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Chromosomal fusion is a significant form of structural variation, but research into
algorithms for its identification has been limited. Most existing methods rely on
synteny analysis, which necessitates manual annotations and always involves
inefficient sequence alignments. In this paper, we present a novel alignment-free
algorithm for chromosomal fusion recognition. Our method transforms the
problem into a series of assignment problems using natural vectors and
efficiently solves them with the Kuhn-Munkres algorithm. When applied to the
human/gorilla and swamp buffalo/river buffalo datasets, our algorithm
successfully and efficiently identifies chromosomal fusion events. Notably, our
approach offers several advantages, including higher processing speeds by
eliminating time-consuming alignments and removing the need for manual
annotations. By an alignment-free perspective, our algorithm initially considers
entire chromosomes instead of fragments to identify chromosomal structural
variations, offering substantial potential to advance research in this field.

KEYWORDS

chromosomal fusion, alignment-free, natural vector, Kuhn-Munkres algorithm,
automated recognition

1 Introduction

Chromosome fusion, a genetic event wherein two or more separate chromosomes
merge to form a single chromosome, is a substantial restructuring of the genome. A primary
factor leading to the chromosome fusion is Robertsonian translocation, a chromosomal
abnormality where the long arms of two different chromosomes are linked Poot and
Hochstenbach (2021). As is shown in Figure 1, initially, the short arms of these two
chromosomes are also linked, but they are usually lost afterward. (The short arms, being too
short to harbor significant genetic information, may not lead to lethality upon their loss.)
Chromosome fusion holds significant implications for cellular processes and biological
evolution Vara et al. (2021); Feulner and De-Kayne (2017). On one hand, chromosome
fusion can interfere the process of meiosis and lead to the production of imbalanced
gametes, potentially diminishing reproductive compatibility Cicconardi et al. (2021);
Hauffe and Searle (1998). On the other hand, chromosome fusion physically connects
genes that were originally located on different chromosomes, thereby reducing their
potential for recombination, which can be instrumental in preserving co-adapted alleles
Cicconardi et al. (2021); Guerrero and Kirkpatrick (2014). These two facets underscore the
significance of chromosome fusion in the process of speciation.
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Chromosome fusion presents several well-documented
instances across different species. One of the most prominent
examples is the case of human chromosome 2. Humans possess
23 pairs of chromosomes, while other great apes, such as
chimpanzees and gorillas, have 24 pairs. Extensive research
suggests that human chromosome 2 is the result of the fusion of
two ancestral chromosomes from great apes Yunis and OM (1982);
Ijdo et al. (1991). Additionally, chromosome fusion can also occur
within the same species. For instance, the water buffalo (Bubalus
bubalis) consists of two distinct subspecies, the swamp buffalo and
the river buffalo, with chromosome numbers of 48 and 50,
respectively Iannuzzi et al. (2021). This difference in
chromosome number is also attributed to chromosome
fusion events.

Despite the significance of chromosome fusion as a structural
variation in chromosomes, research in this domain has been
relatively limited in comparison to gene-level investigations.
Currently, there are several structural variation detection
algorithms designed for identifying gene structural variations
within the same species. These algorithms prove effective in
detecting genetic diseases caused by structural variations in
humans Cameron et al. (2021); Layer et al. (2014). However,
their applicability between different species is challenging. For
fusion events between different species, the mainstream methods
center around synteny analysis, with examples including Fish,
Cinteny, and MCScan Calabrese et al. (2003); Sinha and Meller
(2007); Tang et al. (2008b,a); Wang et al. (2012). The fundamental
approach of these algorithms can be summarized in two main steps.
Firstly, chromosomes are partitioned into multiple regions utilizing
experimentally obtained annotation information, such as the coding
sequence range. Subsequently, alignment algorithms are applied to
compare and analyze these regions Altschul et al. (1990); Haas et al.
(2005). These algorithms provide the advantage of delivering clear

and visually interpretable results. Nevertheless, they come with
limitations, given their reliance on manual annotation as well as
alignment algorithms which can be computationally intensive.

