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Hepatocellular carcinoma (HCC) represents a substantial global health burden.
Tumorinfiltrating B lymphocytes (TIL-Bs) contribute to tumor progression and
significantly impact the efficacy of tumor therapy. However, the characteristics of
TIL-Bs in HCC and their effect on HCC therapy remain elusive. Single-cell RNA
sequencing (scRNAseq) was applied to investigate the heterogeneity, cellular
differentiation and cell-cell communication of TIL-Bs in HCC. Further, the Cancer
Genome Atlas-liver hepatocellular carcinoma (TCGA-LIHC) and liver cancer
institutes (LCI) cohorts were applied to construct and validate the plasma cell
marker-based prognostic risk model. The relationship between the prognostic
risk model and the responsiveness of immunotherapy and chemotherapy in
patients with HCC were estimated by OncoPredict and tumor immune
dysfunction and exclusion (TIDE) algorithm. Finally, we established nomogram
and calibration curves to evaluate the precision of the risk score in predicating
survival probability.Our data identified five subtypesof TIL-Bs inHCC, eachexhibiting
varying levels of infiltration in tumor tissues. The interactions between TIL-Bs and
other cell types contributed to shaping distinct tumor microenvironments (TME).
Moreover, we found that TIL-Bs subtypes had disparate prognostic values in HCC
patients. The prognostic risk model demonstrated exceptional predictive accuracy
for overall survival and exhibited varying sensitivities to immunotherapy and
chemotherapy among patients with HCC. Our data demonstrated that the risk
score stood as an independent prognostic predictor and the nomogram results
further affirmed its strong prognostic capability. This study reveals the heterogeneity
of TIL-Bs and provides a prognostic riskmodel based on plasma cell markers in HCC,
which could prove valuable in predicting prognosis and guiding the choiceof suitable
therapies for patients with HCC.
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Introduction

Hepatocellular carcinoma (HCC), representing a significant
majority of liver cancer cases, stands as a major concern for global
public health (Petrick and McGlynn, 2019; Sung et al., 2021).
Increasing evidence underlines the essential role performed by
complex tumor microenvironment (TME) in impacting the
effectiveness of tumor therapies and promoting tumor progression
(Pitt et al., 2016; Bejarano et al., 2021). B cells and plasma cells,
commonly known as tumor-infiltrating B lymphocytes (TIL-Bs),
constitute a significant component of TME (Wouters and Nelson,
2018). TIL-Bs are increasingly recognized as pivotal players in
modulating tumor responses, thereby making them promising
targets for therapeutic interventions (Yuen et al., 2016). However,
the heterogeneity of TIL-Bs determines their dual role in anti-tumor
immunity (Laumont et al., 2022; Nakamura et al., 2023). TIL-Bs
actively participate in cellular immunity by engaging in antigen
presentation and fostering the development of tertiary lymphoid
structures (TLS). As a result, this amplifies anti-tumor immune
responses and increases the efficacy of immune checkpoint
inhibitor (ICI) treatment (Helmink et al., 2020). Furthermore,
plasma cells have long been acknowledged for their capacity to
generate antibodies, contributing to the elimination of tumor cells
through antibody-mediated cellular cytotoxicity (Kurai et al., 2007).
Simultaneously, B cells may also be implicated in promoting tumor
progression. Regulatory B (Breg) cells, characterized by their secretion
of IL10 and IL35, primarily exert negative immune regulation

(Michaud et al., 2021). Additionally, antibodies can generate
circulating immune complexes (CICs), which accelerates tumor
progression. Moreover, the function of TIL-Bs vary across different
tumor types (Andreu et al., 2010; Jiang et al., 2020; Li et al., 2020). To
date, the characteristics of TIL-Bs in HCC and their impact on
prognosis and therapy efficacy of HCC patients have not been
established.

Single-cell RNA sequencing (scRNA-seq) technology has emerged
as a potent instrument for unveiling the complexities of TME,
illuminating previously uncharted territories (Lei et al., 2021). In
contrast to bulk RNA-seq data, which can solely gauge overall gene
expression levels in entire tissue specimens, scRNA-seq has the capability
to identify genes that are distinctly highly expressed in specific cell
subtypes (Shaul et al., 2021). Furthermore, scRNA-seq facilitates the
examination of cell-to-cell interactions within the TME and the
exploration of dynamic processes related to cellular differentiation
and development (Armingol et al., 2021; Derakhshan et al., 2022).
This technology enables a comprehensive analysis of the roles played
by specific cell subtypes in tumor progression. On the other hand, bulk
RNA-seq data offer larger sample sizes and clinical information, thus
bridging the gap between basic research and clinical applications.
Therefore, the incorporation of single cell and bulk RNA sequencing
appears encouraging in comprehensively unraveling the heterogeneity of
TIL-Bs and exploring their relationship with clinical outcome.

In this study, we combined single-cell and bulk RNA-
sequencing analyses to investigate the heterogeneity of TIL-Bs in
HCC and their relationship with patient prognosis. Our data

FIGURE 1
Overview of the single-cell landscape for HCC patient. (A) UMAP analysis of clustering single cells colored by cell types. (B) Dot plot showing the
expression of conventional markers of each cell type. (C,D) Barplot showing the composition of cell types in immune cells (C) and components of non-
immune cells (D) among each sample. (E) Alluvial diagram showing percentages of each cell type between tumor and normal liver tissues. (F) Percentages
of each cell type between tumor and normal liver tissues. *p < 0.05.
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systematically delineated the landscape of TIL-Bs and their
intercellular communications with other constituents within the
HCC TME. We additionally evaluated the prognostic significance of

