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Post-genomic implementations have expanded the experimental strategies to
identify elements involved in the regulation of transcription initiation. Here, we
present for the first time a detailed analysis of the sources of knowledge
supporting the collection of transcriptional regulatory interactions (RIs) of
Escherichia coli K-12. An RI groups the transcription factor, its effect (positive
or negative) and the regulated target, a promoter, a gene or transcription unit. We
improved the evidence codes so that specific methods are incorporated and
classified into independent groups. On this basis we updated the computation of
confidence levels, weak, strong, or confirmed, for the collection of RIs. These
updates enabled us to map the RI set to the current collection of HT TF-binding
datasets fromChIP-seq, ChIP-exo, gSELEX andDAP-seq in RegulonDB, enriching
in this way the evidence of close to one-quarter (1329) of RIs from the current
total 5446 RIs. Based on the new computational capabilities of our improved
annotation of evidence sources, we can now analyze the internal architecture of
evidence, their categories (experimental, classical, HT, computational), and
confidence levels. This is how we know that the joint contribution of HT and
computational methods increase the overall fraction of reliable RIs (the sum of
confirmed and strong evidence) from 49% to 71%. Thus, the current collection
has 3912 reliable RIs, with 2718 or 70% of them with classical evidence which can
be used to benchmark novel HT methods. Users can selectively exclude the
method they want to benchmark, or keep for instance only the confirmed
interactions. The recovery of regulatory sites in RegulonDB by the different
HT methods ranges between 33% by ChIP-exo to 76% by ChIP-seq although
as discussed, many potential confounding factors limit their interpretation. The
collection of improvements reported here provides a solid foundation to
incorporate new methods and data, and to further integrate the diverse
sources of knowledge of the different components of the transcriptional
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regulatory network. There is no other genomic database that offers this
comprehensive high-quality architecture of knowledge supporting a corpus of
transcriptional regulatory interactions.

KEYWORDS

regulatory interactions, E. coli, evidence codes, source of knowledge, confidence levels,
high-throughput genomic methodologies, RegulonDB

1 Introduction

Genomic sciences have expanded the landscape of available
experimental strategies to identify, on a genomic scale, a variety
of genetic elements, such as transcription factor binding sites
(TFBSs) and their subset of transcription factor regulatory sites
(TFRSs), i.e., those TFBSs with regulatory evidence for a given
transcription factor (TF); transcription start sites (TSSs),
transcription termination sites (TTSs), as well as transcription
units (TUs), all of these in principle under defined growth
conditions.

We have been for the last 30 years continuously extracting and
gathering in RegulonDB and feeding into EcoCyc knowledge
supported by classic molecular biology methods from original
scientific publications about regulation of transcription initiation
and operon organization in Escherichia coli K-12. Although we have
for years curated HT data, only recently, since RegulonDB version
11.0, we incorporated collections of publicly available genomic HT
datasets of binding sites (from chromatin immunoprecipitation
combined with sequencing (ChIP-seq), ChIP combined with
exonuclease digestion and next-generation sequencing (ChIP-
exo), genomic SELEX screening (gSELEX), and DNA affinity
purification sequencing (DAP-seq) technologies), of TSSs, TTSs,
TUs, and normalized RNA-seq expression profiles (Tierrafría et al.,
2022). This included the update of some datasets so that all datasets
are uniformly described in a single format, and all coordinates are in
the current genome version enabling their comparability. In our
curation work, we have seen that the publications of these types of
approaches frequently compare the obtained results with what is
known in RegulonDB (Shimada et al., 2011a; Shimada et al., 2011b;
Shimada et al., 2011c; Kahramanoglou et al., 2011; Seo et al., 2014;
Shimada et al., 2015a; Shimada et al., 2015b; Ishihama et al., 2016;
Kim et al., 2018; Shimada et al., 2018; Kroner et al., 2019; Anzai et al.,
2020; Choudhary et al., 2020; Baumgart et al., 2021; Ishihama and
Shimada, 2021; Shimada et al., 2021). This motivated us to improve
our evidence codes to enhance the use of RegulonDB as “gold
standard”. Certainly, evidence codes used for years both in
RegulonDB and EcoCyc were not detailed enough to distinguish
different methods. For instance, the terms “binding of purified
proteins” or “gene expression analysis” did not specify the method.

The need to easily distinguish objects based on the approach
used (i.e., classic vs. HT methods), the fact that RegulonDB sites are
used as an index to evaluate the performance of novel methods, and
the desire to enhance the precision to access the literature behind
specific properties of complex objects such as regulatory interactions
(RIs) or promoters, motivated us to update the evidence codes
behind the knowledge on the regulation of transcription initiation.
The new codes distinguish not only the class of methods but also the
specific methodology, for instance ChIP-seq, ChIP-exo or gSELEX.

We began moving in this direction a few years ago, but only now we
integrate and report a series of changes that improve knowledge
representation in RegulonDB, enabling analyses as shown below.

Once the new evidence types were defined and groups of
independent methods were redefined, we reconstructed the way
in which combinatorial rules combine to determine the “confidence
level” based on the set of evidence types behind an object, assigning
it as either weak, strong, or confirmed. We have mapped the existing
RIs with the HT-TFBSs collections and added the corresponding HT
binding evidence types to the RIs, improving their confidence level.
This was updated in the RegulonDB 12.2 version.

Additionally, we implemented three levels of representation of
regulatory interactions to adequately deal with cases with partial
knowledge, as explained below. All these modifications contribute to
a significant improvement in the quality of knowledge
representation in RegulonDB. This allows us to perform what we
believe is the first highly detailed analysis of the sources of
knowledge supporting the current transcriptional regulatory
network of a genome, the one of E. coli K-12. The analysis of the
architecture, or anatomy, of this corpus of knowledge enables us to
quantify, for instance, the increasing contribution of HT methods
and their effect in the distribution of highly confident interactions,
the dominant classical methods behind these interactions, as well as
a preliminary comparison of the recovery of classical TFRSs by the
different HT methods.

Furthermore, taken together, all these improvements
constitute a solid and flexible foundation towards the major
challenge of constructing the most up to transcriptional
regulatory network with a high-quality documentation of its
sources of knowledge.