Indeed, methods exist for detecting structural variations in the
human genome without relying on alignment Liu et al. (2021).
However, these methods still involve partitioning the sequence into
multiple regions and using strategies like k-mer search as a
substitute for alignment, which is logically similar to alignment.
We aim to adopt a more purely alignment-free perspective by
directly embedding each sequence into a vector and performing
operations solely on vectors, rather than comparing sequences with
each other. There are many methods that map sequences into
vectors Qi et al. (2004); Jun et al. (2009), and the natural vector
method is an effective approach among them Deng et al. (2011);
Wen et al. (2014b). By incorporating statistical moments, the natural
vector works well in sequence comparison and phylogenetic
analysis. Additionally, the convex hulls formed by natural vectors
from distinct families do not overlap, demonstrating the favorable
separation properties of natural vectors Wen et al. (2014a); Sun et al.
(2021); Tian et al. (2018).

In this paper, we addressed the issue of chromosome fusion
recognition from a novel perspective. We utilized the natural vector
approach to extract statistical information from sets of
chromosomes. Subsequently, we framed the pairing of
chromosome sets as an assignment problem and identified the
most likely fusion scenarios by minimizing the assignment loss
Kuhn (1955). Applying this algorithm to the human/gorilla and
swamp buffalo/river buffalo datasets, we successfully and efficiently
identified the correct chromosome fusion scenarios without the need
for annotations or alignments. Moreover, the process is significantly
faster than traditional synteny analysis.

2 Materials and methods

2.1 Materials

The data utilized in this paper comprises the reference
chromosomes of four distinct species: human (Homo sapiens),
gorilla (Gorilla gorilla), swamp buffalo (Bubalus carabanensis),
and river buffalo (Bubalus Bubalis). We downloaded these
sequences from the National Center for Biotechnology
Information (NCBI) on 10 October 2023. The sequences can be
accessed through the following URL:https://ftp.ncbi.nlm.nih.gov/
genomes/refseq/vertebrate_mammalian/.

The IDs of these sequences will be listed in the Supplementary
Material S1, and hereafter, we use numerical labels to represent these
chromosomes. The autosomes for humans, swamp buffalo, and river
buffalo are numbered from 1 to 22, 1 to 23, and 1 to 24, respectively,
while gorilla autosomes are numbered from 1, 2A, 2B, 3 to 22,
consistent with the sequence annotation labels.

2.2 Problem formulation

We will first elaborate on the specific representation of the
chromosome fusion problem. For convenience, we only considered
the scenario where only a pair of chromosomes fused. The situations

FIGURE 1
Demonstration of Robertsonian translocations.

Frontiers in Genetics frontiersin.org02

Yu and Yau 10.3389/fgene.2024.1364951

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1364951


involving multiple fusion or the fusion of multiple chromosomes are
similar and only require an expansion of the enumerated cases.
Then, the task of recognizing chromosome fusion can be precisely
described as follows: given two sets of chromosomes, A = {a1, a2, . . .,
an} and B = {b1, b2, . . ., bn, bn+1}, it is known that a pair of
chromosomes from B fuse to form a single chromosome in A.
The objective is to identify which pair of chromosomes from B fuse
together and establish a correspondence between the remaining
chromosomes in both sets.

Instead of fragmenting chromosomes and employing local
alignment techniques as done in synteny analysis, our approach
takes a holistic approach to analyze sequences from a different
perspective. In the subsequent sections, we will first introduce the
extraction of sequence information using k-mer natural vectors.
Following that, we will discuss the assignment problem and its
corresponding solution, the Kuhn-Munkres algorithm. Finally, we
will illustrate how to transform the chromosome fusion problem
into an assignment problem using k-mer natural vectors and
subsequently solve it.