TIL-Bs subgroups in the Cancer Genome Atlas-liver hepatocellular
carcinoma (TCGA-LIHC) and liver cancer institutes (LCI) cohorts.
Furthermore, we constructed a plasma cell marker-based prognostic

FIGURE 2
Distinctive characteristics of TIL-Bs subtypes in TME of HCC. (A) The population of B cells and plasma cells in tumor tissues and normal liver tissue.
(B)UMAP plot identifying the clusters of plasma cells and B cells (left) and pie plot showing the composition of TIL -Bs in tumor and normal tissue (right) in
TME of HCC. (C) Feature plot showing the expression of MS4A1 and MZB1. (D) Boxplot showing the alteration of B cells and plasma cells between normal
and tumor tissues according to GSE149614 cohort. (E)UMAP showing the subtypes of TIL-Bs at high resolution. (F) The expression of selected genes
among subtypes of TIL-Bs. (G) Alluvial diagram showing percentages of subtypes of TIL-Bs between tumor and normal liver tissues. (H) Enrichment score
of an ex vivo-sorted human GC B cells marker genes among TIL-Bs subtypes. (I) Enrichment score of GC B cells marker genes in Cui et al. (2021) study
among TIL-Bs subtypes. (J) Enrichment score of an ex vivo-sorted human plasma cells marker genes among TIL-Bs subtypes. (K) The expression of
regulatory B (Breg) cells marker genes via feature plot. *p < 0.05.
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risk model, which correlated with the response of HCC patients to
both immunotherapy and chemotherapy.

Materials and methods

Sample collection and processing

From May 2021 to November 2022, eight tissue samples in total
were gathered at The Third Affiliated Hospital of Soochow University,
including four postoperative HCC tissues and four normal liver tissues

(three of which were paired). The clinical characteristics of these HCC
patients were provided in Supplementary Table S1. The study was
conducted with approval from the Ethical Committee of the hospital,
and all participants had provided their informed consent. The resected
tissues were cut into approximately 0.125 cm3 pieces and immediately
immersed in a 4°C Tissue Storage Solution (Miltenyi, 130-100-008).
Single-cell suspension was prepared according to the manufacturer’s
instructions of 10X Genomics (https://www.10xgenomics.com/
support/single-cell-immune profiling/documentation/steps/sample-
prep). And single-cell suspension that met the required criteria were
subjected to 5′single-cell RNA sequencing.

FIGURE 3
Dynamic gene expression in the differentiation of B cells. (A) Pseudo-trajectory of TIL-Bs colored by cell types, pseudo-time and state. (B)
Expression of select genes during pseudo-time colored by state. (C)Heatmap showing themodules of gene clusters in two cell fates of the branch point.
(D–H) GO function analysis of each gene cluster in (C).
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FIGURE 4
Cellular communications between TIL-Bs and other cell types in HCC. (A) Heatmap depicting the differential number of interactions or interaction
strength between tumor tissues and normal liver tissues. Red indicates increased signaling in tumor tissues, while blue indicates decreased signaling in
tumor tissues. (B) Dot plot showing the increased signaling ligand-receptor pairs between hepatocytes and TIL-Bs in tumor tissues. (C) Dot plot
demonstrating the increased signaling ligand-receptor pairs between T cells and TIL-Bs in tumor tissues. (D) Dot plot illustrating the increased
signaling ligand-receptor pairs between myeloid cells and TIL-Bs in tumor tissues.
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ScRNA-seq data processing

Cell Ranger software (version 5.0.0) and the
GRCh38 Reference Genome (2020) were used for creating the
raw gene expression matrix for further analysis. Quality control,
normalization, dimension reduction and clustering were
performed by Seurat (version 4.1.0) package. R package
DoubletFinder (version 2.0.3) was utilized to identify and
remove doublets based on default parameters to ensure the
inclusion of high-quality cells. Cells exhibiting in excess of
5,000 unique molecular identifier (UMI) counts and
mitochondrial gene counts exceeding 10% were excluded from
the analysis. And 3,000 highly variable genes were selected for
following evaluation. Further, R package Harmony (version
0.1.0) was applied to address the batch effects. Top
30 principal components were retained based on the Elbow
plot function in Seurat. The FindClusters function in Seurat
was used to identify the main cell clusters, with a resolution
set at 0.2. Uniform manifold approximation and projection
(UMAP) was used for visualization of cell clusters. Known
biological cell types were assigned to each cell based on
conventional markers.

Data acquisition

The scRNA-seq dataset, comprising eight normal samples
and ten tumor samples, was retrieved from the Gene Expression
Omnibus (GEO) database using the access code GSE149614. We
obtained transcriptome data and clinical information for
356 tumor samples in the TCGA-LIHC cohort from the

University of California, Santa Cruz (UCSC) Xena database,
available at https://xenabrowser.net/datapages/. The expression
matrix and clinical information of the LCI cohort, comprising
225 tumor tissues collected from Zhongshan Hospital of Fudan
University, were downloaded from GSE14520. The somatic
mutation data of TCGA-LIHC was downloaded from
TCGA database.

Gene set enrichment analysis

R package AUCell (version 1.16.0) was employed to estimate
the area under curve (AUC) score of germinal center (GC) B cells
and plasma cells. The gene set of GC B cells and plasma cells were
obtained from the highly expressed genes of an ex vivo-sorted
human GC B cells and plasma cells (GSE12366). Another GC
B cells signature genes (AICDA, BCL6, POLH, P2RY8, SEMA4A,
FOXO1, BACH2, BATF, CD86, IRF8, DOCK8) were obtained
from Cui et al. (2021) study. The enrichment score of TLS was
evaluated by ssGSEA function in R package Gene Set Variation
Analysis (GSVA) (version 1.42.0). Signature genes for TLS were
identified in a previous study, including CD79B, CD1D, CCR6,
LAT, SKAP1, CETP, EIF1AY, RBP5, and PTGDS (Cabrita
et al., 2020).