2 Results

A regulatory interaction is one of the major concepts, together
with transcription units and operons, of gene regulation and
specifically of regulation of transcription initiation. As with any
piece of knowledge, it can be described at different levels of detail; at
a low level we can say it is the triplet formed by the TF, the target
gene, and the positive or negative effect. The basic requisites to
annotate a new RI are: evidence of a TF binding near the gene start
and the functional evidence showing that the presence/absence of
this TF has a positive or negative effect on the target gene. In
contrast, at a high level of detail, knowledge of RIs involves the TF,
the effector that affects its binding and unbinding conformation, the
precise TF regulatory binding site, the regulated promoter, and the
effect of the TF when bound, either activating or repressing
transcription initiation. It may also be expanded and include
knowledge of the TU that the promoter transcribes and therefore
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the set of regulated genes, and finally the growing conditions
(experimental and control) under which such regulation has
been shown.

Following an update of basic concepts of transcriptional
regulation (Mejía-Almonte et al., 2020), we implemented some
modifications, both in RegulonDB and EcoCyc, to conform to
the new definitions. One that is relevant to this work is the
distinction between TF binding sites (TFBSs) and the subset of
TF regulatory sites (TFRSs), which are those TFBSs with functional
evidence showing they have a regulatory role. This distinction is
particularly useful as genomic methods identify TFBSs; but only a
few of them have evidence of their regulatory role on target genes or
promoters. TFBSs per se do not support RIs.

2.1 Updated and new evidence codes

We updated our table of evidence types, and have modified
their descriptions to explicitly include whether they are
experimental methods, either HT or classic methods, or
nonexperimental, such as computational predictions or author
statements. We modified the names of evidence codes to make
them more informative. Since some objects are rather complex,
particularly the RIs, we have separated the evidence for binding
within sites and the evidence for function within the RI itself.
This also facilitates user searches for specific references for
different properties of complex objects. Each evidence type is
associated with a specific code, as short as possible but
informative and with prefixes indicating if it is an HT method.

We added a link in RegulonDB that offers the name, description,
evidence code, and confidence level (see below) of all evidence types,
as well as whether they correspond to in vitro or in vivo binding
experiments. See: https://regulondb.ccg.unam.mx/manual/help/
evidenceclassification. Although this table shows updated codes
for RIs, promoters, and TUs, in this paper we only focus on RIs.
As can be seen, the new evidence types added are essentially those
that support HT methods.

2.2 Confidence derived from multiple
independent methods

Years ago, we classified in RegulonDB the different evidence
types into either weak or strong, based on the confidence that the
methods provided to support the existence of a piece of knowledge.
The general principle is that strong confidence comes from
experiments that provide clear physical evidence of the existence
of the object. For instance, binding of purified proteins is considered
strong evidence, whereas binding of cellular extracts is considered
weak evidence. A limitation to this initial approach was that even if
some objects are identified by different methods, either in the same
paper or through the years in more than one publication, we did not
have a process to add multiple weak evidence types and upgrade the
confidence of the object. This is contrary to a fundamental practice
in natural science, whereby further support to knowledge is gained
by different, and ideally independent strategies or methods. We
analyzed which of the different methods can be considered
independent because they use different assumptions and/or

different methodological strategies and their potential sources of
error are different (Weiss et al., 2013). It is on this basis that we built
our algebra to combine multiple weak independent sources of
methods into a strong confidence level. We also proposed the
combination of independent strong evidence types to create the
new “confirmed” level of confidence.

In the current update, we kept the same principles and criteria as
defined in the 2013 paper (Weiss et al., 2013) and made a series of
changes that will become clear as they are required to perform the
analyses of the sources of knowledge presented in this paper. These
improvements are explicitly summarized in the discussion.

In the case of classical evidence, most methods provide direct
physical evidence, so they are classified as strong, except the binding of
cellular extracts, since such experiments do not eliminate the
possibility of indirect effects. HT binding evidence types were
classified as weak, since they involve several processing steps,
including different bioinformatics options of methods and
thresholds, making the final results more variable and dependent
on the specific set of programs and variables used in their final
identification. Thus, processing the same raw data may potentially
result in different final collections of objects; in addition, there is no
consensus yet on a uniform processing pipeline used by the
community. Nonexperimental evidence types were also classified as
weak; however, among them only computational analysis can be used
in combination with other evidence types to upgrade the confidence
level. Current types of evidence for RIs, their classification in groups,
and their levels of confidence are summarized in Figure 1. We talk of
7 groups of binding evidence since author statements or inferences by
curators are not considered reliable enough, and therefore we exclude
them in the confidence assignments. Incidentally, the current
confidence level for RIs is limited to their TF site binding
evidence, while the evidence for function is a requisite. This is no
surprise; certainly, our curation provides evidence supporting genetic
elements, but we do not keep track of methods or evidence supporting
interactions among objects, plus, only few highly characterized
regulatory systems have conclusive evidence supporting which
specific promoter is being regulated by which TFRSs.

We assigned each evidence type to one of seven possible groups
(Figure 1) and defined the combinations that upgraded the object
confidence level using the group numbers. Evidence types in the same
group are considered to share methodological bias and cannot be
combined to upgrade the confidence levels, while evidence types from
different groups are considered independent and their combinations
upgrade the object confidence level. Currently, only the evidence types
of groups 1 and 2 are classified as strong, groups 4 to 7 are considered
weak evidence types (Figure 1). The evidence types 4, 5, and 6 belong
to the category HT; the evidence types from group 4 are considered
independent from the 5 and 6 types because the methods are
considered different enough, with the first group assayed in vivo
while methods of groups 5 and 6 identify binding in vitro; the
experimental and computational processing of raw data are also
different. DAP-seq and gSELEX are also considered independent
of each other. Based on these groupings, the combinations that
upgrade that increase the confidence level are the following:

1) Two independent binding evidence types with confidence level
“weak” (groups 4–7) upgrade the object confidence level
to “strong”.
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2) Two independent binding evidence types with confidence level
“strong” (groups 1 or 2) upgrade the object confidence level
to “confirmed”.

3) Two independent binding evidence types with confidence level
“weak” (groups 4–7) in addition to a strong evidence type
(group 1 or 2) upgrade the object confidence level
to “confirmed”.

4) Four independent binding evidence types with a weak
confidence level (groups 4–7) upgrade the object confidence
level to “confirmed”.

