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Complete blood counts (CBCs) measure the abundance of individual immune cells,
red blood cells, and related measures such as platelets in circulating blood. These
measures can indicate the health status of an animal; thus, baseline circulating levels
in a healthy animal may be related to the productive life, resilience, and production
efficiency of cattle. The objective of this study is to determine the heritability of CBC
traits and identify genomic regions that are associated with CBC measurements in
lactating Holstein dairy cattle. The heritability of CBCs was estimated using a Bayes
C0 model. The study population consisted of 388 cows with genotypes at roughly
75,000 markers and 16 different CBC phenotypes taken at one to three time points
(n = 33, 131, and 224 for 1, 2, and 3 time points, respectively). Heritabilities ranged
from 0.00 ± 0.00 (red cell distribution width) to 0.68 ± 0.06 (lymphocytes). A total of
96 different 1-Mb windows were identified that explained more than 1% of the
genetic variance for at least one CBC trait, with 10 windows explainingmore than 1%
of the genetic variance for two ormore traits. Multiple genes in the identified regions
have functions related to immune response, cell differentiation, anemia, and disease.
Positional candidate genes include RAD52motif-containing protein 1 (RDM1), which
is correlatedwith thedegreeof immune infiltrationof immunecells, andC-X-Cmotif
chemokine ligand 12 (CXCL12), which is critically involved in neutrophil bonemarrow
storage and release regulation and enhances neutrophil migration. Since animal
health directly impacts feed intake, understanding the genetics of CBCs may be
useful in identifying more disease-resilient and feed-efficient dairy cattle.
Identification of genes responsible for variation in CBCs will also help identify the
variability in how dairy cattle defend against illness and injury.
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1 Introduction

The health of dairy cattle is important for their welfare, efficiency, and profitability. Previous
research has shown that health disorders impact feed intake, feed efficiency, and milk quality
(Brown and Bradford, 2021; Lochmiller and Deerenberg, 2000; Siberski-Cooper et al., 2023).
Given the relationships between health and feed intake and related traits, information on health
could be useful to improve predictions of feed efficiency in dairy cattle. Currently, genetic
evaluations for health traits have primarily used producer-reported data. This information can
be highly subjective, and the recording consistency differs greatly from farm to farm, resulting in
lower heritability estimates (König andMay 2019). In addition to these complications, theway in
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which resilience is defined is not consistent. Therefore, implementation
of selection for improved performance in response to illness in dairy
cattle has not yet been feasible (Berghof et al., 2019). Identification of
proxy traits that are objective and easy to measure would be beneficial
for identification of animals that are more resilient and thus genetic
selection for improved resilience and maintained efficiency under
disease or stress. Complete blood counts (CBCs; Table 1) are good
candidate indicator traits of health status due to their relationships with
the immune system. Although no assay is perfect for general disease
detection and surveillance, CBCs are routinely used for early diagnosis
of illness in dairy cattle, making red and white blood cell counts from
these assays routinely available as disease indicators (Roland et al.,
2014). A limited number of studies have reported the relationship of
CBCs with growth, disease, and efficiency in beef cattle and swine
(Leach et al., 2013; Mpetile et al., 2015; Chinchilla-Vargas et al., 2020).
Additionally, there is only one report on genomic heritabilities of CBCs
in dairy cattle (Siberski-Cooper et al., 2022) and one known study
reporting non-genomic heritability estimates of specific blood leukocyte
types in Holstein Friesian cattle (Denholm et al., 2017). Thus, the
objectives of this study are to 1) estimate the genomic heritability of
CBCs in lactating Holstein cows and 2) identify genomic regions
associated with CBCs.

2 Materials and methods

2.1 Animal husbandry

All research conducted in this study was approved by the Iowa
State University Animal Care and Use Committee (IACUC) under
protocols 18–174 and 21–144. Data of 418 Holstein cows were

collected between 2020 and 2022. Cows ranged from first through
sixth parity and were 24–272 days in milk (DIM) at the start of data
collection. To classify the point in lactation of the cows, DIM were
assigned to one of four groups, namely, early-, peak-, mid-, and late-
lactation. Early lactation was defined as DIM prior to 50 days, peak
lactation was considered DIM 51–90 days, DIM 91–200 days were
classified as mid-lactation, and any DIM after 201 days were
assigned to the late-lactation category. Cows were grouped into
contemporary groups (CGs) based on barn location (i.e., pen) and
study replicates based on dates of data collection, resulting in a total
of 10 CGs in the study. Cows were housed in a free stall barn at the
Iowa State University (ISU) Dairy Farm. All cows received a
standard total mixed ration (TMR) diet containing corn silage,
alfalfa hay, whole cottonseed, molasses, ground corn, soybean
meal and hulls, dried distiller grains, and a mineral and protein
mix. Cows were milked twice per day, and milk samples were
collected at both milkings 1 day per week. Milk samples were
used in conjunction with daily milk weight to approximate the
daily fat and protein yields.

2.2 Phenotype collection

Blood samples were collected for CBCmeasurements from cows
two or three times during the trial period, with the number of blood
collections depending on the CG. Blood samples were taken in the
morning, prior to feeding and milking. Sampling occurred at the
start and end of each trial, with CGs 1 to 8 having an additional
sample taken at roughly halfway through the collection period. The
average time between samples was 21 days. A total of 33 cows had
CBCs at one time point, 131 at two time points, and 224 at three time

TABLE 1 Measurements reported in complete blood counts.