Trajectory analysis of TIL-Bs

The trajectory of TIL-Bs was analyzed by R package Monocle2
(version 2.22.0). We selected variable features identified in Seurat
to order cells along the trajectory. Pseudotime analysis was

FIGURE 5
Clinical prognosis of TIL-Bs subtypes in HCC patients. (A–C) The prognosis of naïve B cells, memory B cells and plasma cells in TCGA-LIHC cohort.
(D–F) The prognosis of naïve B cells, memory B cells and plasma cells in LCI cohort.
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employed to infer the developmental progression of TIL-Bs. To
identify genes that exhibited branch-dependent expression, we
applied Branched Expression Analysis Modeling (BEAM)
analysis. Furthermore, the plot_genes_branched_heatmap
function was utilized to visualize genes that were significantly
branch dependent.

GO and KEGG enrichment analysis

ClusterProfile (version 3.14.3) was applied for the purpose of
conducting enrichment analysis for both Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
Significance was determined based on an adjusted p-value calculated
using the false discovery rate (FDR) method, with a threshold set at
less than 0.05.

Recognition of cell-cell communications

R package CellChat (version 1.5.0) was harnessed for exploring
the crosstalk and interconnections between TIL-Bs and other
cellular components within the complex TME of HCC. The
ligand-receptor interaction database, Secreted Signaling, was
chosen for subsequent analysis. Cell-cell communication
networks were inferred using standard procedures and default
parameters. CellChat object from tumor data and normal data
was constructed separately, and then merged them together. The
netVisual_heatmap function in CellChat was utilized to identify
differential numbers of interactions or interaction strengths among
different cell populations across the tumor dataset and normal
dataset. Additionally, the netVisual_bubble function was applied
to identify upregulated signaling ligand-receptor pairs in
tumor tissues.

FIGURE 6
Prognostic riskmodel construction and validation. (A) Identification of themost representative plasma cell marker genes through LASSO analysis. (B)
Comparison of overall survival (OS) and expression levels of candidate genes between high-risk and low-risk patients in the training cohort (TCGA-LIHC)
(C) Area under the curve (AUC) values for 1-year, 2-year and 3-year survival in the training cohort. (D) Comparison of OS and expression levels of
candidate genes between high-risk and low-risk patients in the test cohort (LCI). (E) AUC values for 1-year, 2-year and 3-year survival in the
test cohort.
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FIGURE 7
Relationship between risk score and immunotherapy in the TCGA-LIHC cohort. (A) The expression of immune checkpoint factors between high-risk
and low-risk patients. (B) The levels of TMB between high-risk and low-risk patients. (C) The enrichment score of TLS signatures between high-risk and
low-risk patients. (D,E) The exclusion score and dysfunction score between high-risk and low-risk patients according to TIDE algorithm. (F) The TIDE
score between high-risk and low-risk patients according to TIDE algorithm (G) The composition of immunotherapy efficacy between high-risk and
low-risk patients predicted by TIDE algorithm. ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 8
Relationship between risk score and chemotherapy in the TCGA-LIHC cohort. (A–G) The sensibility score of cisplatin, irinotecan, oxaliplatin, 5-
fluorouracil, paclitaxel, vincristine and sorafenib between high-risk and low-risk groups. ns, not significant, *p < 0.05, ****p < 0.0001.
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Estimation of infiltration of naïve B cells,
memory B cells and plasma cells

R package cell-type identification by estimating relative
subsets of RNA transcripts (CIBERSORT) (version 0.1.0) was
utilized for estimating the proportion of TIL-Bs subtypes
infiltration in bulk RNA data. TCGA-LIHC and LCI cohorts
were used as input expression matrices and the LM22 gene
expression matrix was used as a reference for
running CIBERSORT.

Survival analysis

Survival analysis was conducted with R package Survival
(version 3.2.13), and the Cox proportional hazards model was
utilized to determine hazard ratios (HR) for the assessment of
the association between factors and survival outcomes. Kaplan-
Meier survival curves were generated and modeled using the

Survfit function. To identify the ideal cutoff point for patient
stratification into two groups, R package Survminer (version
0.4.9) was utilized.

Construction of plasma cells associated
genes prognostic model

Plasma cells associated genes were recognized by
FindAllMarkers function of Seurat package under the
parameters of onlypo = T, minper = 0.2. We filtered out genes
related to prognosis through univariate Cox regression analysis,
followed by subjecting the risk genes to least absolute shrinkage
and selection operator (LASSO) analysis for further refinement.
We selected the λ value associated with the minimum partial
likelihood deviance as the optimal λ in our investigation.
Subsequently, six genes were selected for constructing the
prognostic risk model through multivariate Cox regression
analyses, utilizing the following formula: riskscore =

FIGURE 9
The prognostic risk model shows robust predictive accuracy in TCGA-LIHC cohort. (A,B) The results of the univariate and multivariate Cox
regression analyses regarding OS in the TCGA-LIHC cohort. (C) The nomogram showing the 1-, 2- 3-year OS of age, gender, stage and risk score. (D) The
Calibration plots showing the predicted and actual OS for 1-, 2- 3-year survival probabilities in TCGA-LIHC cohort.
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SEC61A1exp*0.000811515+DNAJC1exp*0.009154278+EIF5Bexp*
0.012715447+DNAJB4exp*0.018562242+ST6GALNAC4

exp*0.013184291+CCDC88Aexp*0.009150427, where geneexp was
the expression level of the gene. Subsequently, patients were
stratified into high-risk and low-risk categories based on the
median risk score.