It is worth mentioning that we applied such increases in
confidence provided the evidence for the effect in regulation, or
function, is not missing in RegulonDB. As mentioned, binding of
purified protein and site mutation are the only evidence types with a
strong confidence level. Site mutation is classified as a strong
evidence type because it involves the precise identification of the
regulatory site, which, if modified, shows no effect on transcription,
either in vivo (Baseggio et al., 1990; Venkatesh et al., 2010), through a
reporter gene or by in vitro transcription even in the presence of its
TF (Schneiders et al., 2004). Binding of purified protein includes two
similar methodologies: electrophoretic mobility shift analysis
(EMSA) and footprinting, in which the TF binding to a specific
sequence target is probed in vitro. Note that currently HT methods
are not sufficient to provide a confirmed confidence level, as there
are only three independent HT groups of methods, unless another
weak evidence is also included. In fact, some HT methods
(i.e., ChIP-seq) frequently adds a computational identification of

the binding site enhancing its confidence level. There is no single
evidence with an assigned level of “confirmed”.

The complete set of evidence combinations that upgrade an RI
confidence level can be found under the “regulatory interactions” of
the “Stage II. Assignment of confidence level based on additive
evidence types” section of the webpage: https://regulondb.ccg.unam.
mx/manual/help/evidenceclassification. For instance, ChIP-chip,
ChIP-seq, and ChIP-exo belong to group 4, whereas gSELEX
belongs to group 5. The rule (4/5/expression)-S means that if an
RI has evidence from any method in group 4 plus any evidence from
group 5, and any evidence of expression (which supports the
functional regulatory evidence) together they upgrade two weak
binding evidence types into a strong confidence level.

Once all these updates were in place, we recalculated the
confidence levels for two versions of the complete set of RIs
present in RegulonDB, i.e., the version before and the one after
adding the binding evidence of all current binding HT collections.
This is presented in section 2.5 on the “Architecture of Knowledge.”
But before we need to explain another implementation that enhances
the quality of knowledge representation of RIs in RegulonDB.

2.3 Three representations of regulatory
interactions: TF-promoter, TF-TU, and
TF-gene

Adifferent challenge we have addressed when searching for the best
possible way to encode knowledge is the need for intelligent ways to deal

FIGURE 1
Evidence types for RIs. Any RI requires evidence for the binding of the TF, together with functional evidence showing its regulatory effect in
transcriptional activity. Evidence types are grouped in three major categories (classical, HT and nonexperimental), each specific group contains methods
that are not considered independent, whereas methods of different groups are considered independent. The algebra of their independent groupings is
limited to binding evidence types, which define the level of confidence as discussed in the main text. Note that the “others nonexperimental”
evidence is not used to assign confidence.
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with partial knowledge. It is not uncommon for a curator to have to
choose the least costly assumption when knowledge is lacking. For
instance, years ago, since by definition a TU has a promoter, we added
the so-called “phantom promoters” to those TUs that had no
characterized promoter. This was eventually eliminated as suggested
by Rick Gourse in an EcoCyc meeting, to avoid confusion by users.
Another example illustrating the same problem was how to deal with
the curation of RIs. Historically, we curated RIs affecting a given
promoter, even when there was no such specific evidence. The
curator uploaded the RI when the target gene had only one
promoter, and if the target gene had two or more promoters, the
new RI was mentioned in notes of the TU. It is important to be aware
that our curationwork has been evolving formore than 30 years now. In
this long period, we have added new objects, new features, improved
our evidence codes, in addition to many more changes, searching to
improve the quality of knowledge representation.

In order to minimize assumptions in our curation process, we
defined three levels of description of RIs, which we use depending
on the level of detail of knowledge available. We call these
“RI types”:

1) The most precise knowledge is when there is evidence that
identifies the regulated promoter affected by an RI. Most of
these come from classical experiments. In these cases, it is
reasonable to deduce that TUs associated with the regulated
promoter are regulated by the new RI. These are RIs described
at the level of “TF-promoter.”

2) A less detailed description is when the regulated promoter is
not known and there is evidence of a change in expression of a
group of adjacent genes on the same strand of the promoter
that matches with an existing TU with or without promoter. In
such cases, we associate the new RI to the existing TU. We call
these TF-TU RIs. If there is no previous TU, we create a new
TU without a promoter and with evidence of coexpression and
link to it the new RI.

3) Finally, when the regulated promoter has not been identified
and there is evidence of differentially regulated transcription of
the downstream gene(s) from a TF binding site, we create a
new RI for which the target is the gene. We call these
TF-gene RIs.

As a result, we currently have three means of adding RIs,
depending on available knowledge in RegulonDB and EcoCyc:
TF-promoter, TF-TU, and TF-gene.

The curation of knowledge related to RIs exerted by a TF
depends on several rules. The easy case is when there is no
previously annotated RI with the same TF and target gene; in
this case, a new RI at the adequate level is annotated, according
to the available knowledge. However, if there is a previous RI, of any
of the three types, and the new and previous knowledge are
consistent, the new evidence is added to the existing RI.

The current RegulonDB version 12.2 portal offers the TF-RI set with
labels on the type (TF-promoter, TF-TU, or TF-gene); and it includes
the complete list of evidence types. This enables users to exclude specific
methods, for instance ChIP-seq evidence when evaluating ChIP-seq
data preventing evaluating this new data with previously performed
ChIP-seq data. This file is found in the downloadable files (https://
regulondb-prerelease.ccg.unam.mx/datasets).

2.4 Incorporation of HT-binding evidence to
the current collection of RIs

It is important to note that until now, HT-supported RIs have
been extracted only when evidence of binding and function are
reported in the same publication. However, most studies reporting
genome-wide TF binding do not report TF-dependent differential
gene expression; in some cases, it is assayed for a small set of TF-
binding target genes. Thus, HT datasets contain TFBSs, some of
which may support regulation as future studies might show, whereas
RegulonDB gathers TFRSs, that is to say, binding sites that support a
regulatory interaction. In order to maximize the use of this data we
mapped the peaks from the HT-binding datasets to existing RIs in
RegulonDB and added such HT-binding evidence to known RIs,
increasing their confidence levels.

Figure 2 below shows a Venn diagram with the number of TFs
with data in RegulonDB currently available for the four HT
methodologies, and with the total number of binding sites as
reported by authors, and available in our pre-processed datasets.
Note that for gSELEX only those datasets with a defined cut off level
were mapped.

It is interesting to note that, despite the significant difference in
TFs (94 for DAP-seq vs. 11 for ChIP-seq), the total number of
candidates TFBSs in these collections that could match RegulonDB
RIs is relatively similar.

The addition of HT evidence from the datasets led to an
enrichment of binding evidence for 1329 RIs, causing changes in
the RI confidence levels, as well as shifts in evidence categories from
“nonexperimental” to “HT” and from “classical” to “classical and
HT” as discussed below (see Tables 1 and in Supplementary Table
S1). Table 1 illustrates, by promoter type and confidence level, the
changes in the totals resulting from the addition of HT evidence
from the current HT-datasets.