2.3 Natural vectors and their properties in
chromosome fusion

The natural vector method is an alignment-free technique that
converts DNA sequences into moment vectors Deng et al. (2011).
For a given DNA sequence S = s1s2. . .sn, we define:

wk si( ) � 1, si � k
0, otherwise

{ (1)

where k, si ∈ {A, T, C, G}. Then the order 2 natural vector nv(S) can
be defined as

nv S( ) � nA, nC, nG, nT, μA, μC, μG, μT, D
A
2 , D

C
2 , D

G
2 , D

T
2( ) (2)

where

nk � ∑N
i�1

wk si( )

μk � ∑N
i�1

i

nk
wk si( )

Dk
2 � ∑N

i�1

i − μk( )2
nkN

wk si( )

N � nA + nT + nC + nG

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

If nk = 0, we let μk � Dk
2 � 0. In this paper, we concentrate on only

the order 2 natural vectors; thus, we will omit the order designation
in the following content.

Given two single-stranded sequences, S1 and S2, which are
oriented from 5′ to 3’, there are two possible representations of
fusion, denoted as S1 + S2 (with S1 in the front) and S2 + S1 (with S2 in
the front). However, for double-stranded sequences, it becomes
much more complex. Each chromosome consists of two strands
named the forward strand and the reverse strand respectively.
Consequently, there are a total of 8 possible representations of
fusion. If the number of segments increases to k, the number of
possible representations of fusion increases rapidly to k! × 2k.
Therefore, it is not efficient to generate each possible fusion and

calculate their natural vectors separately. In fact, if we have already
calculated nv (S1) and nv (S2), we can obtain nv (S3) where S3 = S1 +
S2 through the following calculation.
Let nv(Si) � (niA, niC, niG, niT, μiA, μiC, μiG, μiT, DiA

2 , DiC
2 , D

iG
2 , DiT

2 ),
Ni = niA + niC + niG + niT, and C(S, k) = {i|wk (si) = 1} where
S = s1s2. . .sn, then we have

n3k � n1k + n2k

μ1k �
∑

i∈C S1 ,k( )
i

n1k

μ2k �
∑

i∈C S2 ,k( )
i

n2k

(4)

μ3k �
∑

i∈C S1 ,k( )
i + ∑

i∈C S2 ,k( )
i +N1( )

n1k + n2k
� n1k
n1k + n2k

μ1k +
n2k

n1k + n2k
μ2k +N1( ) (5)

n1kN1D
1k
2 � ∑

i∈C S1 ,k( )
i − μ1k( )2

n2kN2D
2k
2 � ∑

i∈C S2 ,k( )
i − μ2k( )2

∑
i∈C S1 ,k( )

i − μ3k( )2 + ∑
i∈C S2 ,k( )

i +N1 − μ3k( )2
� ∑

i∈C S1 ,k( )
i − μ1k( )2 + ∑

i∈C S1 ,k( )
μ1k − μ3k( )2

+2 ∑
i∈C S1 ,k( )

μ1k − μ3k( ) i − μ1k( ) + ∑
i∈C S2 ,k( )

i − μ2k( )2
+ ∑

i∈C S2 ,k( )
μ2k +N1 − μ3k( )2 + 2 ∑

i∈C S2 ,k( )
μ2k +N − μ3k( ) i − μ2k( )

� ∑
i∈C S1 ,k( )

i − μ1k( )2 + ∑
i∈C S2 ,k( )

i − μ2k( )2
+n1k μ1k − μ3k( )2 + n2k μ2k +N1 − μ3k( )2

(6)

D3k
2 �

∑
i∈C S1 ,k( )

i − μ3k( )2 + ∑
i∈C S2 ,k( )

i +N1 − μ3k( )2
N1 +N2( ) n1k + n2k( )

� n1kN1D
1k
2 + n2kN2D

2k
2 + n1k μ1k − μ3k( )2 + n2k μ2k +N1 − μ3k( )2
N1 +N2( ) n1k + n2k( )

(7)
Also, Given a vector of the forward strand

nv S( ) � nA, nC, nG, nT, μA, μC, μG, μT, D
A
2 , D

C
2 , D

G
2 , D

T
2( )

and N = nA + nT + nC + nG, the vector of the corresponding reverse
strand R(S) can be represented as

nv R S( )( ) � nT, nG, nC, nA,( N + 1 − μT,N + 1 − μG,N + 1 − μC,
N + 1 − μA, D

T
2 , D

G
2 , D

C
2 , D

A
2 ). (8)

It is worth noticing that we should not only take the complementary
chain but also reverse it since the orientation of two strands
is opposite.

