analyses
using MR-Egger regression and Weighted mode methods similarly,
did not reveal a causal association between the exposure of interest
and the outcome (MR-Egger: OR = 1.20, CI: 0.61–2.35, p = 0.59,
weighted mode: OR = 1.12, CI: 0.98–1.28, p = 0.10). However,
analysis using the Weighted median method showed a marginally
significant causal association between ω-3 levels and risk of
developing T1D (OR = 1.15, CI: 1.00–1.32, p = 0.048).

Sensitivity analysis revealed evidence of heterogeneity in the MR
estimates inferred from the 42 SNPs used in the main MR analysis
(IVW Q > 100, p < 0.0001). There was no evidence of directional
pleiotropy estimated across all IVs as deduced from the p-value of
the Egger intercept (−0.032, p = 0.261). However, analysis usingMR-
PRESSO indicated presence of horizontal pleiotropy (global test
p-value <0.001) and the outlier test identified four horizontal
pleiotropic variants. Nonetheless, there was no significant
distortion between the causal estimate before and after removal
of the outlier variants (distortion coefficient = −26.23785, p = 0.456).
The detailed results from the MR-PRESSO analysis are presented in
Supplementary Table S2. MR analysis after removal of the two proxy
SNPs gave similar results to those of the main MR analysis.

Additional sensitivity analyses were conducted using output
from the PhenoScanner search. Out of the 50 SNPs that were

queried in the PhenoScanner database, 34 showed associations
(1,131 associations) with 302 unique PhenoScanner traits
(Supplementary Table S3). Analysis was performed using the
IVs excluding those associated with lipid, blood, body
composition, inflammation and T2D trait categories
independently. Results similar to those from the main MR
analysis, showing a marginally significant causal association for
the Weighted median method, were obtained for the analyses
which excluded SNPs associated with body composition, lipid
and T2D trait categories. The analyses that excluded SNPs
associated with blood and inflammation showed no significant
causal effect of ω-3 levels on T1D risk. To determine whether the
marginal significance of the causal effect estimated using the
Weighted median method was attributable to SNPs associated
with blood and inflammation traits, further MR analyses were
performed using blood and inflammation-associated SNPs,
independently. These revealed no significant causal effect for all
methods, including Weighted median (blood: p = 0.057,
inflammation: p = 0.051). Possible explanations for the disparity
in the estimates of causal effects are that; 1) the assumptions of the
different MR methods are not fully met; 2) the different MR
methods vary in statistical power to detect causal effect, and; 3)
the causal relationship between the exposure variable and outcome
variable is very weak. All pleiotropy and heterogeneity tests yielded

FIGURE 3
Forest plot of MR effect size for single SNP analysis and Inverse-varianceweighted analysis on all SNPs. RSIDs for all instrumental variables are shown
on the y-axis and their corresponding MR effect sizes estimated using the IVWmethod on the x-axis. The summary estimate for all IVs is represented as a
red plotted point at the bottom of the graph. The vertical line through effect size of 0 represents the line of no effect.
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results similar to those of the main analysis. The detailed results of
the main analysis and sensitivity analyses are presented in
Supplementary Table S4 and can be visualized in Figures 3–5.

Our study had the ability to detect the absence of effects on T1D
with 80% power, given a sample size of 24,840 individuals, alpha
level of 0.05%, and 10.2% variance explained by the IVs.

FIGURE 4
Scatter plot of main MR analysis. The horizontal axis represents the genetic correlation with omega-3 levels while the vertical axis represents the
genetic association with T1D risk. Each coloured line on the graph denotes a distinct MR method.