The current public version of RegulonDB RIs contains the
results of this mapping of HT evidence types. The current total
number of RIs in RegulonDB is 5,466 from 237 different TFs, of
which 164 have at least one HT dataset. Additionally, 41 putative
TFs have an HT-TFBSs dataset but no RIs in RegulonDB.

In the following 2.5 section we will analyze the architecture of this
updated comprehensive collection of RIs currently present in
RegulonDB, and in section 2.6 we will focus on evaluating the
contribution ofHT evidence to the confidence levels of the RIs collection.

2.5 Architecture of knowledge supporting
the RIs

Given the improved level of detailed updated annotations for all RIs
currently available in RegulonDB, we can analyze the contribution of
different methods to the current corpus of knowledge of the
transcriptional network, at the level of classical vs. HT categories, as
well as at the precise level of individual methodologies; their impact in
the confidence level of the collection, their most frequent combinations,
and for HTmethods their recovery of regulatory interactions supported
by classical methodologies.

RegulonDB version 12.2 contains a total of 5,466 RIs of which
22% are confirmed, 49% strong and 28% have a weak confidence level.
The sum of confirmed and strong levels includes over 70% of all
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current RIs. This indicates the high degree of confidence of the E. coli
regulatory network, a result achieved thanks to the aggregation of both
evidence accumulated bymolecular biology through the years, and the
more recent HT methods including the mapping process described
before (See Figure 3C). In terms of sources of evidence, 80.5% have
experimental support, with 30% classical, 29% HT and 21% with both
classical and HT, whereas 19.5% are nonexperimental. In this section
we highlight some of the relations between evidence type, category of
methods, confidence level, and RI level of description.

The source of knowledge or category of methods is the major
determinant of the confidence level. Thus for instance, as mentioned
the current collection with all evidence types has 71% of RIs at the
higher levels of strong and confirmed evidence. As shown in Figure
3C (see also Supplementary Table S2), among the interactions
supported by both classical and HT (1157), the large majority
98% (1137) are either strong or confirmed (Second bar in
Figure 3C), with almost the same fraction when counting those
with only classical methods (1640 RIs), where the large majority

FIGURE 2
Number of TFs with data in RegulonDB and number of TFBSs available HT datasets. Number of TFs for whichwe have either dataset for a single or for
multiple HT methods. This is the reduced set of TFs for which RegulonDB has at least one regulatory binding site. The TFs names are listed in
Supplementary Data Sheet S2. Below themethod is the total number of TFs and the number of RIs in RegulonDB for those TFs, that is, the set of candidate
RIs that can be matched by each method.

TABLE 1 Number of RIs grouped by type and by confidence level.

RI type Counts (% from
total)

Confidence
level

# RIs before mapping HT-TFBSs
datasets

# RIs after mapping HT-TFBSs
datasets

TF-
promoter

3954 (72%) Confirmed 772 (19.5%) 1157 (29.2%)

Strong 1897 (48.0%) 1710 (43.2%)

Weak 1285 (32.5%) 1087 (27.5%)

TF-TU 265 (5%) Confirmed 18 (6.8%) 33 (12.5%)

Strong 210 (79.2%) 197 (74.3%)

Weak 37 (14.0%) 35 (13.2%)

TF-gene 1247 (23%) Confirmed 22 (1.8%) 29 (2.3%)

Strong 789 (63.3%) 786 (63.0%)

Weak 436 (35.0%) 432 (34.6%)

The fourth and fifth column show the number of RIs, of each subgroup, i.e., the first row corresponds to the number of TF-promoter RIs, with a confirmed confidence level, 772 before mapping

and 1157 after the mapping of HT, datasets. The percent value is relative to the total number of RIs, of the corresponding type, indicated in the second column.
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(97%, 1587) are either strong or confirmed (First bar in Figure 3C).
These and other observations below show the current relevance of
classical methods in supporting reliable (strong and confirmed)
evidence. Conversely, the dominant source of weak evidence types
come, as expected, from nonexperimental, mostly computational
predictions, and some supported by HT methods (Figure 3C).

The tiny fraction of interactions with weak evidence with
experimental support come from methods like binding of cellular

extracts for instance, as well from those curated years ago when we
did not curate the functional evidence of RIs.

In terms of RI type, 72% are of the TF-promoter type, 23% are
TF-gene, and only 5% are TF-TU, as shown in Table 1. As expected,
the TF-promoter type is the one with the highest number of strong
and confirmed interactions (Figure 3A); this is no surprise since, as
mentioned before, the TF-promoter level is the one where more
mechanistic knowledge of the RI is known.

FIGURE 3
RI distribution analysis by type of RI (TF-promoter, TF-TU or TF-gene), confidence level (C: confirmed, S: strong, and W: weak), and evidence
category (classical, HT and nonexperimental) (A)Number of RIs by type of RI for each confidence level; (B) Number of RIs by evidence category for each
type of RI; (C) Number of RIs by confidence level for each evidence category. For simplification, RIs were classified within all experimental categories
irrespective of whether additionally they also have computational evidence. Thus, for instance, an RI with both computational and classical evidence
is counted as “classical”.
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Figure 3A also shows that the highest level of confidence is
almost exclusively (95%) dominated by RIs described at the level of
TF-promoter, implying that for practically all currently confirmed
interactions we know the regulated promoter. When adding both
confirmed and strong, this fraction diminishes to 73%, because there
is a good number (786) of interactions with strong confidence
described at the TF-gene level which come essentially from HT-
methods. See in Figure 3B that the TF-gene level gathers mostly HT
supported interactions. This matches with the fact -shown in detail
in Figure 4B below-that strongly supported interactions currently
come mostly from ChIP-seq combined with computational
evidence. Nonetheless, it is relevant to keep in mind that close to
three-quarters of the current subset combining strong and
confirmed evidence have their regulated promoter known. On
the other hand, the TF-gene and TF-TU RIs are mainly
supported by HT evidence (Figure 3B), and, surprisingly, they
have mostly strong confidence levels coming from HT methods
(See Figures 3A, B).