Drug-sensitivity analysis and tumor immune
dysfunction and exclusion (TIDE) analysis

The investigation of drug sensitivity in TCGA-LIHC cohort was
carried out using R package OncoPredict (version 0.2). The
information of Genomics of Drug Sensitivity in Cancer (GDSC)
was downloaded from oncoPredict (https://osf.io/c6tfx/). The half
maximal inhibitory concentration (IC50) of each HCC sample was
estimated by calcPhenotype function in oncoPredict package with
default parameters. Subsequently, the IC50 values of common drugs
for HCC treatment were compared between two risk groups.
Additionally, potential immunotherapeutic response of patients
in the TCGA-LIHC cohort was assessed using the TIDE tool,
which is accessible at http://tide.dfci.harvard.edu/.

Valuation of predicted accuracy of the
risk score

The assessment of whether the risk score demonstrated
independent predictive capacity for patient prognosis was based
on univariate and multivariate Cox regression analyses.
Additionally, a Nomogram analysis was constructed using R
package rms (version 6.5.0).

Statistical analysis

All statistical analyses were conducted using the R software
(version 4.1.2). Comparisons between the two groups were executed
using the Wilcoxon test. The assessment of the proportion of
immunotherapy response between the different risk groups was
accomplished through Chi-squared test. p < 0.05 was deemed as
statistically significant.

Results

ScRNA-seq landscape of HCC patients

To systematically investigate the TME of HCC patients, we
performed 10X genomic scRNA-seq of collecting HCC samples and
a total of 73,126 cells were obtained after quality control. Utilizing
established gene markers as references, we successfully delineated
nine distinct cell populations, including five immune cell clusters
(T cells, myeloid cells, natural killer (NK) cells, plasma cells and
B cells), three non-immune cell clusters (endothelial cells,
hepatocytes and fibroblasts), and one proliferating cell cluster
designated as “Cyclings” (Figures 1A, B). Furthermore, we
proceeded to investigate the cellular composition within each

sample. Particularly, T cells were the predominant immune cell
population, present in both tumor and adjacent normal liver tissues
(Figure 1C).Within non-immune cell populations, hepatocytes were
the predominant cell type within tumor tissues, whereas endothelial
cells were more prevalent in normal liver tissues (Figure 1D).
Furthermore, the data indicated a notable reduction of NK cell
and a considerable increase of fibroblasts and hepatocytes in tumor
tissues (Figures 1E, F). Moreover, a conspicuous trend was observed
with an upregulation of plasma cells and a downregulation of B cells
within tumor tissues (Figures 1E, F). Taken together, these findings
collectively provide a comprehensive overview of the TME in
HCC patients.

Single-cell atlas of TIL-Bs in HCC

TIL-Bs, being a critical element within the immune cell
population, wield a central influence in anti-tumor responses. To
explore the role of TIL-Bs in the HCC TME, we initially investigated
the population of B cells and plasma cells in both tumor tissues and
normal liver tissues. In tumor tissues, B cells and plasma cells
comprise 4.53% and 3.84% of total cells, respectively, and 7.0%
and 6.0% of lymphocytes. In contrast, in normal liver tissues, B cells
and plasma cells account for 6.42% and 1.02% of total cells,
respectively, and 7.7% and 1.2% of lymphocytes (Figure 2A).
Next, we conducted an independent analysis of TIL-Bs to
elucidate their heterogeneous characteristics. Firstly, TIL-Bs were
categorized into B cells and plasma cells according to the expression
of MS4A1 and MZB1 (Figures 2B, C). In normal liver tissues, B cells
constituted 86% of the TIL-Bs population, while plasma cells
comprised 14%. In contrast, the distribution was altered in tumor
tissues, with 54% represented by B cells and 46% by plasma cells,
indicating a potential proclivity for B cells within the tumor tissues
to differentiate into plasma cells (Figure 2B). To validate these
observations concerning TIL-Bs alterations in tumor tissues, we
expanded our analysis to a larger cohort encompassing eight normal
liver tissues and ten tumor tissues (Lu et al., 2022). As anticipated,
there was a substantial increase of plasma cells, while a significant
reduction of B cells in tumor tissues (Figure 2D).

To comprehensively characterize the TIL-Bs subpopulations
within the HCC TME, we further subclustered them at a higher
resolution, leading to the identification of two plasma cell clusters
(Plasma cells-JCHAIN and Plasma cells-IGHG1) and 3 B cell
clusters (B cells-IGHD, B cells-TNSF13B, and B cells-RGS2)
(Figure 2E). B cells-IGHD cluster exhibited elevated expression of
IGHD, suggesting its potential identity as a population of naïve
B cells. The B cells-TNSF13B cluster displayed higher levels of
CD27 and TNSF13B, indicative of a memory phenotype. The B
cells-RGS2 cluster exhibited elevated expression levels of BCL6 and
LRMP, indicating the germinal center (GC) B cells phenotype
(Figure 2F). Meanwhile, the Plasma cells-IGHG1 and Plasma
cells-JCHAIN clusters displayed high expression levels of
IGHG1 and IGHA1, respectively, suggesting their potential role
in secreting IgG and IgA antibodies (Figure 2F). Furthermore, we
observed an increased proportion of both Plasma cells-IGHG1 and
Plasma cells-JCHAIN in tumor tissues (Figure 2G).