2.4 K-mer natural vectors and their
properties in chromosome fusion

The k-mer natural vector method is an extension of the natural
vector method which considers k-mers instead of nucleotides
as basic elements in sequences Wen et al. (2014b); Sun et al.
(2021). K-mer is a string composed of k nucleotides and there
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are 4k possible k-mers (denoted by l1, . . . , l4k ). For the sequence S =
s1s2. . .sn, we can regard it as a sequence consisting of n − k + 1 k-
mers (s1. . .sk). . .(sn−k+1. . .sn). Similar to traditional natural vectors,
we can define the k-mer natural vector

nvk S( ) � nl1, . . . , nlk, μl1, . . . , μlk, D
l1
2 , . . . , D

lk
2( ).

If nli � 0, we let μli � Dli
2 � 0. In the case of traditional natural

vectors, we can compute nvk (S3) (where S3 = S1 + S2) using nvk (S1)
and nvk (S2). When dealing with k-mer natural vectors, we can
follow a similar process, but it’s important to note that the results
obtained from formulas (5) and (7) are no longer exact but
approximate.

Let’s take a 2-mer example for clarity. If we have the sequence S1 =
s1s2. . .sn and the sequence S2 = t1t2. . .tn, we can consider them as
(s1s2). . .(sn−1sn) and (t1t2). . .(tn−1tn), respectively. The results obtained
from formulas (5) and (7) represent the natural vector of
(s1s2). . .(sn−1sn)(t1t2). . .(tn−1tn) instead of
(s1s2). . .(sn−1sn)(snt1)(t1t2). . .(tn−1tn) that corresponds to S1 + S2.
However, given the considerable length of chromosomes, the difference
introduced by a single k-mer becomes negligible. Therefore, we can still
apply the previous formulas to perform the calculations effectively.

Previous studies have indicated that the optimal value for k
should fall within the range of [ceil (log4min (LS)), ceil (log4max
(LS)) + 1] where LS represents the set of lengths of genetic sequences
in the study Wen et al. (2014b). For the datasets under
consideration, the optimal k to extract the information of the
sequences ranges from 13 to 15. However, this k is excessively
large and does not fully leverage the time complexity advantage of
our algorithm. Therefore, in this paper, we set k = 10, the smallest k
to ensure that the algorithm avoids errors on our datasets.

2.5 The assignment problem and the Kuhn-
Munkres algorithm

An assignment problem represents a specific instance of the
more general transportation problem. In this particular case, the
goal is to assign a set of resources to an equal number of activities
while minimizing the total cost or maximizing the total profit of the
allocation. To elaborate further, the problem can be formally stated
as follows: given an n × nmatrixM = (mij), we aim to determine an
optimal permutation p1, p2, . . ., pn from the set 1, 2, . . ., n in order to

minimize or maximize the objective function ∑n
i�1

mipi.

Simply enumerating all possible permutations is feasible for
small values of n. However, for larger values of n, this approach
becomes computationally expensive and impractical as there are n!
possible permutations. In such cases, the Kuhn-Munkres algorithm,
also known as the Hungarian method, offers an efficient solution to
this problem Kuhn (1955, 1956); Munkres (1957).

The Kuhn-Munkres algorithm is a combinatorial optimization
algorithm that can solve the assignment problem in polynomial
time. The original version of the algorithm has a time complexity of
O (n4), but later improvements have reduced it to O (n3) Edmonds
and Karp (2003); Tomizawa (1971).