It is important to note that not all TF-promoter regulatory
interactions come from classical experiments. Currently, 76% have
experimental support with 67.6% either classical or classical and HT
support, and 8% (333 RIs) only HT; the remaining 24% accounting
for 947 interactions are supported only by nonexperimental
predictions (See Supplementary Table S1). This explains why
27.5% of TF-gene interactions have a weak confidence level. Note
that the categories of methods discussed here refer exclusively to
those supporting the TF binding site and its regulatory effect. Their
corresponding regulated promoters might in turn be supported by
classical, HT or computational predictions. In fact, the promoter and
TU methods have also been classified in terms of confidence levels
following the same general principles outlined above, but we have
not embarked on the combined analyses of evidence types of RIs and
their corresponding promoters.

Finally, an interesting consequence of the integration of evidence
from three independent groups of HT methods (groups 4, 5 and 6 in
Figure 1) is that in principle there can be RIs at the confirmed level
supported exclusively by HT plus computational evidence. Figure 3C
shows a tiny confirmed orange band in the HT column.

2.5.1 Combination of specific methods and
their frequency

The most frequent combination supporting confirmed RIs is “site
mutation” (classical evidence) with “binding of purified protein”
(classical evidence) and “computational analysis” (nonexperimental
evidence) (Figure 4A). It is interesting to consider that these
215 confirmed RIs that contribute with 18% of the total
confirmed, would still be confirmed even if we eliminated the
computational evidence, since each of the remaining two classical
evidence types provide strong support. The second contributor to
confirmed RIs is “binding of purified protein” (classical evidence)
combined with “genomic SELEX” (HT evidence) and “computational
analysis” (nonexperimental evidence) (Figure 4A).

Strong confidence is also strongly dependent on HT and
computational analysis support, as six of the seven combinations
that contribute most involve these two evidence types in addition to
“binding of purified proteins” (classical evidence). (Figure 4B).

The contribution of computational analyses (group 7 in
Figure 1) to the strong and confirmed levels raises the question

of how adequate it is to consider it independent from the
experimental methods. We know that there is no ab initio
bioinformatics, since all computational analyses start with data
coming from experimental work, in the form of subsets of either
binding sites, regions or peaks from ChIP methods, or upstream
regions from co-regulated genes, for instance. On the other hand, it
is true that identifying sites that match to a motif that fits features of
known TF motifs (i.e., size, information content), contributes to the
confidence of the results. The specific combinations in Figures 4A, B
can be used to estimate the impact in confidence when eliminating
the computational evidence. Using our Confidence Level Calculator
Tool publicly available (See Methods), we generated the fraction of
strong and weak confidence when the computational analysis is
eliminated. The profile changes to 15% confirmed, 37% strong and
49% weak; that is to say half, 52%, of interactions belong to the two
strongest categories, considerably lower than the 71% in the current
collection when all evidence types are included (Compare first and
second bars in Figure 5).

Most of the weak RIs are supported only by “computational
analysis” or by “ChIP-seq” evidence types (Figure 4C). As
mentioned before, HT evidence is considered weak, so RIs
supported by only ChIP-seq have a weak confidence level
(Figure 4C). There are also some weak RIs supported by classical
evidence types, as already mentioned. In Figure 4C, we can observe
that some RIs are supported by different combinations of
independent evidence types and they do not become strong, this
is because for these RIs the evidence of function (effect over
expression) is missing, probably due to the historic process of
curation. Future curation will enable us to recover their
functional evidence. Note that 100% of nonexperimental RIs are
classified as weak (Figure 3C).

2.6 How HT evidence is changing the
landscape of knowledge

In terms of confidence levels, currently, RegulonDB (version
12.2) contains a total of 5,466 RIs, of which 22% have confirmed
evidence, 49% have strong evidence, and 28% have weak support
(Table 1 fifth column; Figure 5 bar A). The sum of confirmed and
strong levels includes over 71% of all current RIs. As shown in
Figure 5 in the absence of HT evidence the numbers of high
confidence drops significantly, with 12% confirmed, 37% strong
and barely more than half, 50.5%, weak confidence. Does this mean
that close to 20% of the strong plus confirmed come from HT
support alone? Let us look first at one specific example.

The RI Cra-frubp involving the site 2263516–2263533, has a weak
confidence level when ignoring all HT evidence since it is only
supported by computational evidence and by gene expression
analysis. However, the binding covering this site is also supported
by ChIP-exo, gSELEX, andDAP-seq. These independent HT evidence
types together with computational evidence upgrade the RI
confidence level to confirmed. A total of 16 sites have a confirmed
level thanks toHT experiments, otherwise theywould be weak. See the
tiny orange band in Figure 3C on top of the HT column. This specific
example illustrates a general observation: The strong effect of HT
methods in improving confidence level happens thanks to their
association with computational evidence.
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FIGURE 4
Detailed combinations of binding evidence supporting RIs, shown as intersecting sets using an upset plot. In each plot, the bottom left bars represent
the different types of evidence curated and the respective number of RIs they support. The top bars represent the number of RIs supported by each
possible combination of 2 or more evidence types. The three plots show the combinations of evidence supporting the current set of (A) “Confirmed” RIs,
(B) “Strong” RIs and (C) “Weak” RIs, respectively.
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A careful comparison of the first 4 bars in Figure 5 shows, first,
that eliminating either the computational or the HT methods affect
quantitatively very similar the overall confidence counting; and
eliminating both does not change the effect. Thus, it is clear that
it is their combined presence that has such a strong effect in the
overall profile. The specific dominant combinations of methods for
each confidence level shown in Figure 4 panels A and B also help us
to see that the confirmed level still strongly depends on classical
methods, as opposed to the strong category. Also notice the
particular relevance of ChIP-seq within the HT methods.

In terms of the global categories “classical”, “HT”, “classical and
HT” and “nonexperimental”, there are 1640, 1601, 1157 and
1068 RIs, respectively. RIs with classical evidence (classical +
classical and HT) represent 51.2% (2797). We are still at a time
where classical methods contribute significantly. This is expected to
change in the near future as global genomic methods dominate the
landscape, provided these global strategies provide both binding as
well as functional evidence supporting the regulatory effect.

2.7 Recovery of classical TF binding
regulatory sites by HT methods

As mentioned, the results of HT methodologies are frequently
compared with the RegulonDB data as a way to validate them.
However, these analyses had been performed with the complete set
of RIs, maybe users ignoring the fact that this set includes RIs

supported by HT methods. Thanks to the multiple improvements
presented in this work, we can now use specific gold standard
datasets that exclude specific sources, to avoid circularity.