To confirm the precision of phenotype identification using
conventional markers, we conducted gene set enrichment
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analysis. The gene sets for GC B cells were derived from genes with
high expression levels in flow sorting human GC B cells and Cui
et al. (2021)’s study. And the gene set for plasma cells was derived
from highly expressed genes in ex vivo-sorted plasma cells. The
enrichment scores for both B cell gene sets were found to be highest
in the B cells-RGS2 cluster (Figures 2H, I). Similarly, Plasma cells-
JCHAIN and Plasma cells-IGHG1 exhibited higher enrichment
score for ex vivo-sorted human plasma cell marker genes relative
to the other 3 B cell clusters (Figure 2J). These data underscored the
precision of our TIL-B subpopulation classification. Notably, Breg
cells, known for their immunosuppressive functions in various
cancers, are typically characterized by the expression of effector
molecules such as IL10 and IL35 (encoded by IL12A and EBI3)
(Downs-Canner et al., 2022). However, in line with recent single-cell
sequencing studies, we did not identify Breg cells based on the
expression of IL10 and IL35 (Figure 2K) (Hu et al., 2021), which
might due to the expression discrepancy between protein and RNA.

Dynamic gene expression during B cell
differentiation

Based on the observed upregulation of plasma cells in tumor
tissues (Figure 2), we hypothesized that B cells might be forced to
differentiate into plasma cells under the pressure of TME. To
investigate the differentiation trajectories of TIL-Bs, we employed
pseudotime analysis using the Monocle2. This analysis identified
three distinct states of TIL-Bs. “State 1,” representing the initial
phase of differentiation, was predominantly composed of B cells,
while “State 2” and “State 3”were primarily comprised of the Plasma
cells-IGHG1 and Plasma cells-JCHAIN clusters, respectively
(Figure 3A). Subsequently, the expression patterns of selected
genes were scrutinized within these three states. We observed a
gradual downregulation of genes specific to B cells, such as BANK1,
IGHD1, TCL1A andMS4A1, whereas genes characteristic of plasma
cells, including CD38, MZB1, IGHG1, JCHAIN and SDC1,
exhibited an upregulation trend (Figure 3B).

To conduct a thorough investigation of gene expression profiles
linked with B cell differentiation, we employed branched expression
analysis modeling (BEAM) analysis, a statistical method capable of
discerning gene expression changes based on branch points
(Trapnell et al., 2014). BEAM analysis revealed that during the
differentiation of B cells, “gene cluster 1” exhibited a
downregulation, while gene “clusters 2,” “clusters 4” and “clusters
5” displayed a gradual upregulation (Figure 3C). The gene set of each
gene cluster was provided in Supplementary Table S2. Remarkably,
“gene cluster 3” exhibited an upregulation during B cell
differentiation into the Plasma cells-IGHG1 cluster but a
downregulation during differentiation into the Plasma cells-
JCHAIN cluster (Figure 3C).

GO enrichment analysis was carried out with the aim of
acquiring insights into the biological roles of these gene clusters.
All results from the GO enrichment analysis were available in
Supplementary Table S3. We observed enrichment of CCR7,
GPR183 and LY9 in “gene cluster 1,” which are associated with
T cell differentiation and activation (Figure 3D; Supplementary
Table S2). Notably, the downregulated expression of these genes
has been linked to the induction of T follicular helper cells

differentiation and their maintenance in the GC (Moschovakis
et al., 2012; De Salort et al., 2013; Suan et al., 2015). Since the
differentiation and development of B cells in the GC require the
assistance of T follicular helper cells (Kräutler et al., 2017), B cells
may differentiate into plasma cells in a T cell-dependent manner by
downregulating the expression of these genes. “Gene clusters 2,”
“gene clusters 4” and “gene clusters 5” were enriched in processes
related to immunoglobulin production, complement activation, and
phagocytosis, respectively (Figures 3E, G, H). Additionally, the
transition of B cells into the Plasma cells-IGHG1 cluster was
accompanied by the upregulation of genes associated with the
toll-like receptor signaling pathway (Figure 3F). In summary,
these findings provide evidence of dynamic gene expression
patterns during B cells differentiation within the TME.

Cell-cell interactions between TIL-Bs and
other cell types

The functionality of immune cells hinges significantly on
intercellular communication. Consequently, it is imperative to
investigate the cell-cell interactions involving TIL-Bs and other
cell types to elucidate the role of TIL-Bs in anti-tumor immunity.
To achieve a higher resolution of cell type, we initially subdivided
T cell and myeloid cell clusters into subgroups. We delineated seven
distinct T cell subgroups according to the most expressed genes of
each cluster and functional genes of T cells (Supplementary Figures
S1A, B). We noted that the CD8-XCL1 cluster displayed elevated
expression levels of cytotoxic genes (IFNG, GZMB, GZMH,
PRF1 and NKG7) as well as genes associated with exhaustion
(HAVCR2, TNFRSF9, TOX2, TIGIT and LAG3), indicative of
exhausted T cells (Supplementary Figure S1B). Further, we found
that CD4-FOXP3 cluster exhibited enrichment in tumor tissues
(Supplementary Figure S1C) and manifested heightened expression
of both immune co-stimulatory and immune co-inhibitory factors
(Supplementary Figures S1D, E). Likewise, we classified myeloid
cells into seven distinct subgroups based on conventional marker
genes (Supplementary Figures S2A, B). Notably, the Macrophages-
SPP1 cluster displayed enrichment in tumor tissues when contrasted
with normal liver tissues (Supplementary Figure S2C). The
Monocytes-S100A8 cluster exhibited high expression levels of
genes associated with myeloid-derived suppressor cells (MDSC)
(Supplementary Figure S2D), while the Macrophages-SPP1 and
Macrophages-C1QC clusters expressed high levels of genes
associated with tumor-associated macrophages (TAMs)
(Supplementary Figure S2E).