In Algorithm 1, we demonstrate how to minimize the objective
function given matrix M by the Kuhn-Munkres algorithm:

Subtract the minimum entry in each row from all other

entries in the same row.

Subtract the minimum entry in each column from all other

entries in the same column.

while There are no m lines (rows or columns) that cover

all zeros, where m < ndo

Find the minimum entry not covered by any line and its

value is e.

Subtract e from each uncovered row and add e to each

covered column.

end while

We can select n zeros with distinct rows and columns,

which corresponds to the optimal choice.

Algorithm 1. The Kuhn-Munkres algorithm.

2.6 The algorithm to recognize
chromosome fusion

In order to transform the chromosome fusion problem into an
assignment problem, we need to define a good measure for the
similarity between chromosomes. One straightforward approach is
to employ the Euclidean distance between the k-mer natural vectors
of the chromosomes. However, sequencing chromosomes can
introduce substantial errors and lead to length variation. Directly
using the Euclidean distance might be problematic as the Euclidean
distance between natural vectors is length-sensitive which could
amplify the errors. To mitigate the effects of sequence length
variations, we propose two distinct measures to dissociate the
impact of the length from the k-mer patterns:

D1 a, b( ) � 1 −max cos∠ nvK a( ), nvK b( )( ), cos∠ nvK a( ),((
nvK R b( )( ))) (9)

D2 a, b( ) � |length a( ) − length b( )| (10)
In the above equations, ∠(., .) represents the angle between the two
vectors. InD1, we need to take both two strands into account so R(b)
should also be considered.

It is worth noticing that formula (9) will be slightly modified for
fused chromosomes because there are eight possible representations
for fused chromosomes, as opposed to the two representations for
normal chromosomes. Assuming the fused chromosome is ~b1 from
the set v1, . . ., v8, then formula (9) is adjusted as follows:

D1 ai, ~b1( ) � 1 − max
j�1,...,8

cos∠ nvK ai( ), nvK vj( )( )( ). (11)

Given two sets of chromosomes of equal count, A = {a1, a2, . . .,
an} and ~B � {~b1, ~b2, . . . , ~bn}. The correspondence between these sets
can be denoted by (p1, . . ., pn), a permutation of {1, . . ., n}. That is,
~bpi is similar to ai. The task of establishing chromosome
correspondence can be formulated as an optimization problem:

L A, ~B( ) � min
p1 ,...,pn

∑n
i�1

∑2
l�1

N Dl ai, ~bpi( )|Dl ai, .( )( )⎛⎝ ⎞⎠ (12)

where

N x|A( ) � x −min A( )
max A( ) −min A( ) (13)
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serves as a normalization function to balance the importance of D1

and D2 with different orders of magnitude.
Eq 12 can be comprehended from two perspectives. First, by solving

this optimization problem with the help of the Kuhn-Munkres
algorithm, we can determine the optimal correspondence between
the two chromosome sets. Second, the defined function L can serve
as a metric, indicating the closeness of the two chromosome sets.
Considering various possible fusion that convert B = {b1, b2, . . ., bn,
bn+1} into ~B � {~b1, ~b2, . . . , ~bn}, the fusion resulting in the smallest loss
function L would be our desired transformation.

To provide a clearer representation of the algorithm’s process,
we briefly summarize it in the following Algorithm 2. The code can
be found in https://github.com/BobYHY/Fusion/.

Calculate k-mer natural vectors for all chromosomes.

Calculate D1 and D2 for all pairs of chromosomes,

including potential new ones resulting from fusion.

for j1 = 1 to n + 1 do

forj2 = j1 + 1 to n + 1do

Fuse bj1 and bj2 in eight possible ways (v1, v2, . . ., v8)

and calculate their k-mer natural vectors using Eqs

5, 7. The resulting set after fusion is denoted as
~Bj1j2.