To assess the performance of HT-binding methodologies in
recovering sites from classical RIs in RegulonDB, we considered only
the subset of TFs that have at least one classical TFRS. For each TF we
calculated the percentage of classical TFRSs that map with the peaks in
the corresponding dataset, the average percentage was calculated for the
subset of TFs available for each HT methodology. In Figure 6 below we
show the recovery of classical TFRSs. ChIP-seq was the methodology
that recovered the highest percentage (78.7 ± 15.8%), followed by
gSELEX (65.4 ± 34.4%), DAP-seq (51.0 ± 35.2%) and ChIP-exo (31.6
± 37.8%) (See Supplementary Data Sheet S3). Statistically significant
differences (p-value < 0.05) were observed between ChIP-seq and ChIP-
exo (p = 0.0052); ChIP-exo and gSELEX (p = 0.0024); and ChIP-exo and
DAP-seq (p = 0.342) (indicated by two stars in Figure 6). Additionally,
the dissimilarities between ChIP-seq and DAP-seq (p = 0.0632)
approached significance (one star in Figure 6). A different form of
comparison is to calculate the percentage of the total number of classical
RIs mapped for the subset of corresponding TFs. Using this
approximation, similar results are obtained with 72.6% of total
classical TFRSs recovered by ChIP-seq, 50.3% recovered by gSELEX,
28.3% recovered by DAP-seq and 22.5% recovered by ChIP-exo (See
Supplementary Data Sheet S3).

The mapping in Figure 6A shows the results when considering,
as much as possible, the peak size reported by the authors. This
involved taking into account both the reported start and end of the

FIGURE 5
Distributions of confidence level from the RI set when excluding HT and/or computational evidence. Footnote: For the current RI collection, this
figure shows the profile in confidence levels as differentmethods are excluded in order to detect their contribution. The reference is the first columnwith
all evidence types included showing the highest fraction of strong and confirmed levels, and a smaller weak component. For instance, when comparing
with bar C, we can quantify how much HT methods are contributing to the confidence levels.
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peak. When only the center of the peak was reported, a peak size of
200 was used. The gSELEX datasets only contain peak center
information, so a peak size of 200 nt was used in both
comparisons. For ChIP-seq, 6 datasets contain peak centers,
while the rest show high variability in peak sizes, even within the
same datasets. The average peak size was 582 nt (with a standard
deviation between datasets of 608 nt). For DAP-seq, a peak size of
55 was found (with a standard deviation between datasets of 4.6 nt),
and finally, for ChIP-exo, a peak size of 34 nt was identified (with a
standard deviation between datasets of 14 nt).

Considering these results, we wondered to what extent the peak
size impacts the classical TFRSs recovery for each methodology. We
repeated the mapping with a peak size of 200 nt for all datasets, with
the peak center as the reference point. The results in Figure 6B and in
SupplementaryData Sheet S4 show a decrease in the recovery by ChIP-
seq, and an increase by DAP-seq and ChIP-exo, as expected. In this

case, we found no significant differences among the methods. This
mapping comparison shows, as expected, the relevance of peak size on
the results. Subsequently, the same analysis was performed using the
dataset of TFRSs from RIs with a confirmed confidence level. As
shown in Supplementary Figure S2, similar results were obtained.
Once again, when using peak sizes as reported, ChIP-seq was the
methodology that recovered the highest average percentage (94.0% ±
8.7%) of classical confirmed RIs, followed by gSELEX (76.4% ± 35.4%),
DAP-seq (57.3% ± 39.6%) and ChIP-exo (36.1% ± 39.3%)
(Supplementary Figure S2A, Supplementary Data Sheet S5). The
numbers are again modified when using the same 200 bp peak
length (Supplementary Figure S2B, Supplementary Data Sheet S6).

In summary, ChIP-seq recovered the highest fraction of sites
supported by classical methods but no statistical significance was
found in comparison with gSELEX or DAP-seq. ChIP-exo shows the
lowest performance of all methods, but with a much higher precision

FIGURE 6
Recovery average of classical TFRSs by different HT-binding methodologies. For each methodology, the fraction of recovered TFRS sites in
RegulonDBwas estimated and the average for all TFs for eachmethod and std deviation is shown. The panel (A) shows the results using variable peak sizes
based on data as reported by authors, and panel (B) shows the results using a peak size of 200 for all HT TF-binding datasets. The set of TFs is specific to
each method given the currently available datasets gathered in RegulonDB version 12.2 and also limited to those TFs for which there is at least one
classical TFRS in RegulonDB (For data details see Suppementary Material S2). For the statistical test see Methods. Two stars indicate statistically significant
differences, as mentioned in the main text.
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in binding sites. The high recovery by ChIP-seq is interesting since
classical methods are by far in vitro experiments such as the gSELEX
and DAP-seq as opposed to the ChIP methods where binding is
identified in vivo. These preliminary results suggest that, under the
conditions performed, there is no major difference in the in vivo vs.
in vitro specific binding of TFs in the E. coli genome.

These comparisons should be clearly taken with a grain of salt given
the limited datasets and their heterogeneity. To start with, as shown the
largest peak sizes of ChIP-seq contributes to its higher recovery, and
although ChIP-exo recovery is smaller, its precision in locating specific
binding sites is considerably better as indicated by its small average peak
size. Also, remember that the subset of TFs here analyzed for each
method is different as shown in Figure 2. Furthermore, all ChIP-exo
experiments come from a single (Palsson´s) research team, similar to
the gSELEX (Ishihama´s) experiments and the DAP-seq collection
from a single publication (17), whereas the ChIP-seq collection comes
from diverse authors. In the papers of the 11 TFs with ChIP-seq data it
was not uncommon to find experiments performed with different
supplements -potential allosteric metabolites involved in TF binding-
, and the datasets we gathered include all those different TFBSs found.
Our curation role is to gather what authors publish, implying for
instance, that we respected the length of peaks when offered by the
authors; whenever the dataset included only the peak center we
arbitrarily defined peak lengths of 200 bp. Thus, there is clearly
room for confounding factors limiting the interpretation of these
quantitative comparisons.

As already observed, see Figure 2, when counting the total set of RIs
for potential matching for eachmethod, their number is not as different
as one could expect given the considerably larger difference in number
of TFs. This is consistent with the fact that the TF network connectivity
follows a power-law, and in this case it contributes to a more even
number of sites per method that could match with a classic RI site.
Another factor is that ChIP-seq experiments, as mentioned, frequently
benefit from various experiments performed with various supplements
for the same TF increasing the chances to recover more classical TFRSs.