Cellchat was utilized to probe the communications between TIL-Bs
and other compositions in HCC TME. We integrated CellChat objects
from tumor tissues and normal liver tissues to examine the differences
in TIL-Bs’ cellular communication intensity between tumor and normal
liver tissues.We observed that, in comparison to normal tissue, both the
number and strength of interactions between hepatocytes and TIL-Bs
were significantly increased in tumor tissues (Figure 4A). To investigate
the potential mechanisms of TIL-Bs in the HCC TME, we focused on
the upregulated signaling pathways within the tumor tissue.We did not
identify signaling pathways through which TIL-Bs act on hepatocytes.
However, hepatocytes could interact with TIL-Bs through the SPP1-
CD44 and MIF-CD74/CXCR4 pathways (Figure 4B), both of which
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have been shown to be associated with the progression of HCC(Wirtz
et al., 2021; He et al., 2023).

The interaction between T cells and TIL-Bs has been
demonstrated to be associated with the prognosis and treatment
response of cancer patients (Schina et al., 2023). Therefore, we
further investigated the upregulated signaling pathways between
T cells and TIL-Bs in HCC tumor tissues. When acting as sender
cells, B cells-TNFRSF13B and Plasma cells-JCHAIN could activate
CD40-FOXP3 and CD8-XCL1 through TNFSF9-TNFRSF9
signaling (Supplementary Figure S3A). Additionally, CD8-XCL1
could recruit B cells-IGHD and B cells-TNFRSF13B via the
CXCL13-CXCR5 signaling pathway (Figure 4C), which is crucial
for the formation of tertiary lymphoid structures (Tokunaga
et al., 2019).

The interaction between myeloid cells and TIL-Bs has also been
shown to be closely associated with the differentiation and function
of TIL-Bs in the HCC TME (Wei et al., 2019). Our study revealed
that Plasma cells-JCHAIN interacted with Macrophages-SPP1
through GAS-MERTK (Supplementary Figure S3B), a pathway
known to be associated with tumor progression (Du et al., 2021).
Additionally, macrophages and dendritic cells (DCs) could interact
with TIL-Bs through the TNFSF13B-TNFRSF13B/TNFRSF13C and
TNFSF13-TNFRSF13B signaling pathways (Figure 4D), which are
pivotal for B cells’ differentiation into plasma cells. Moreover,
Plasma cells-JCHAIN could be recruited by DC-CD1C,
Macrophages-C1QC and Macrophages-SPP1 through CXCL9-
CXCR3 (Figure 4D).

Clinical prognosis of TIL-B subtypes in
HCC patients

To investigate the clinical relevance of TIL-B subtypes in HCC
patients, we utilized the CIBERSORT algorithm to calculate the ratios
of 22 immune cells in both TCGA-LIHC and LCI cohorts. The “surv_
cutpoint” function from the Survminer R package was employed to
determine the optimal cutoff value for the proportion of naive B cells,
memory B cells and plasma cells. Subsequently, patients were
stratified into two groups based on this cutoff value. Surprisingly,
distinct TIL-B subpopulations exhibited varying clinical outcomes in
HCC patients. Specifically, patients with a higher infiltration of naïve
B cells demonstrated improved overall survival in both TCGA-LIHC
and LCI cohorts (Figures 5A, D). Conversely, patients with elevated
levels of memory B cells and plasma cells displayed a reduced overall
survival probability (Figures 5B, C, E, F). These findings emphasize
the substantial heterogeneity within TIL-B populations and
underscore the need to further explore the specific role of TIL-Bs
in anti-tumor immunity at a finer resolution.

Construction and validation of plasma cell
marker-based prognostic model

Our analysis unveiled a notable enrichment of plasma cells in
tumor tissues, which was associated with unfavorable clinical
outcomes. Genes highly expressed in plasma cells are, on one
hand, associated with plasma cell identification, and on the other
hand, they may serve as functionally relevant genes. We deemed it

valuable to construct a plasma cell marker-based prognostic risk
model that elucidates the impact of plasma cells on HCC patients.
Initially, we identified 242 plasma cell marker genes using the
FindAllMarkers function within the Seurat. Subsequently, we
intersected these marker genes with expression matrix of the
TCGA-LIHC cohort. Subsequent univariable Cox regression
analysis identified 61 potentially prognostic genes within the
TCGA-LIHC cohort, with 59 of them considered as risk factors.
Given the adverse role attributed to plasma cells, we exclusively
selected risk genes for LASSO analysis. Ultimately, this process led to
the identification of six candidate genes (SEC61A1, DNAJC1, EIF5B,
DNAJB4, ST6GALNAC4 and CCDC88A) for constructing the
prognostic model (Figure 6A). All these six genes were highly
expressed by plasma cells (Supplementary Figures S4A, B). Then
the identified genes were utilized to construct a prognostic risk
model using multivariate Cox regression analyses, employing the
following formula: riskscore = SEC61A1exp*0.000811515+DNAJC1

exp*0.009154278+EIF5Bexp*0.012715447+DNAJB4exp*0.018562242
+ST6GALNAC4exp*0.013184291+CCDC88Aexp*0.009150427,
where geneexp represented the expression level of each gene.
Subsequently, the risk score was calculated for patients in the
training cohort (TCGA-LIHC) and the test cohort (LCI). Based
on the median risk score, HCC patients were categorized into high-
risk and low-risk groups, with those in the high-risk group
displaying a less favorable prognosis in the training cohort
(Figure 6B). The receiver operating characteristic curve (ROC)
curve demonstrated that the AUC for 1-year, 2-year and 3-year
survival was 0.746, 0.694, and 0.704, respectively (Figure 6C).
Likewise, patients classified as high-risk in the test cohort were
linked to an adverse prognosis, exhibiting an AUC of 0.671, 0.631,
and 0.594 for 1-year, 2-year, and 3-year survival, respectively
(Figures 6D, E). These findings indicate the robust predictive
capability of the prognostic risk model in determining the clinical
outcomes of HCC patients.