Calculate Lj1j2 � L(A, ~Bj1j2) using the Kuhn-Munkres

algorithm given the precomputed D1 and D2.

end for

end for

The smallest Lj1j2 corresponds to the most likely fusion.

Algorithm 2. Chromosome Fusion Recognition Algorithm.

Suppose each chromosome has a length of O(l), then the time
complexity of the k-mer natural vector algorithm is O (nl). Next,
measuring the distances between all pairs of chromosomes,
including existing chromosomes and potentially new ones
resulting from fusion, has a time complexity of O (n34k). The
Kuhn-Munkres algorithm has a complexity of O (n3), and it
needs to be run for all possible fusion scenarios. Therefore, the
overall complexity is O (nl + n34k + n5).

2.7 Multidimensional scaling

Multidimensional scaling (MDS) is a technique for
visualizing the similarity between individual cases within a
dataset Mead (1992). Its underlying concept is quite
straightforward: how to find a set of points in a plane in such
a way that the distances between them closely approximate a
given distance matrix. More precisely, if we have a distance
matrix D = (dij) for n chromosomes and we wish to map them
to positions x1, . . ., xn on a plane, then MDS formulates an
optimization problem to minimize the following expression:

f x1, . . . , xn( ) � ∑
i≠j

dij − ‖xi − xj‖( )2. (14)

It is worth noting that in the earlier process of identifying
chromosomal fusions, we did not calculate the distances within
the same chromosome group. In fact, we can employ the normalized

distances as defined in Eq. 12 for cases where A and B are the same
sets, and then symmetrized the results to obtain the distances within
the chromosome groups.

2.8 Synteny analysis

Synteny plots were generated using the MCScan module from
the jcvi library Tang et al. (2008a). The data used for this analysis
included chromosome sequences and GTF annotation data. The
‘minspan’ parameter was set to 50 to control the minimum span of
syntenic blocks in the analysis. The synteny plot provides a visual
representation of conserved gene order and genomic
rearrangements between different species.

3 Results and discussion

3.1 Chromosome fusion recognition for
human/gorilla and swamp buffalo/
river buffalo

We employed our algorithm to identify chromosome fusion
in human/gorilla and swamp buffalo/river buffalo datasets. It’s
worth noting that we did not include sex chromosomes in our
analysis for two main reasons. First, the presence of palindromes
in sex chromosomes, especially in Y chromosome, complicates its
sequencing and results in a higher error rate compared to other
chromosomes Trombetta and Cruciani (2017). Second,
identifying sex chromosomes in the XY pair is straightforward
due to their unequal lengths, obviating the need for
explicit matching.

The results of our algorithm reveal that the gorilla
chromosomes 2A and chromosome 2B have fused into a single
sequence, aligning with human chromosome 2. Additionally, the
river buffalo chromosome 4 and chromosome nine have fused
into a single sequence, aligning with the swamp buffalo
chromosome 1. This outcome is consistent with the data
annotations. After identifying the correct fusion scenarios, all
chromosomes can also find their corresponding chromosomes in
the other set.

It is worth noting that in our algorithm, chromosome pairing
between the two sets is achieved globally by minimizing the total
loss. This means that at the algorithmic level, we do not require the
paired sequences to be each other’s nearest neighbors Cover and
Hart (1967). (In this context, ‘near’ refers to a smaller pairing loss.)
This design enhances the algorithm’s robustness, preventing
scenarios where multiple sequences might share the same nearest
neighbor due to other mutations, thus avoiding situations that could
disrupt the one-to-one correspondence. However, in terms of the
results, almost all pairings meet the nearest neighbor condition. All
swamp buffalo chromosomes match their nearest neighbors, while
all human chromosomes except one have their counterparts as
nearest neighbors. The only exception is human chromosome 17,
which has its corresponding counterpart as the second nearest
neighbor. This exception aligns with the reality. Figures 2, 3
display the synteny analysis of chromosomes for human/gorilla
and swamp buffalo/river buffalo using the MCScan method. It is
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evident that, in the case of human chromosome 17, due to some
non-fusion structural variations, a portion of it actually originates
from gorilla chromosome 5.