Measure Abbreviation Unit Transformation

White blood cells WBC K/uL Log

Neutrophils NEUT K/uL Log

Lymphocytes LYMPH K/uL Log

Monocytes MONO K/uL —

Eosinophils EOSI K/uL Log

Basophils BASO K/uL Log

Large unstained cells LUC K/uL Log

Red blood cells RBC M/uL —

Hemoglobin HGB g/dL —

Hematocrit HCT % —

Mean corpuscular volume MCV fL Log

Mean corpuscular hemoglobin MCH Pg Log

MCH concentration MCHC g/dL —

Red cell distribution width RDW % Box Cox

Platelets PLT K/uL —

Mean platelet volume MPV fL Box Cox
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points. Some cows had a single CBC due to either clotting of the
blood sample, which prohibits the analysis for CBCs, or removal
from the study pen due to a severe health disorder, including clinical
mastitis and respiratory disease, based on daily consultation with
ISU veterinary staff. Four milliliters of blood was collected from the
tails of cattle and added to an EDTA blood tube and analyzed for
CBCs using an ADVIA® 2120 Hematology System (Siemens
Healthineers, Erlangen, Germany) as a commercial diagnostic
service at the ISU Veterinary Clinical Pathology Laboratory. Of
the 418 cows from which data were collected, CBCs were
successfully reported for a total of 414 cows. A full list of cell
abundance phenotypes from CBCs, along with the cells’ full names
and abbreviations, is provided in Table 1. The distribution of each
CBC phenotype was assessed for normality using a
quantile–quantile plot. The WBC, MCV, MCH, BASO, EOSI,
LYMPH, NEUT, and LUC were log-transformed to better
approximate a normal distribution, whereas RDW and MPV
required a Box–Cox transformation (lambda = −2). All other
traits were not transformed. A summary of the cell count
measures, including the mean and standard deviation, can be
found in Supplementary Table S1.

2.3 Genotypic information

Genotypic data consisted of 78,985 SNP markers across the
genome. Marker positions were obtained for the ARS-UCD
1.2 bovine genome build. Genotypic data quality control required
a SNPmarker call rate greater than 95% and aminor allele frequency

greater than 5%. A total of 388 animals and 75,823 SNPs remained in
the dataset following quality control.

2.4 Genetic analyses

2.4.1 Estimates of narrow sense heritability and
repeatability from genomic data

Following the methodology presented in Bhatia et al. (2023),
estimates of heritability for traits were obtained using the following
univariate trait-based Bayes-C0 model (Kizilkaya et al., 2010):

yijkl � CGi +DIMwindowj + Park + PE Cowl( ) +∑
p

n�1
mijklnβn

+ eijkl,

where yijkl is the CBC phenotype of cow ijkl; CGi is the class effect
of the contemporary group effect (i � 1, . . . , 10); DIMwindowj is
the class effect of the point in lactation (early, peak, mid, or late);
Park is the class effect of lactation number (k = 1, 2, or 3+);
PE(Cowl) is the random permanent environmental effect of the
cow to account for repeated records; PE(Cowl) ~ N(0, σ2PE),
where σ2PE is the permanent environmental variance; mijkln is the
genotype for SNP n (coded as 0, 1, or 2) with a total of p SNPs, with
allele substitution effect βn. These analyses were completed using the
Julia for Whole-genome Analysis Software (JWAS; Cheng et al.,
2018) using a Markov Chain Monte Carlo (MCMC) method of
80,000 iterations for all CBC traits except PLT, which required a
chain length of 150,000 iterations to reach convergence, based on a

TABLE 2 Prior probability of exclusion (π) and variance estimates of complete blood count measures estimated from Bayes Cπ.

Measure π Genetic variance Residual variance

White blood cellsa 0.998 0.02 0.02

Neutrophilsa 0.999 0.02 0.06

Lymphocytesa 0.998 0.05 0.01

Monocytes 0.998 3.17e-03 0.01

Eosinophilsa 0.999 0.14 0.26

Basophilsa 0.999 0.07 0.05

Large unstained cellsa 0.998 0.03 0.25

Red blood cells 0.998 0.13 0.07

Hemoglobin 0.998 0.21 0.19

Hematocrit 0.998 1.45 1.37

Mean corpuscular volumea 0.998 2.89e-03 2.94e-04

Mean corpuscular hemoglobina 0.998 2.56e-03 3.25e-04

Mean corpuscular hemoglobin concentration 0.999 0.08 0.28

Red cell distribution widthb 0.998 1.01e-08 6.16e-09

Platelets 0.999 2574.96 10559.44

Mean platelet volumeb 0.999 1.99e-06 2.20e-06

aLog-transformed.
bBox–Cox-transformed.
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trace plot. A burn-in of 5,000 samples was used for all analyses. For
each trait, the sampled genome-wide genetic, permanent
environmental and residual variances were saved for every 100th
iteration and used to compute the samples of the posterior
distribution of the repeatability. This was calculated by dividing
the sum of the sampled genetic and permanent environmental
variances by the sampled phenotypic variance (i.e., the sum of
the sampled genetic, permanent environmental and residual
variances). Using the ‘coda’ package in R (Plummer et al., 2015),
the mean and 95% highest posterior density (HPD) of the
repeatability were obtained.

2.4.2 Genome-wide association study
Following Bhatia et al. (2023), a univariate marker-based Bayes-

B model was implemented in JWAS to identify genomic regions
associated with CBC measurements. The model used was

yijkl � CGi +DIMwindowj + Park + PE Cowl( )∑
p

n�1
mijklnβnδn

+ eijkl,

where parameters follow the same naming convention described
above, with the addition of δn. δn indicates whether SNP n was
included within the model (δn � 1) or not (δn � 0) for an iteration of
the model. The prior probability of exclusion (π) and prior variances
(presented in Table 2) were estimated using a Bayes Cπ model
(Kizilkaya et al., 2010). An MCMC length and burn-in were set as
described for heritability estimates. From every 100th iteration,
sample breeding values and 1-Mb non-overlapping windows

based on the reference genome ARS-UCD 1.2 were used to
obtain the samples of the posterior distributions of genome-wide
and window-based genetic variance. These samples were used to
estimate the percent of genetic variance explained and the window-
based posterior probabilities of association (WPPA; Fernando et al.,
2017), which provide information about the level of certainty that
the window was included in the posterior distribution, for each 1-
Mb window.