Improved immunotherapy response in low-
risk patients

Immunotherapy stands as a paramount therapeutic approach in
the treatment of HCC, especially in scenarios where surgical
intervention is not a viable option. To assess the immunotherapeutic
effects on patients in these two groups, we examined several predictors
of immunotherapy response. These predictors included the expression
of immune checkpoint factors, tumor mutation burden (TMB), and the
presence of TLS. High-risk patients were found to exhibit increased
expression of immune checkpoint factors in comparison to those in the
low-risk group (Figure 7A). This observation suggests an
immunosuppressed microenvironment, which may contribute to the
poorer overall survival outcomes observed in the high-risk patients.
Nonetheless, the high-risk and low-risk groups demonstrated
comparable levels of TMB (Figure 7B). Recent rigorous
investigations have unveiled a constructive association between the
increased presence of TLS and a heightened response to ICI
(Schumacher and Thommen, 2022). Notably, relative to the high-
risk group, the enrichment score of TLS signatures was higher in
the low-risk group (Figure 7C). The application of the TIDE algorithm
allowed for the evaluation of disparities in immunotherapy response
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among patients in both groups. The findings indicated a more elevated
exclusion score and a correspondingly reduced dysfunction score within
the high-risk patients when contrasted with the low-risk patients
(Figures 7D, E). Conversely, the low-risk group exhibited a lower
TIDE score and a greater possibility of a positive response to
immunotherapy (Figures 7F, G).

Better chemotherapy sensitivity in high-
risk patients

Chemotherapy, although characterized by limited efficacy in the
treatment of HCC, remains a crucial therapeutic avenue for disease
management, especially when other treatment modalities prove
ineffective. IC50 of common chemotherapeutic drugs and targeted
drugs for treating HCC were estimated for each patient in TCGA-
LIHC cohort. Our data indicated that there were no notable variations
in the responsiveness to cisplatin and irinotecan between the high-risk and
low-risk groups (Figures 8A, B). Conversely, the low-risk group
demonstrated a greater sensitivity to oxaliplatin, as reflected by a lower
IC50, in comparison to the high-risk group (Figure 8C). However, the
IC50 of 5-fluorouracil, paclitaxel and vincristine was found to be
diminished in the high-risk group when contrasted with the low-risk
group (Figures 8D–F). Sorafenib is an established first-line targeted
therapy for advanced HCC (Tang et al., 2020). Compared to the low-
risk group, patients with a high-risk score were inclined to exhibit
sensitivity to sorafenib (Figure 8G). These observations indicate that
despite high-risk patients demonstrating lower efficacy in
immunotherapy, they may derive benefit from chemotherapeutic drugs
and targeted drugs.

Robust predictive accuracy of plasma cell
marker-based prognostic model

The risk score’s ability in independently predicting overall
survival (OS) was estimated through univariate and multivariate
Cox regression analyses. Both univariate (HR = 2.664, 95% CI =
1.996–3.556, p < 0.001) and multivariate (HR = 2.398, 95% CI =
1.776–3.238, p < 0.001) Cox regression analyses (Figures 9A, B),
unequivocally confirmed the risk score’s status as an independent
prognostic predictor. Moreover, we performed a nomogram analysis
that incorporates risk score, disease stage, patient age, and gender to
predict overall survival probabilities. The nomogram efficiently
predicted the probabilities of overall survival at 1, 2, and 3 years
using the prognostic risk model. The C-index of this nomogram
model was calculated to be 0.702 (Figure 9C). The calibration curve,
which compared the nomogram-predicted OS probabilities to the
actual probabilities, demonstrated a satisfactory overlap, signifying
optimal predictive accuracy (Figure 9D).

Discussion

The immune cells in the TME have been demonstrated to exert
significant impacts on carcinogenesis and profoundly influence the
clinical outcomes of cancer patients (Zhang and Zhang, 2020). Within
the realm of cancer immunotherapy, the involvement of T cells and

myeloid cells has been extensively explored using scRNA-seq, the
importance of B cells in cancer immunity has also been acknowledged
(Zheng et al., 2017; Zhang Q. et al., 2019; Patil et al., 2022). To date,
scRNA-seq has been utilized for the examination of the phenotypic
and functional diversity of TIL-Bs across diverse cancer types,
encompassing melanoma, breast cancer, colorectal cancer, non-
small cell lung cancer, endometrial cancer and early-stage lung
adenocarcinoma (Griss et al., 2019; Chen et al., 2020; Hu et al.,
2021; Hao et al., 2022; Horeweg et al., 2022; Patil et al., 2022; Xia et al.,
2023). However, the single-cell landscape of TIL-Bs in HCC remains
unexplored. In this research, we performed an extensive examination
of the subtypes and functional characteristics of TIL-Bs in HCC. We
elucidated the intercellular communication pathways that exist
between TIL-Bs and other cells in the TME. Furthermore, our
findings shed light on the relationship between therapy efficacy
and a prognosis risk model constructed with plasma cell marker
genes, which could potentially offer personalized treatment options
for HCC patients with varying degrees of plasma cell infiltration.

Our data revealed the existence of five distinct subpopulations of
TIL-Bs in HCC, each with unique infiltration characteristics.
Notably, in tumor tissues, B cells displayed a tendency to
differentiate into plasma cells, resulting in the enrichment of
plasma cells in tumor tissues. While B cells differentiated, genes
linked to T cell differentiation and activation were downregulated, a
phenomenon that may contribute to the plasma cells’ adverse
prognosis. Furthermore, naïve B cells and memory B cells
exhibited distinct functions in terms of clinical outcomes,
emphasizing the need for a higher-resolution analysis of TIL-Bs.