We visualized the pairing loss between chromosomes in two sets
after fusion using two different approaches. In Figures 4, 5, we
employed the conventional heatmap representation. The smaller the

FIGURE 2
Synteny plots based on MCScan human/gorilla.

FIGURE 3
Synteny plots based on MCScan swamp buffalo/river buffalo.

FIGURE 4
Heat map of pairing loss for chromosomes human/gorilla.

FIGURE 5
Heat map of pairing loss for chromosomes swamp buffalo/
river buffalo.
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pairing loss, the redder the corresponding square. In Figures 6, 7, we
used multidimensional scaling (MDS) to project chromosomes as
points onto a two-dimensional plane. The distances in the image
can to some extent reflect the magnitude of the pairing loss. This
representation offers greater intuitiveness, yet it’s important to note that,
since MDS involves the projection of high-dimensional information
onto a two-dimensional plane, the distances in the graph may contain
discrepancies compared to actual distances. Employing both of these

methods effectively demonstrates our ability to accurately measure the
differences between chromosomes using alignment-free features.

3.2 Chromosome fusion recognition for
synthetic fusion scenarios

In order to further demonstrate the effectiveness of our method, we
conducted recognition in synthetic fusion scenarios. Specifically, we
transformed the swamp buffalo/river buffalo dataset to generate a large
number of fusion scenarios for testing. Initially, we fused chromosome
4 and chromosome nine of river buffalo in the correct manner.
Subsequently, we artificially fused two random chromosomes from
swamp buffalo, resulting in a new scenario where river buffalo still has
one more chromosome than swamp buffalo.

Given that swamp buffalo has 23 autosomes, we obtained
253 possible fusion scenarios. (Different orientations and fusion
orders are algorithmically equivalent.) We conducted chromosome
fusion recognition on each of these 253 scenarios, successfully
identifying the fusion pairing and accurately correlating the
remaining chromosomes 252 times. In other words, our method
achieved an accuracy rate of 99.6%, demonstrating its high performance.

3.3 Effectiveness and efficiency of
the algorithm

Due to the fact that a chromosome has two complementary
strands, when sequencing closely related species, we cannot ensure
that the corresponding chromosome strands are the same. This is
precisely the case with the swamp buffalo/river buffalo dataset.
Therefore, our algorithm incorporates the consideration of

FIGURE 6
MDS visualization of chromosomes with pairing connections
human/gorilla.

FIGURE 7
MDS visualization of chromosomes with pairing connections
swamp buffalo/river buffalo.

FIGURE 8
Histograms of pairing loss for all possible fusion scenarios
human/gorilla.
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complementary strands. When computing the pairing loss, we opt
for the strand with the minimal loss to address this issue.

We validated the effectiveness of our algorithm through two real
fusion scenarios and 253 synthetic fusion scenarios. Among all
scenarios, we encountered errors in only one synthetic case,
showcasing an impressive level of accuracy.

The effectiveness of our method is further highlighted by the
pronounced characteristics of the correct fusion scenarios. In real
fusion, we observed that in the case of human/gorilla, the pairing
loss for the optimal fusion is 2.03, whereas the pairing losses for the
other 252 possible fusions range from 2.16 to 3.92. Notably, the
average difference in pairing loss for non-optimal fusions is 7.0 ×

10−3, significantly smaller than the 0.13 difference between the
optimal and sub-optimal fusions (Figure 8). Similarly, for the
swamp buffalo/river buffalo dataset, the optimal fusion has a
pairing loss of 0.26, while the pairing losses for the other
275 possible fusions range from 0.61 to 2.06. The average
difference in pairing loss for non-optimal fusion is 5.3 × 10−3,
again significantly smaller than the 0.35 difference between the
optimal and sub-optimal fusions (Figure 9). In Figure 10, we can also
observe that in synthetic fusion scenarios, the optimal pairing loss
are consistently much smaller than the sub-optimal solutions. The
only exception where the optimal and sub-optimal pairing loss are
relatively close is the case of the error, as previously mentioned.