2.4.3 Identification of overlapping quantitative trait
loci and candidate genes for CBC traits

Quantitative trait loci (QTLs) were identified as 1-Mb windows
of the genome explaining more than 1% of the genetic variation,
which contained all genotyped SNPs within the window. In order to
explore whether the identified QTL explaining the most variance for
each CBC trait had previously been associated with disease and other
production traits in cattle, the GWAS peak (i.e., the 1-Mb region)
was identified, and the 3′ and 5′ flanking 1-Mb windows were
examined in the Animal Quantitative Trait Locus Database (QTLdb;
Hu et al., 2022), based on the genomic coordinates defined at the
QTLdb. The region explaining the most variance for lymphocytes
was unable to be explored due to the inability to view chromosomal
information on the QTLdb.

Potential candidate genes were identified by examining the 1-
Mb region in the Ensembl genome browser. Previous findings
related to the genes contained in the window were researched
using NCBI, GeneCards, and previous publications (Stelzer et al.,
2016; Cunningham et al., 2022; Sayers et al., 2022). If there were few
or no genes in the 1-Mb window associated with the trait, the
flanking 1-Mb windows were also inspected. Due to the number of
QTLs identified, the 1-Mb region explaining the most genetic
variance was explored for each CBC trait.

3 Results

3.1 Heritability and repeatability estimates

Genome-based heritability estimates for all CBC traits are
reported in Table 3. Heritability estimates ranged from 0.00 ±
0.00 (RDW) to 0.68 ± 0.06 (LYMPH). The majority of the CBC
traits had moderate heritability estimates, with a few having
heritability estimates that are considerably high (i.e., larger
than 0.50; RBC and LYMPH). The mean repeatability and
upper and lower bounds of the HPD of repeatability for each
trait are presented in Table 4. Repeatability estimates for CBC
traits were typically moderate to high, with some having low
repeatability. The range in mean repeatability was 0.00 (RDW) to
0.84 (LYMPH). Traits that had higher heritability tended to also
have higher repeatability.

3.2 Genomic regions associated and
overlapping QTLs with CBC traits

Across the genome, 95 unique 1-Mb windows explained more
than 1% of the genetic variance for at least one CBC trait. There were
nine 1-Mb windows that accounted for more than 1% of the genetic

TABLE 3 Heritability estimates of complete blood count measures.

Measure Heritability ± standard error

White blood cellsa 0.44 ± 0.07

Neutrophilsa 0.20 ± 0.04

Lymphocytesa 0.68 ± 0.06

Monocytes 0.19 ± 0.05

Eosinophilsa 0.32 ± 0.05

Basophilsa 0.48 ± 0.05

Large unstained cellsa 0.09 ± 0.03

Red blood cells 0.56 ± 0.04

Hemoglobin 0.39 ± 0.06

Hematocrit 0.41 ± 0.05

Mean corpuscular volumea 0.20 ± 0.03

Mean corpuscular hemoglobina 0.26 ± 0.04

MCH concentration 0.05 ± 0.02

Red cell distribution widthb 0.00 ± 0.00

Platelets 0.18 ± 0.04

Mean platelet volumeb 0.02 ± 0.01

aLog-transformed.
bBox–Cox-transformed.
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variance for two CBC traits, and one 1-Mb window was found for
three CBC traits. Each chromosome had at least one 1-Mb
significant window for at least one trait, except for chromosome
26. Table 5 presents the locations of the windows that explained the
most genetic variance, the percentage of genetic variance explained
by the window, the WPPA, and potential candidate genes within the
window for each chromosome. For a list of all 1-Mb windows that
explained more than 1% of the genetic variance of the CBC traits, see
Supplementary Table S2. Manhattan plots of the results of the
GWAS for white blood cell, red blood cell, and platelet traits are
shown in Figure 1, Figure 2, and Figure 3, respectively. The most
genetic variance explained (11.9%) was by the window located at Mb
35 on chromosome 25 and was associated with hematocrit
percentage. The average WPPA was 0.38, and a total of
22 windows had a WPPA above 0.50.

Within the 1-Mb window explaining the most genetic variance
or flanking 1-Mb windows of thirteen CBC traits (WBC, RBC,
HGB, HCT, MCV, MCH, RDW, MPV, NEUT, MONO, EOSI,
BASO, and LUC), genome-wide marker associations (i.e., GWAS-
based QTL) have previously been identified for production-related
traits, such as fat yield or percentage, protein yield or percentage,
milk conjugated linoleic acid content, and milk yield. Additionally,
QTLs within the regions examined for RBC, RDW, MPV, NEUT,
MONO, EOSI, BASO, and LUC have previously been identified for
the length of productive life. Finally, RBC, RDW, MPV, NEUT,
EOSI, BASO, and LUC had QTLs for net merit (Hu et al., 2022).
For all overlapping QTLs discussed in the upcoming sections, the
information on QTLs was obtained from the animal QTLdb (Hu
et al., 2022). The results for all overlapping QTLs are presented in
Supplementary Table S3.

3.2.1 White blood cell count
A total of five 1-Mbwindows were found to explain at least 1% of

the genetic variation for WBC. These windows were located on
chromosomes 4, 9, 19, 21, and 29. The window on chromosome
19 explained the most variance at 6.6% and was located at 45 Mb.
The WPPA for this window was 0.70. Within this window or just
inside the 1-Mb window beginning at 46 Mb are the RAD52 motif-
containing protein 1 (RDM1), KAT8 regulatory NSL complex
subunit 1 (KANSL1), and cell division cycle 27 (CDC27) genes.