The interactions between immune cells within the TME are critical
determinants of the direction of tumor immunity, influencing whether it
favors tumor promotion or tumor suppression (Zhang andZhang, 2020).
We observed an interaction between Plasma cells-JCHAIN and
Macrophages-SPP1 through the GAS6-MERTK pathway, which
previously implicated in the development of various cancer types
(Ammoun et al., 2014; Chiu et al., 2015). Interestingly, B cells could
activate both CD8-XCL1 and CD4-FOXP3 through the TNFSF9-
TNFRSF9 pathway, indicating that B cells performance is shaped by
the binding strength and differential presence of T cell subtypes. Earlier
research has demonstrated the participation of macrophages in B cell
differentiation leading to plasma cell formation (Wei et al., 2019). In our
study, we indeed observed interactions betweenmacrophages and B cells
through TNFSF13B-TNFRSF13B/TNFRSF13C and TNFSF13-
TNFRSF13B signaling pathways, which are instrumental in guiding
B cell differentiation into plasma cells (Vincent et al., 2013). It has
previously been shown that the location of TIL-Bs within the tumor
microenvironment can have significant implications for cancer
outcomes. TIL-Bs located in the cancer nest have been associated
with cancer elimination, while those located at the cancer edge are
associated with early cancer recurrence (Liu et al., 2015; Zhang Z. et al.,
2019; Wei et al., 2021). In colorectal cancer (CRC), plasma cells can be
recruited to the cancer nest by cancer cells through CCL28-CCR10
signaling, thereby exerting anti-tumor effects (Xia et al., 2023). In our
study, we observed that cancer cells were unable to recruit plasma cells to
the cancer nest, which could contribute to the unfavorable prognosis
associated with increased plasma cell infiltration in HCC. In the context
of TLS, the recruitment of B cells is primarilymediated by the chemokine
CXCL13, secreted by T follicular helper cells (Tokunaga et al., 2019).
Consistent with previous studies in lung cancer andmelanoma, our study
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demonstrated that theCD8-XCL1 cluster secretedCXCL13 and recruited
B cells via the CXCL13-CXCR5 signaling pathway to form TLS, thereby
promoting anti-tumor immunity (Thommen et al., 2018; Li et al., 2019;
Workel et al., 2019).

Considering the upregulation of plasma cells and their
association with unfavorable prognosis in tumor tissues, we
selected genes highly expressed by plasma cells to establish a
prognostic risk model. Consistent with the poor prognosis
associated with plasma cells, 59 out of 61 genes associated with
prognosis were identified as risk factors. After conducting LASSO
analysis, we identified SEC61A1, DNAJC1, EIF5B, DNAJB4,
ST6GALNAC4 and CCDC88A as the most representative gene
markers for constructing a prognostic risk model. Our findings
substantiated the risk score’s standing as an independent prognostic
indicator for overall survival. Additionally, a relationship was
identified between the risk score and the effectiveness of HCC
treatment. Elevated expression of immune checkpoint genes was
observed in the high-risk group, but they were predicted to derive
less benefit from immunotherapy, possibly due to the immune-
excluded phenotype. Interestingly, those classified in the high-risk
group were more inclined to experience benefits from 5-fluorouracil,
paclitaxel, and vincristine. All these chemotherapeutic drugs are
associated with the cell cycle, with paclitaxel and vincristine acting as
microtubule inhibitors, while 5-fluorouracil primarily inhibits DNA
synthesis during the S phase (Yano et al., 2020). High-risk patients
exhibited higher expression of cell cycle-associated genes
(Supplementary Figure S5), potentially explaining their sensitivity
to chemotherapy.

Conclusion

In conclusion, this study unveiled the characteristics of TIL-Bs
and the distinct prognostic implications of TIL-Bs subtypes in HCC
patients. We underscored the significance of different interactions
between TIL-Bs and other cells in shaping the HCC TME and anti-
tumor immune response. Furthermore, the prognostic risk model
based on plasma cell markers holds promise for selecting
appropriate treatment strategies for HCC patients.
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SUPPLEMENTARY FIGURE S1
The landscape of infiltrating T cells inHCC. (A)UMAP showing subtypes of T cells.
(B) Alluvial diagram showing percentages of T cell subtypes between tumor and
normal liver tissues. (C) Violin plot showing expression of conventional marker
genes in subtypes of T cells. (D)Heatmap showing expression of functional genes
in subtypes of T cells. (E,F) Dot plot showing expression of co-inhibitory
molecules (E) and co-stimulatory molecules (F) in subtypes of T cell.

SUPPLEMENTARY FIGURE S2
The landscape of infiltrating myeloid cells in HCC. (A) UMAP showing
subtypes of myeloid cells. (B) Alluvial diagram showing percentages of
myeloid cell subtypes between tumor and normal liver tissues. (C)
Violin plot showing expression of conventional marker genes in subtypes

of myeloid cells. (D) Dot plot showing expression of myeloid-derived
suppressor cells (MDSC) marker genes in subtypes of myeloid cells. (E)
Dot plot showing expression of TAMs marker genes in subtypes of
myeloid cells.

SUPPLEMENTARY FIGURE S3
(A) Dot plot showing the increased signaling ligand-receptor pairs between
TIL-Bs and T cells in tumor tissues. (B) Dot plot illustrating the increased
signaling ligand-receptor pairs between TIL-Bs and myeloid cells in
tumor tissues.

SUPPLEMENTARY FIGURE S4
(A) Violin plot showing the expression of six candidate genes among cell
types. (B) Dot plot illustrating the expression of six candidate genes among
cell types.

SUPPLEMENTARY FIGURE S5
Enrichment analysis of genes highly expressed by high-risk patients. (A,B) the
result of GO and KEGG enrichment analysis of genes highly expressed by
high-risk patients.
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