From the above results, we can draw two conclusions. Firstly, in
both real fusion scenarios and synthetic fusion scenarios, the
computed optimal loss is significantly smaller than the sub-
optimal loss. This reflects the robustness of the algorithm,
meaning that perturbing the original data won’t immediately
change the optimal solution. This underscores the recognizability
of the features associated with the correct fusion event. Secondly, the
gap between the optimal and sub-optimal solutions can reflect the
reliability of the results. Generally, correct identification is usually
associated with a significant difference between these two values.
Conversely, if they are very close, it may indicate potential issues
with the results. Additionally, it can be observed that, compared to
the recognition between the two types of buffalo, the identification of
human/gorilla is relatively less reliable. This is attributed to the
presence of another significant chromosomal structural variation in
this example, namely, the exchange between chromosome five and
chromosome 17 (Figure 2).

This algorithm does not require alignment and is therefore faster
than previous methods. In real fusion scenarios, conducting synteny
analysis for human/gorilla and swamp buffalo/river buffalo using
MCScan took 1,052 and 993 s, respectively. Using our algorithm,
computing k-mer natural vectors took 182 and 185 s respectively, and
determining the most probable fusion scenarios with the algorithm
took 271 and 293 s respectively (CPU 3.10GHz, 8C16T). (We use
parallel computing to calculate each natural vector independently.) In
synthetic fusion scenarios, we do not need to calculate natural vectors
separately, and the average time spent on determining the most
probable fusion scenarios is 265 s.

It’s worth mentioning that, in fact, we can disregard the time
required for computing k-mer natural vectors. We can precompute the
natural vectors and simply read them when comparing with other
organisms. This is because if there are M organisms, the calculation of
natural vectors only needs to be performed O(M) times. However, the
comparisons require O (M2) operations. Therefore, it is reasonable to
focus solely on the fusion identification time. This fact can also be
observed in synthetic scenarios, where natural vectors are all
precomputed. Furthermore, even when including the time spent
computing k-mer natural vectors, our algorithm remains faster.

Another noteworthy point is that in MCScan, our analysis is
limited to experimentally determined CDS sequences, which
account for only about 10% of the entire genome. This analysis
relies heavily on manual experimental annotation and utilizes
incomplete information. If one needs to segment the entire
chromosome, the time required would significantly increase. In
contrast, our method does not require annotation and allows for
a rapid analysis of the entire chromosome.

FIGURE 9
Histograms of pairing loss for all possible fusion scenarios swamp
buffalo/river buffalo.

FIGURE 10
Scatter plot of the differences between optimal and sub-
optimal solutions.
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4 Conclusion

In this study, we propose an alignment-free algorithm based on
natural vectors and the Kuhn-Munkres algorithm to address the
challenge of chromosome fusion recognition. Our approach offers a
fresh perspective on understanding chromosome fusion
phenomena. Previously, most alignment-free methods struggled
to tackle the intricate issue of chromosome internal structures,
while our method demonstrates significant improvements.

Our method has two main advantages. Firstly, our algorithm
demonstrates a significant speed advantage, being about four times
faster than synteny-based methods for datasets we consider. This
allows for efficient data processing while maintaining high accuracy.
Secondly, it considers whole chromosomes instead of segments,
eliminating the need for manual selection of segment boundaries
and additional annotation data, making the algorithm
more automated.

However, our method still has limitations. It is primarily
designed for fusion recognition and cannot detect other non-
fusion structural variations, such as repeats. Additionally,
in situations where multiple fusions occur, the speed
advantages may diminish. In future studies, we aim to
incorporate heuristic search designs to further enhance the
algorithm’s speed, especially in scenarios involving multiple
fusions, while maintaining the accuracy of the algorithm.
Additionally, we aspire to identify alignment-free features for
more localized chromosome structural variations.
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