3.2.2 Red blood cell count
Nine 1-Mb windows located across six chromosomes explained

1.2%–6.0% of the genetic variance of RBCs. The regions identified
were located on chromosomes 3, 11, 12, 13, 15, and 29, with three
windows located on chromosome 11 and two on chromosome 29.
The window on chromosome 13 at 75 Mb explained the most
variance (6.0%) and had a WPPA of 0.94. Genes located in this
window include EYA transcriptional coactivator and phosphatase
(EYA2), osteoclast stimulatory transmembrane protein
(OCSTAMP), and TP53 regulating kinase (TP53RK). Previously,
a QTL was identified in the region on chromosome 13 located in the
76th Mb for somatic cell score (SCS). Within this region, QTLs were
also identified for metabolic body weight (MBW) and average daily
gain (ADG). Finally, a QTL located in the 74th Mb on chromosome
13 was previously identified for body weight gain (BWG).

3.2.3 Hemoglobin amount and hematocrit
percentage

Four 1-Mb windows were identified for HGB on chromosomes
11, 15, 25, and X. The same regions were identified for HCT, as well

TABLE 4 Mean repeatability estimates and 95% confidence interval of repeatability for complete blood count measures.

Measure Mean repeatability 95% confidence interval

White blood cellsa 0.60 0.54–0.65

Neutrophilsa 0.33 0.25–0.39

Lymphocytesa 0.84 0.81–0.86

Monocytes 0.31 0.25–0.38

Eosinophilsa 0.42 0.35–0.48

Basophilsa 0.60 0.56–0.65

Large unstained cellsa 0.31 0.25–0.38

Red blood cells 0.63 0.59–0.68

Hemoglobin 0.51 0.45–0.57

Hematocrit 0.50 0.44–0.56

Mean corpuscular volumea 0.23 0.17–0.29

Mean corpuscular hemoglobina 0.30 0.23–0.37

MCH concentration 0.09 0.05–0.13

Red cell distribution widthb 0.00 0.00–0.00

Platelets 0.28 0.21–0.34

Mean platelet volumeb 0.03 0.01–0.05

aLog-transformed.
bBox–Cox-transformed.
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as an additional window on chromosome 15. For both traits, the
region located at 35 Mb on chromosome 25 accounted for the largest
amount of genetic variance. The window explained 6.0% of the
variance for HGB and 11.9% for HCT. TheWPPA was lower for this
region for HGB, with a WPPA of 0.61 compared to that of 0.82 for
HCT. The erythropoietin (EPO) gene and the acetylcholinesterase
(AChE) and transferrin receptor 2 (TFR2) genes are located within
this window. Two QTLs for ADG were previously identified in the
35th Mb of chromosome 25.

3.2.4 Mean corpuscular volume
Between 1.1% and 1.3% of the genetic variance of MCV was

accounted for by four 1-Mb windows located on chromosomes 5, 8,
10, and 17. The window on chromosome 5, located at 20 Mb,
accounted for the most variance (1.3%). This window had a
WPPA of 0.58.

3.2.5 Mean corpuscular hemoglobin amount
Six windows on chromosomes 5, 12, 19, and 22 explained 1.1%–

1.5% of the genetic variance of MCH. Two 1-Mb windows were
identified on both chromosomes 5 and 19. The window on
chromosome 5 at 20 Mb accounted for the largest amount of
genetic variance at 1.5% and had a WPPA of 0.60.

3.2.6Mean corpuscular hemoglobin concentration
A total of eight 1-Mb windows explained at least 1% of the

genetic variance of MCHC. These windows were located on
chromosomes 5, 12 (four windows), 18, and 21 (two windows).
The largest amount of variance (5.7%) was explained by the window
located at 79 Mb on chromosome 5 and had a WPPA of 0.54. Five
QTLs previously identified for bovine tuberculosis susceptibility and
M. paratuberculosis susceptibility were located in the region in the
78th Mb on chromosome 5.

3.2.7 Red cell distribution width
Six windows explained more than 1% of the genetic variance of

RDW. These windows were located on chromosomes 2, 6 (two
windows), 14, 16, and X. The most variance was explained by the
window on chromosome 16 (22 Mb), accounting for 4.4% of the
genetic variance. This window had a WPPA of 0.36. Within the
genomic region at 21 Mb on chromosome 16, QTLs were previously
identified for ADG and BWG, whereas a QTL was found for feed
conversion ratio in the 23rd Mb. Within a window explaining 1.2%
of the genetic variation in RDW located at chromosome 6 (36 Mb)
are the ATP-binding cassette subfamily G member 2 (ABCG2) and
HECT and RLD domain-containing E3 ubiquitin protein ligase
family member 6 (HERC6) genes.

TABLE 5 Summary of 1-Mb windows explaining the most genetic variance for each complete blood count trait.