FIGURE 5
Forest plot of main MR analysis and sensitivity analyses excluding potentially pleiotropic variants. The odds ratios for T1D are reported for a 1 SD
change in ω-3 levels. AXP: Analysis excluding proxy SNPs, AXB: Analysis excluding blood-associated SNPs, AXBC: Analysis excluding body composition-
associated SNPs, AXI: Analysis excluding inflammation-associated SNPs, AXL: Analysis excluding lipid-associated SNPs, AXT2D: Analysis excluding Type
2 diabetes-associated SNPs, ORs: Odds ratios. The vertical grid line through OR one is the line of no effect.
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Discussion

This MR study investigated the causal association between
omega-3 polyunsaturated fatty acids and type 1 diabetes. The
study aimed to provide evidence for the role of ω-3 in the
prevention and management of T1D, a chronic disease with a
growing incidence worldwide. The study approach utilized
genetic variants associated with the exposure as proxies to
establish a causal relationship with the outcome.

Our study found limited evidence of a causal association
between ω-3 and T1D. The analysis showed that genetically
predicted ω-3 levels were not significantly associated with the
risk of T1D, with only a marginally significant association
observed in one of the four MR analysis methods. Further
interrogation of this observation by excluding proxy SNPs and
potentially pleiotropic variants (SNPs associated with
inflammation and blood-related traits) yielded no causal
relationship inferred between the exposure and outcome. While
the study had a large enough sample size and sufficient statistical
power to detect meaningful associations, slight inconsistencies in the
causal estimates across the MR methods, though not statistically
significant, were observed. This could be due to unmeasured
pleiotropic bias which could skew results away from the null and
could not be ruled out by the sensitivity analyses that tested the
robustness of the findings to different assumptions and variables.
Nonetheless, due to the relatively wide confidence intervals in our
results, it is possible that there are minor effects of ω-3 on the risk of
developing T1D that we cannot dismiss.

These findings are consistent with those of previous
observational studies and RCTs that showed no causal
relationship between ω-3 status and T1D. A longitudinal study
which followed 167 children with genetic predisposition to T1D for
an average of 4.8 years concluded that ω-3 intake was not associated
with conversion to T1D in children with islet autoimmunity (Miller
et al., 2011). Relatedly, findings from a preliminary RCT of
20 participants, examining the efficacy of ω-3 for the treatment
and management of T1D and its associated complications, revealed
that ω-3 supplementation did not improve vascular health,
glycaemic control, or metabolic parameters in subjects with T1D
(O’Mahoney et al., 2020). However, these studies did not use the MR
approach and currently no comparable studies have used this
method to explore the omega-3-T1D link.

Our findings are contradictory to those from several
observational studies that have suggested that higher ω-3 levels
are associated with reduced risk of developing T1D (Norris et al.,
2007; Bi et al., 2017; Cadario et al., 2017; Fenske et al., 2021). The
possible mechanisms by which ω-3 may lower the risk of developing
T1D are related to its anti-inflammatory effects. Inflammation is a
predominant component of T1D, contributing to β-cell dysfunction
and resultant cell death (Clark et al., 2017; Tsalamandris et al., 2019).
Studies have suggested that ω-3 can help to regulate the immune
system by reducing inflammation and promoting anti-inflammatory
pathways, which may be beneficial in preventing or slowing the
progression of T1D (Mori and Beilin, 2004; Calder, 2010; 2013).
Another proposed mechanism is that ω-3 may have a direct effect on
β-cells and other cells involved in glucose metabolism through
regulation of gene expression (Delarue and Magnan, 2007;
Newsholme et al., 2019). Whereas these studies have been

instrumental in identifying a link between ω-3 status and
diabetes, they are limited by potential confounding, selection bias
and reverse causality (Sattar and Preiss, 2017; Hess and Abd-
Elsayed, 2019; Nguyen et al., 2021). Reverse causation is possible
in that having T1D could alter the metabolism of ω-3 or the
absorption and utilization of these nutrients in the body, rather
than the other way around. This could create a spurious association
between ω-3 intake and T1D. Other factors that are associated with
both ω-3 intake and T1D could also confound the observed
relationship. For example, people who consume high levels of ω-
3 may also have other healthy habits that reduce their risk of
developing diabetes, such as exercising regularly or eating a
nutrient-dense diet.