2.8 Use of gold standard datasets to
benchmark HT-binding methodologies

The efforts invested in curating evidence for RIs using specific codes
for different methodologies, along with their classifications into
independent groups, confidence levels, and categories, now enable us
to filter and create subsets of RIs. These subsets can serve as a gold
standard for benchmarking HT-binding methodologies. The complete
set of RIs is available on the RegulonDB website under “Releases and
Downloads/Downloads/Experimental Datasets/TF-RISet”. On this
page, users can download the entire set, and use two tools available:

1) Browse and Filter: In this tool, filters can be applied to each
column to obtain a subset of RIs, and users can download them
accordingly. For example, RIs with a confirmed confidence
level could be filtered.

2) Confidence Level Calculator Tool: In this tool, one or multiple
evidence codes can be excluded, and the confidence level can
be recalculated.

With these tools, users can conduct their own analyses.

3 Discussion

One relevant outcome of this work is the availability of gold
standard datasets useful for benchmarking new methodologies.
From the master RI complete table (“Releases and Downloads/
Downloads/Experimental Datasets/TF-RISet”) containing all the
evidence types for each RI, users can make their own combinations
defining confidence levels differently as we did. Users can include
or exclude specific subcollections based on the method and/or
evidence types and can also select subsets of RIs filtering by
confidence levels with the new tools publicly available.

As mentioned, our strategy of confidence levels follows the
ideas outlined in the 2013 paper; the major additions presented in
this work are the following: we have increased the detail of
evidence codes, and therefore, we can now distinguish the
contribution of specific methods, such as mutation vs. binding
of purified protein, or the different HT methods. We added new
evidence codes to include novel HT methods (i.e., ChIP-exo and
DAP-seq) and clearly defined 7 groups of independent binding
methods. Furthermore, we organized the computational
implementation of the whole process that calculates confidence
levels based on all or specific subsets of evidence groups
(Confidence Level Calculator Tool), and finally, all the process
is now documented and publicly available.

Additionally, we have implemented three levels of RIs adequate to
capture the diverse cases of partial knowledge. These advances enable
the analyses performed of the different sources of knowledge and their
contribution to the currently known E. coli collection of regulatory
interactions. We have analyzed how confidence levels of the RI set
increased thanks to the combined HT and computational evidence
types in spite of the reduced number of TFs studied so far by genomic
strategies. This shows how in the near future HT methods will most
likely become the dominant sources of knowledge that will eventually
support the whole E. coli regulatory network. The RegulonDB model
with the current computational and encoding infrastructure here
reported provides the foundation to address novel questions on the
sources and confidence levels of the corpus of knowledge, as illustrated
by the analyses and discoveries we presented.

It might be obvious that the patterns and combinations of
methods presented here are a result of experimental practices
and should not be interpreted as a measure of congruence across
the different methods. This is even more the case given the
heterogeneous collection of TFs studied by the different HT
methodologies and the many differences already mentioned
before, (see section on the recovery by HT methods). A plausible
interesting observation of these comparisons is that there are no
significant differences in the in vivo binding (ChIP methods) vs.
in vitro binding (gSELEX and DAP-seq) of TFs. Remember that
classical methods are mostly in vitro binding.

Even if the patterns and combinations of methods will be
changing in the future, we see value in this work as: i) We
performed a detailed analysis of the sources of knowledge of the
current collection; ii) Users can better appreciate the complexity and
diversity of sources of knowledge and decide according to their
needs what subsets of data they want to work with; iii) We are
prepared with all the modifications involved, to keep updating these
distributions in future releases and to adequately enrich our
collection of tools as new methods and their associated data
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become available in the future; iv) The analyses bring up gaps in
annotations and help us to identify inconsistencies contributing to
improve our curation and knowledge representation; and last but
not least, v) All the computational processing involved provides a
solid foundation for future work to further integrate classic and HT
data beyond regulatory interactions, to include in the future
transcription start sites and transcription unit datasets.
Furthermore, the uniformization to current genomic coordinates,
and normalization of data provides the foundation to the
comparability of results coming from different HT methods, and
the evaluation of their performance in recovery of classical data.

Gold standard datasets are useful for different fields of
biomedical research, but they must be not only a reference
collection but also one that represents data with the highest level
of confidence. The evaluation of data confidence based on
independent evidence is a common practice in research; for
example, quantitative reverse transcription PCR (RT-qPCR) is
used to validate RNA-seq experiments. However, only a few
studies have used this approximation to evaluate data on a large
scale (Myers et al., 2013). In medicine, levels of evidence are assigned
to studies based on diverse criteria, such as quality, with higher levels
of quality of evidence entailing less risk of bias (Burns et al., 2011).
Our approach can in principle be applied to analyze data from
curated databases which have structured evidence codes associated
with objects, such as BioGRID database (Oughtred et al., 2021), as
well as other molecular databases.

The different improvements discussed in this paper enable us to
incorporate HT-generated knowledge together with classical
molecular biology methods, since it is easy to dissect subsets
based on their supporting methods. The next step will be to add
an additional layer based on a similar integrative analysis focused on
combining classical and HT methods for TSSs and TUs and update
what constitutes one of the best-studied transcriptional regulatory
networks of any genome model organism. This is also likely the best
computationally represented corpus of knowledge of gene
regulation.

4 Methods

4.1 Updates in RegulonDB

4.1.1 Evidence updates
In RegulonDB version 12.2, we made important evidence-

related changes, including: 1) Evidence code. The evidence codes
were made more informative, i.e., BPP was changed to EXP-IDA-
BINDING-OF-PURIFIED-PROTEINS. 2) Evidence confidence
levels. Evidence types were classified as “weak” or “strong”
depending on whether they provided physical and direct proof of
the existence of the object or interaction.

4.1.2 Object confidence level update
The confidence level for each RI, promoter, and transcription

units was calculated and updated using the linked evidence and the
additive evidence. The confidence level assignment to RIs is
described below; we followed the same principles for the other
objects. These changes are contained in the current RegulonDB
including the downloadable datasets.

4.2 Data source for RIs

All the work presented here was done using RegulonDB version
12.2 synchronized with Ecocyc version 27.0. In this version, the
downloadable text file for Regulatory Interactions was made
available and also the evidence catalog file. The formats and
descriptions of these files are available at https://github.com/
regulondbunam/download-data-files.

4.3 Confidence level assignments to
evidence types and to RIs

The confidence levels were assigned to RIs by a process involving
two steps:

Stage I) Each single evidence type was classified into weak or
strong, as described in section 2.2.
Stage II) Assignments of confidence levels to RIs were based on
the process using the rules for “additive evidence”.