Trait Chromosome Mba

window
Number of SNPs in

the window
WPPAb % genetic variance

explained
Candidate
gene(s)

White blood cellsc 19 45–46 44 0.70 6.6 RDM1, KANSL1, and
CDC27

Neutrophilsc 27 17–18 37 0.31 2.8 CXCL12

Lymphocytesc 11 97–98 37 0.75 4.8 ZBTB34 and ZBTB43

Monocytes 9 102–103 65 0.40 3.2 SMOC2

Eosinophilsc 13 76–77 42 0.63 5.6 SULF2

Basophilsc 20 24–25 28 0.65 4.2 GZMA and GZMK

Large unstained cellsc 13 7–8 27 0.21 1.4 TASP1

Red blood cells 13 75–76 44 0.94 6.0 EYA2, OCSTAMP, and
TP53RK

Hemoglobin 25 35–36 45 0.61 6.0 EPO, AChE, and TFR2

Hematocrit 25 35–36 45 0.82 11.9 EPO, AChE, and TFR2

Mean corpuscular volumec 5 20–21 26 0.58 1.3 –

Mean corpuscular
hemoglobinc

5 20–21 26 0.60 1.5 –

Mean corpuscular
hemoglobin concentration

5 79–80 25 0.54 5.7 –

Red cell distribution widthd 16 22–23 25 0.36 4.4 ABCG2 and HERC6

Platelets 10 92–93 39 0.28 3.2 CEP128

Mean platelet volumed 9 77–78 32 0.61 4.6 HECA and CITED2

aMegabase.
bWindow-based posterior probabilities of association.
cLog-transformed.
dBox–Cox-transformed.
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3.2.8 Platelet count
Three 1-Mb regions, located on chromosomes 10, 27, and 28,

were found to explain more than 1% of the genetic variance for PLT.
The window located at 91 Mb on chromosome 10 accounted for the
most variance (3.2%), and the WPPA of this window was 0.28. The
gene centrosomal protein 128 (CEP128) is located in this window.

3.2.9 Mean platelet volume
There were twelve windows found on nine chromosomes that

explained between 1.0% and 4.6% of the genetic variance for MPV.
Windows were located on chromosomes 5 (three windows), 8, 9, 11,
13, 22, 24, 28, and X (two windows). The most variance explained
(4.6%) was for the window on chromosome 9 at 77 Mb, which had a

FIGURE 1
Genome-wide association study results for all white blood cells and white blood cell sub-types (i.e., leukocyte traits), with chromosome number on
the X-axis and the percent of genetic variance explained on the Y-axis. Each point represents a 1-Mb window, and the red line is at 1% of the genetic
variance explained.

FIGURE 2
Genome-wide association study results for all red blood cells and red blood cell-related measures (i.e., erythrocyte traits), with chromosome
number on the X-axis and the percent of genetic variance explained on the Y-axis. Each point represents a 1-Mb window, and the red line is at 1% of the
genetic variance explained.
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WPPA of 0.61. The Hdc homolog, cell cycle regulator (HECA) gene
is located just outside of the 77-Mb window, at approximately
76.8 Mb, and the Cbp/p300 interacting transactivator with Clu/
Asp rich carboxy-terminal domain 2 (CITED2) is located within the
window at 77 Mb. A QTL was previously identified for MBW in
the 78th Mb.

3.2.10 Neutrophil count
Five windows were identified on chromosomes 3, 5, 27, 28, and

29, explaining at least 1% of the genetic variance for NEUT. The
window located at 17 Mb on chromosome 27 explained the most
variance at 2.8%. This window had aWPPA of 0.31. Two QTLs were
previously identified for ADG, one located within the 17-Mb and the
other in the 18-Mb region. Additionally, a QTL was found for BWG
in the 17th Mb and for dry matter intake in the 18th Mb. Within the
window located at 45 Mb on chromosome 28, explaining 1.3% of the
genetic variation, is the C-X-C motif chemokine ligand 12
(CXCL12) gene.

3.2.11 Lymphocyte count
There were eleven windows that explained at least 1% of the

genetic variance in LYMPH. These windows were located on
chromosomes 4, 5, 11, 15, 17, 19, 20, 23, and 29. There were two
windows located on both chromosomes 17 and 23. The largest
amount of variance explained was 4.8% by the window located on
chromosome 11 at 97 Mb. This window had a WPPA of 0.75.
Located in this window are the zinc finger and BTB domain-
containing 34 and 43 (ZBTB34 and ZBTB43) genes.

3.2.12 Monocyte count
Eight windows explained more than 1% of the genetic variance

of MONO. Windows were found on chromosomes 5, 9 (two
windows), 11, 18, 23, 27, and 28. The most variance was

explained by the window on chromosome 9 beginning at 102 Mb
(3.2%) and having a PPA of 0.40. The SPARC-related modular
calcium-binding 2 (SMOC2) gene is found within this window. A
QTL was previously identified in this region (chromosome 9,
102 Mb) for bovine respiratory disease (BRD) susceptibility.
Moreover, within the 103-Mb region, a QTL was found for BWG.

3.2.13 Eosinophil count
Between 1.2% and 5.6% of the genetic variance was explained by

eleven windows for EOSI. Windows were located on chromosomes
1, 5, 7, 11, 13, 14, 18, 19, 28, and X, with two regions located on
chromosome 19. The largest portion of variance (5.6%) explained
was by the window located on chromosome 13 at 76 Mb. TheWPPA
of this window was 0.63. The sulfatase 2 (SULF2) gene is found
within this window. Previously, QTLs were identified for SCS and
clinical mastitis in the region located at 77 Mb on chromosome 13.
Additionally, a QTL for BWG was found in the region at 76 Mb.

3.2.14 Basophil count
Eight windows located on chromosomes 5, 15, 17, 18 (two

windows), 19 (two windows), and 20 accounted for more than
1% of the genetic variance for BASO. The most variance explained
was by the window on chromosome 20 (24th Mb), accounting for
4.2%. This window had a WPPA of 0.65. The granzyme A (GZMA)
and K (GZMK) genes are found in this window. A QTL was
previously identified for clinical mastitis in the 23rd Mb and for
SCS in the 25th Mb on chromosome 20.

3.2.15 Large unstained cells count
A single 1-Mb window located on chromosome 13 beginning at

the seventh Mb accounted for 1.4% of the genetic variance in large
unstained cells. The WPPA of this window was 0.20. The taspase 1
(TASP1) gene was found in this window.