The MR approach used to investigate our hypothesis has various
strengths. First, the use of genetic variants to proxy exposures in
predicting disease risk is less prone to reverse causality as disease
processes do not alter germline genotype. This is especially
important for an outcome such as T1D for which the disease
may have a preclinical stage that makes it hard to establish
whether an exposure occurred before the underlying pathological
changes. Secondly, genetic variations that are associated with a
changeable environmental factor/exposure will remain linked to
it from birth to adulthood. This implies that utilizing such genetic
variations for causal inference can prevent the impact of errors due
to regression dilution bias (Lawlor et al., 2008). Finally, the two-
sample MR approach used in this study has the advantage of
increased statistical power, particularly for testing causality on
binary disease outcomes, because of the large sample size
obtained from multiple GWAS (Davies et al., 2018). In this
study, we used one of the largest T1D cohorts with 9,358 T1D
cases and 15,482 controls, a sample size that is difficult to achieve for
other study types.

In interpreting the results of our study, its potential limitations
should be considered. Whereas we implemented rigorous steps to
ensure the robustness of the genetic instruments used as
instrumental variables, the stringent clumping distance of
10,000 kb and an r2 cutoff of 0.001 might have excluded SNPs
that are close but independently associated with the exposure,
potentially omitting relevant genetic variants from the analysis.
Also, proxy SNPs could have introduced bias especially if these
do not adequately represent the biological effect of the original SNPs
not measured in the outcome dataset. Furthermore, although we
used multiple genetic variants that collectively, were a strong genetic
proxy for ω-3, and adequately satisfied the first MR assumption, we
cannot completely rule out potential bias in our results due to
unmeasured pleiotropy. Although we conducted several sensitivity
analyses by excluding potentially pleiotropic SNPs and using
methods such as MR-Egger, Weighted median and the mode-
based estimator which are less sensitive to horizontal pleiotropy,
residual bias cannot be definitively precluded. Potential bias in our
results could also be introduced by canalization/developmental
compensation (Waddington, 1942; Smith and Ebrahim, 2004). In
the context of the relationship between ω-3 levels and T1D,
canalization can occur through several mechanisms that may
obscure the causal inference. One possible way is the presence of
compensatory mechanisms that can mask the effects of ω-3 levels on
the development of T1D. For example, it has been suggested that ω-3
may modulate immune function and inflammation, which could
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potentially reduce the risk of T1D. However, the immune system is
highly complex, and it is possible that other compensatory
mechanisms may be at play that can counteract the effects of low
ω-3 levels, leading to a null result (Deem, 2005; Nish andMedzhitov,
2011; Paul, 2012). Another possible mechanism is the presence of
genetic or epigenetic factors that can modulate the effects of ω-3 on
the development of T1D. It has been proposed that the effects of ω-3
may depend on the individual’s genetic background or epigenetic
modifications, which can affect the expression of genes involved in
the regulation of immune function and inflammation (Hussey et al.,
2017). If these factors are highly canalized, then the effects of ω-3
may be difficult to detect. To ensure homogeneity in our sample, we
used GWAS data from individuals of European ancestry for both
exposure and outcome datasets. Nonetheless, we acknowledge that
potential confounding resulting from population stratification
within this seemingly homogenous sample cannot be
completely ruled out.

Conclusion

Our findings challenge the proposition that ω-3-rich diets or
supplementation is of substantial benefit for the prevention and
management of T1D and its complications. While this study
provides important information regarding the ω-3-T1D link,
further evidence is required to explore the minor effects that ω-3
may have on T1D risk, as suggested by the marginally significant
causal estimates detected by parts of our analysis. Extending this
work by use of GWASs of larger sample sizes that may give more
instruments and the use of multiple exposures to explore the extent
to which our results and conclusions are likely to be robust would
increase the precision of our findings. Finally, our deductions may
need to be validated in non-European populations and by a robust
RCT testing the influence of omega 3 on T1D risk.
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