The concept of “additive evidence”was called “cross-validation.”
As we proposed a while ago, Weiss et al. (2013) (Weiss et al., 2013),
the confidence level of a biological entity depends on the combined
evidence derived from mutually independent methods.

We grouped methods that could have similar sources of false
positives. This resulted in seven independent evidence groups
(Figure 1). The combinations of evidence groups that upgraded
the RI confidence levels were defined based on the four rules
mentioned in Section 2. We call these combinations additive
evidence, which define the final level of confidence assigned to
each RI. The complete set of group combinations that upgraded RI
confidence levels can be found under the “regulatory interactions” of
the “Stage II” section of the webpage: https://regulondb.ccg.unam.
mx/manual/help/evidenceclassification.

4.4 Access options for users

Although it is well known that RegulonDB contains a
comprehensive collection of experiments performed through
decades of classic methodologies (to the extent that the literature
has been found by our work in collaboration with EcoCyc), users
must be aware that we have already incorporated evidence from
HT methods.

The current publicly available RegulonDB offers downloadable
datasets grouping collections of objects in https://regulondb.ccg.
unam.mx/datasets. The first option offers the “RIset”which contains
all the evidence types for binding and function of RIs, in columns
21 and 22 respectively. These can be used to filter and extract, for
instance, the subcollection supported only by classic methods. The
same strategy could be used to select RIs supported by a specific
evidence type. Users can also subselect RIs based on the confidence
level, or on the different groups of methods, as described in Figure 1.
Furthermore, users may define their own rules and categories
of different levels of confidence and use the whole collection of
evidence types to classify each individual RI in a new classification of
confidence levels.
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All scripts and computational processes built to generate the
data and analyses presented in this paper are publicly available and
can be found at https://github.com/PGC-CCG/supplementary-
material/tree/master/gold-standard.

4.5 Analysis of the current set of RIs

The analyses of the anatomy of RI knowledge presented here
were performed using R (2022.06.23, version 4.2.1), Rstudio
(2022.07.1, Build 554), and the ggplot2 (version 3.4.0) library.

4.6 Mapping RIs from RegulonDB to the
collection of HT TF-binding datasets

The collection of HT TF-binding datasets contains four
subcollections with different number of TFs: DAP-seq (107 TFs),
ChIP-seq (11 TFs), ChIP-exo (73 TFs), and gSELEX (121 TFs). The
mapping of RIs from RegulonDB to the HT TF-binding datasets to
enrich the RIs evidence involved the subset of TFs that have both sites in
RegulonDB and datasets with defined cut off levels subcollections
resulting in: 94 TFs for DAP-seq, 11 for ChIP-seq, 40 for ChIP-exo
and 85 for gSELEX (See Supplementary Data Sheet S2).

In order to make these collections comparable among them and
with RegulonDB TFRSs, multiple steps were implemented that
together constituted what we call “mapping,” of RIs with HT-
binding data. This mapping involves:

4.6.1 Uniformization of the genome coordinates
for all datasets

The coordinates of the DAP-seq datasets were published using
the last genome version of the E. coli str. K-12 substr. MG1655
(U00096.3), so they were not modified. The ChIP-seq, gSELEX, and
ChIP-exo datasets with coordinates in the past genome version
(U00096.2) were updated to version U00096.3. The corresponding
Scripts are found in the github indicated.

4.6.2 Tomap the RegulonDB RI set with peaks from
the HT-TFBSs subcollections

A program in Python was implemented to compare each RI
binding site with each peak corresponding to the same TF. A match
is assumed when the RI site coordinates are both within the region
covered by the HT peak.When authors report the two coordinates of
a peak, we keep using such sequences; when authors report only the
peak center, we extract 100 bp on each side making a peak of 200 bp.

When a match between a site from a RI and the HT binding-
peak is found, the evidence of the corresponding HT-methods is
added to the corresponding RI. This process is executed in each
RegulonDB release. Scripts are found in github as mentioned.

4.7 HT-binding methodology efficacies in
recovering sites from classical RIs
in RegulonDB

To evaluate the performance of HT-binding methodologies
(ChIP-seq, ChIP-exo, gSELEX, and DAP-seq) in recovering

Transcription Factor Regulatory Sites (TFRSs) from
RegulonDB, the RISet was filtered to exclude circularity, as
detailed below. For each methodology, TFs were evaluated if
they had at least one dataset in the subcollection of HT
TF-binding and at least one RI in the filtered set from
RegulonDB. The filtered RISet was mapped to the datasets
from each methodology as mentioned before. Afterwards,
the total number of sites in the subset of RIs mapped and the
percentage of them detected for the corresponding methodology
were calculated for each TF. Finally, the average percentage of
sites recovered was calculated for each methodology. For the
analysis of gSELEX, only the datasets with a cutoff defined by
authors were mapped. This means that datasets with a 0% cutoff
and those that include the 40 peaks with the highest binding
intensity were excluded.

4.7.1 RISet filtering
The Regulatory Interaction Set (RISet) from RegulonDB was

filtered to generate two different subsets used for comparisons:

1) The classical TF RISet, consisting of RIs with at least one
classical binding evidence. It was generated using the “Browse
and Filter” tool from RegulonDB, as described earlier.

2) The classical confirmed TF RISet generated using the
“Confidence Level Calculator” tool. Initially, the confidence
level of RIs was recalculated, excluding all HT-binding
evidence types. Subsequently, the RIs were filtered based on
confirmed confidence level and having at least one classical
binding evidence.

4.7.2 Peak size analysis
The average peak size for each dataset and for each subcollection

of HT TF-binding was calculated with a Python program. This
calculation was performed only for datasets that specify the peak
start and the peak end.

4.7.3 Impact of peak size
To understand the influence of peak size on TFRS recovery, a

comprehensive analysis was carried out. The mapping of the filtered
RISet was repeated, this time using a uniform peak size of
200 nucleotides for all datasets. This allowed a comparative
assessment of recovery percentages across methodologies.

4.7.4 Statistical analysis
To evaluate differences in the detection performance of the

methodologies we conducted a Kruskal–Wallis test, along with
the Bonferroni correction, to compare mean rank differences
across the four groups, considering the non-parametric nature of
the data and the variability in the number of TFs analyzed
in each case.

4.8 Resource Identification Initiative

To take part in the Resource Identification Initiative, please use
the corresponding catalog number and RRID in your current
manuscript. For more information about the project and for
steps on how to search for an RRID, please click here.
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