FIGURE 3
Genome-wide association study results for platelets andmean platelet volume, with chromosome number on the X-axis and the percent of genetic
variance explained on the Y-axis. Each point represents a 1-Mb window, and the red line is at 1% of the genetic variance explained.
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4 Discussion

This is the first study describing the genetic architecture of CBCs
in lactating Holstein cattle. The study provides novel evidence of
genetic control of CBC traits in Holstein cattle. The CBC measures
had heritability estimates that were generally consistent with those
previously identified in beef cattle, with some having estimates larger
than 0.50 (RBC and LYMPH), perhaps as a function of breed
differences, or the sample size, management, or environmental
factors in the current study. Multiple biologically relevant
candidate genes were identified that warrant further investigation
for causal genes impacting CBC abundance. The GWAS-based
QTLs identified overlap with a variety of illness and disease
susceptibility traits (e.g., SCS, paratuberculosis, and BRD
susceptibility). Significant phenotypic associations have been
found between feed intake and CBC counts (results not shown),
providing motivation for the determination of the potential utility of
CBC traits as proxies for feed intake. Some QTLs identified overlap
with QTLs previously identified for production- and efficiency-
related traits (e.g., fat, protein and milk yield, ADG, and feed
conversion ratio). The results of this study are promising and
provide evidence that genomic selection on CBC phenotypes
could be feasible.

4.1 CBC measures in Holstein cattle are
moderately to highly heritable and
repeatable

Heritability estimates in the current study for individual CBCs
tended to be similar to those previously reported in cattle. Previous
reports of the heritability of WBC in beef cattle ranged from 0.31 to
0.47 (Leach et al., 2013; Chinchilla-Vargas et al., 2020), which
supports the findings of the current study. Heritability estimates
of specific WBC types (i.e., WBC, EOSI, LUC, NEUT, and MONO)
were in the range of those reported for both pigs and cattle (Leach
et al., 2013; Mpetile et al., 2015; Chinchilla-Vargas et al., 2020), with
the exception of BASO and LYMPH, which were considerably larger
than those previously reported (0.48 ± 0.05 vs. 0.12—0.23 and 0.68 ±
0.06 vs. 0.15–0.50, respectively). Estimated heritabilities of RBC-
related traits also tended to be larger than those previously reported
for cattle, while some were similar to those reported in swine (e.g.,
RBC: 0.56 ± 0.04 vs. 0.62 ± 0.25; Mpetile et al., 2015). Estimates of
MCHC, RDW, andMPV heritability were substantially smaller than
those previously reported and were near 0 (0.05 ± 0.02, 0.00 ± 0.00,
and 0.02 ± 0.01, respectively). An important consideration is that the
current study required a transformation of several CBC traits to
approximate normality, while previous studies typically did not use
transformation measures. It may be possible that these
transformations impacted the magnitude of the estimates.

Previous studies have not estimated the repeatability of CBC
measures over time. Though samples in this study were taken within
a relatively short timeframe (on average 3 weeks apart over a 6-week
duration), there was a wide range in repeatability estimates. The
mean repeatability of RDW, MPV, and MCHC was low (<0.10),
while the repeatability of HGB,WBC, BASO, RBC, and LYMPHwas
relatively high (>0.50). These findings indicate that some CBC traits
with high repeatability may fluctuate little over short time periods,

while others with low repeatability may be much more variable. This
information about the variability of CBCs over short time periods
may be helpful in identifying reasonable time frames to compare
CBC measurements in the design of future assays or experiments on
dairy cattle. Further research into the point at which a sample is
taken for traits that are more variable and the impact that trait
variation over time has on trait correlations will be important in
determining the informativeness of a candidate indicator trait.

4.2 Genome-wide association study and
candidate genes for the genetic control
of CBCs

4.2.1 White blood cell count
Three genes of interest are located in the window on

chromosome 19 that explained the most genetic variance for
WBC. Previous research on humans has shown that the RDM1
gene is involved in mediating DNA damage repair through
homologous recombination and the cellular response to a
chemotherapy drug (Hamimes et al., 2005; Hamimes et al., 2006;
Messaoudi et al., 2007). Moreover, knockdown of this gene reduced
the proliferation of tumor cells, increased cell apoptosis, and
induced cell cycle arrest (Li et al., 2017; Xu et al., 2018; Chen
et al., 2019; Tong et al., 2020). The expression of RDM1 is correlated
with the degree of immune infiltration of immune cells, including
macrophages and neutrophils, in a variety of cancer types (Qui et al.,
2021). A SNP located within 100 Kb of the RDM1 gene was
associated with interdigital hyperplasia, and another was
associated with sole hemorrhage in Holsteins (Sousa Junior et al.,
2023). Finally, RDM1was found to be significantly downregulated in
less feed-efficient beef cattle (Chen et al., 2011). KANSL1 is an
additional gene of interest. A study on human ovarian cancer found
that KANSL1 is amplified and/or rearranged in ovarian cancer,
associated with the lymphocyte profile, a biomarker for response to
histone deacetylase inhibition, and could potentially drive the
expression of genes related to immune response (Fejzo et al.,
2020). Lastly, CDC27 is located in the region identified. This
gene has been linked to several diseases including lupus (Shang
et al., 2022), pulmonary fibrosis (Qi et al., 2020), and numerous
cancers (Ahn et al., 2014; Guo et al., 2015; Xin et al., 2018). Due to
the connection of these genes with regulation of immune cells, genes
related to immune response, and autoimmune diseases and cancer
in humans, it may be worthwhile further investigating their
relationship to WBC in cattle.

4.2.2 Red blood cell count
A window located on chromosome 13 explained 6.01% of the

genetic variance of RBCs and contained three potential candidate
genes, namely, EYA2,OCSTAMP, and TP53RK. These genes have all
been tied to blood cancers, including myeloid leukemia and
myeloma. One study identified EYA2 as a potential target for
molecular therapy in a subtype of acute myeloid leukemia (Ono
et al., 2017), whereas OCSTAMP mRNA levels were connected to
multiple myeloma (Wang et al., 2020) and TP53RK expression is
inversely correlated with multiple myeloma survival (Hideshima
et al., 2017). Due to acute myeloid leukemia and myeloma being
blood cancers, the cancer cells can crowd out healthy blood cells,
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which can result in decreased RBC and anemia (American Cancer
Society, 2018; Mayo Clinic, 2023). Interestingly, TP53RK was
significantly downregulated in healthy Holstein cattle, compared
to those PCR-positive for bovine tuberculosis (Fang et al., 2020), and
was expressed at significantly lower levels in foot and mouth disease
virus carriers than non-carriers (Zhu et al., 2020).

4.2.3 Hemoglobin abundance and hematocrit
percentage

The GWAS regions identified for HGB and HCT were nearly
identical, including the window on chromosome 25 that explained
the largest portion of genetic variance for both traits. EPO, AChE,
and TRF2 genes are located in this window. The protein encoded by
the EPO gene promotes erythropoiesis in bone marrow. Moreover,
the expression of EPO is upregulated during hypoxia, which results
in increased red blood cell production and an enhanced oxygen-
carrying capacity of blood (Schuster et al., 1989; Jelkmann, 1992;
Lam et al., 2009). Knock-out of AChE in mice resulted in anemia.
Additionally, the amount of hemoglobin in the knockout mice was
found to be significantly lower. This study also hypothesized that
AChE may be involved in the regulation of erythroblast-like cell
responsiveness to EPO (Xu et al., 2019). An additional study on
humans by Gupta et al. (2018) found thatAChE levels were higher in
cases of anemia related to the size of the RBCs (i.e., macrocytic and
microcytic), suggesting that it may play a role in the maintenance of
the shape and integrity of RBCs. This study also reported a negative
correlation of AChE levels with hemoglobin. The TFR2 gene is a
partner and modulator of the EPO receptor gene (EPOR) complex
and is required for efficient erythropoiesis. Furthermore, knockout
of TFR2 in bone marrow results in higher hemoglobin and red blood
cell counts, and researchers speculated that TFR2 may serve as a
control system of RBC number (Nai et al., 2015).

4.2.4 Mean corpuscular volume, mean corpuscular
hemoglobin amount, and mean corpuscular
hemoglobin concentration

For MCV, MCH, andMCHC, the window that explained the most
variance included only one or two genes. Moreover, these genes have
not been determined to have functions related to MCV,MCH,MCHC,
or related traits. On examining the 1-Mb regions surrounding those
identified in the GWAS, some long non-coding RNAs (lncRNAs) for
MCV and MCH were observed. Moreover, located just outside of the
region identified on chromosome 17 for MCV is the sprout RTK
signaling antagonist 1 (SPRY1). This gene has been identified as a
regulator of red blood cell production during anemia and a transducer
of EPOR signals (Sathyanarayana et al., 2012). Thus, it may be possible
that the lncRNA foundmay be regulating the nearby gene. For MCHC,
the importin 8 (IPO8) gene is located roughly 0.1 Mb outside of the
identified region. This gene has been associated with increasedMCH in
mice (Blake et al., 2021) and therefore may be related to MCHC in
cattle, but little information is available.

4.2.5 Red cell distribution width
Within the region explaining 1.2% of the genetic variance in

RDW are the ABCG2 andHERC6 genes. Zhou et al. (2005) reported
that the expression of the ABCG2 gene is upregulated in two murine
erythroid cell systems during erythroid differentiation. Moreover,
the ABCG2 protein was expressed in mature red blood cells of mice,

rhesus monkeys, and humans. Desuzinges-Mandon et al. (2010)
reported that the ABCG2 gene also functions in the cellular export of
heme. Similarly, the HERC6 gene is induced during erythroid
differentiation (Maragno et al., 2011). Though these genes have
not been related to differences in RDW (i.e., the coefficient of the
variation of erythrocyte size), it is possible, given their relationship
to erythrocyte differentiation, that they may also influence RDW.
Additionally, a mutation in the ABCG2 gene has previously been
identified as having an effect onmilk production and composition of
Holstein cows (Cohen-Zinder et al., 2005), and HERC6 was found to
have increased expression in beef cattle with BRD compared to
healthy cattle (Scott et al., 2022).

4.2.6 Platelet count
A gene of interest located in the region explaining the most

genetic variance for PLT is CEP128. This gene is a risk locus for
autoimmune thyroid diseases (Wang et al., 2019). Ijaz et al. (2018)
reported that an increase in serum L-thyroxine level, a thyroid
hormone, was associated with platelet count. Moreover, thyroid
disorders are commonly found in individuals with immune
thrombocytopenia (i.e., a deficiency in platelets). The link
between CEP128 and thyroid diseases and the connection
between the thyroid and platelets may indicate a potential link
between the gene and platelets.

4.2.7 Neutrophil count
The CXCL12 gene is located in a region explaining 1.3% of the

genetic variance of NEUT. This gene is of particular interest as
several pieces of evidence exist for its involvement with neutrophils.
Metzemaekers et al. (2020) summarizes the roles of chemokines,
including CXCL12, in relation to neutrophils. Importantly, it is
critically involved in neutrophil bone marrow storage and release
regulation (Metzemaekers et al., 2020; Cambier et al., 2023). Isles
et al. (2019) found that CXCR4/CXCL12 signaling may play a key
role in the retention of neutrophils at inflammatory sites.
Additionally, CXCL12 signaling has been shown to enhance
neutrophil migration (Cali et al., 2022). Given this clear
connection between CXCL12 and neutrophils, it is a strong
candidate gene for neutrophils in cattle.

4.2.8 Lymphocyte count
Two zinc finger and BTB domain-containing genes are located

in the window explaining the most genetic variance for LYMPH.
This family of genes has been reported to play a key role in B-cell
development (Chevrier and Corcoran, 2014). Recently, ZBTB43 was
found to be differentially expressed in human cells after coronavirus
infection and was therefore hypothesized to be involved in the
cellular response to COVID-19 infection (Mamoor, 2020).
Additionally, ZBTB34 was predicted to be involved in the
regulation of immune system processes in brown rats (Vedi
et al., 2023). In feedlot cattle, ZBTB43 was identified as a
potential biomarker and candidate disease gene for BRD
(Hasankhani et al., 2021), further suggesting it may play a role in
the immune system of cattle.

4.2.9 Monocyte count
The SMOC2 gene is potentially a gene of interest for monocytes

in cattle. In a study of humans with heart failure, a negative
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correlation was found between SMOC2 and monocytes (Zhou et al.,
2023). Moreover, the gene is highly expressed during wound healing
(Rocnik et al., 2006). Given that monocytes are required for tissue
regeneration and are one of the first responders to tissue injury (Shi
and Pamer, 2011; Ogle et al., 2016), it may be possible that
SMOC2 plays a role in the genetic control of monocytes. In beef
cross cattle, SMOC2 was significantly downregulated in healthy
cattle compared to those with bovine viral diarrhea virus (Tizioto
et al., 2015).

4.2.10 Eosinophil count
The SULF2 gene is located in the window explaining the most

genetic variance for EOSI. This gene is involved in TNF-α signaling
and is overexpressed in rheumatoid arthritis (Siegel et al., 2022).
Given that rheumatoid arthritis is an autoimmune and
inflammatory disease, it is possible that there is a link between
SULF2 and immune-related cells like eosinophils.

4.2.11 Basophil count
Two genes located in the region explaining the most genetic

variance for BASO belong to the granzyme family (GZMA and
GZMK). This family of genes is involved in mediating cell death
(Chowdhury and Lieberman, 2008), as well as playing a potential
role in immune signaling (Cullen et al., 2010).GZMA specifically has
been shown to have pro-inflammatory activity (Lieberman, 2010).
Due to the relationship between BASO and inflammation, a link
between granzyme genes and BASO is possible. Aaranday-Cortes
et al. (2012) and Bhat et al. (2023) found that GZMA was
significantly upregulated in cattle with bovine tuberculosis
compared to healthy cattle. Interestingly, this gene was more
highly expressed in beef cross steers with lower gain than those
with higher gain (Lindholm-Perry et al., 2017). A SNP located within
1 Mb of the GZMK gene was associated with the Johne’s disease
infection status of Holstein cattle (Mallikarjunappa et al., 2018).

4.2.12 Large unstained cells count
Large unstained cells are large peroxidase-negative cells, most

often large lymphocytes, virocytes, blasts, and hematopoietic stem
cells (Merter et al., 2023). The TASP1 gene located in the region
identified for LUC has been identified as a potential anticancer
therapeutic target (Niizuma et al., 2015). Moreover, the gene has
been identified as playing a role in filopodia, which is essential
during differentiation of innate immune cells and may play a role in
the developmental processes of immune cells (Hensel et al., 2022).
Soares et al. (2021) reported that the TASP1 gene was located in a
window explaining 0.63% of the genetic variance for subclinical
ketosis in first parity Holstein cows.

4.3 Study implications and limitations

Despite the limited sample size, this study provides novel
information about the heritability and genetic architecture of
blood cell traits in dairy cattle. Moreover, sometimes, large
populations are not required to obtain strong signals in GWAS
analyses of functional traits. Since CBC traits can be impacted by
differences in animal health and management styles, these factors
should be considered when evaluating CBC traits. The findings are

important because they lay the groundwork for future research to
evaluate the relationship of CBCs with other traits or identify the
underlying causes of variation in these health traits in lactating
Holstein cows. In U.S. dairy cattle, the average number of lactations
is 2.8, and cows that remain in the herd longer usually have fewer
health issues (Shabalina et al., 2019; Hu et al., 2021; Michigan State
University Dairy Extension, 2022). Health disorders have a large
expense (Bar et al., 2008; Gohary et al., 2016; Liang et al., 2017;
Robcis et al., 2023), thus having a significant impact on the economic
sustainability of the dairy industry. Moreover, as health directly
impacts feed consumption, milk production (Siberski-Cooper et al.,
2023), and the efficiency of an animal through nutrient partitioning
(Lochmiller and Deerenberg, 2000; Horst et al., 2018; Brown and
Bradford, 2021) and increases energy demands (Kvidera et al., 2017),
it is worthwhile to examine the genetic relationship of CBCs with
longevity, feed intake, and efficiency. Additional studies are needed
to evaluate how baseline levels (i.e., normal circulating levels) of
CBCs may impact the incidence and severity of illness in dairy cattle.

5 Conclusion

Genomic-based heritabilities for CBCs in lactating Holstein
dairy cattle were similar to those previously reported in beef
cattle. The GWAS results for CBC traits identified many
potential candidate genes and overlapped with a host of known
GWAS results for disease susceptibility and traits related to animal
growth, efficiency, and production. Some of the candidate genes
identified may play a role in the immune response (e.g., RDM1 and
KANSL1) and the differentiation of RBCs (e.g., EPO, ABCG2, and
HERC6). Given the lactation cycle of dairy cattle and the impact it
has on immune response, future studies further investigating the
relationship of CBC phenotypes with productive life and maintained
production efficiency, including assays of cell type functionality,
would be beneficial. This study indicates that CBC measures may be
useful as proxies for improvement in health, resilience, and
feed efficiency.
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