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Background: Psoriasis represents a multifaceted and debilitating immune-
mediated systemic ailment afflicting millions globally. Despite the continuous
discovery of biomarkers associated with psoriasis, identifying lysosomal
biomarkers, pivotal as cellular metabolic hubs, remains elusive.

Methods: We employed a combination of differential expression analysis and
weighted gene co-expression network analysis (WGCNA) to initially identify
lysosomal genes. Subsequently, to mitigate overfitting and eliminate collinear
genes, we applied 12 machine learning algorithms to screen robust lysosomal
genes. These genes underwent further refinement through random forest (RF)
and Lasso algorithms to ascertain the final hub lysosomal genes. To assess their
predictive efficacy, we conducted receiver operating characteristic (ROC)
analysis and verified the expression of diagnostic biomarkers at both bulk and
single-cell levels. Furthermore, we utilized single-sample gene set enrichment
analysis (ssGSEA), CIBERSORT, and Pearson’s correlation analysis to elucidate the
association between immune phenotypes and hub lysosomal genes in psoriatic
samples. Finally, employing the Cellchat algorithm, we explored potential
mechanisms underlying the participation of these hub lysosomal genes in
cell-cell communication.

Results: Functional enrichment analyses revealed a close association between
psoriasis and lysosomal functions. Subsequent intersection analysis identified
19 key lysosomal genes, derived from DEGs, phenotypic genes of WGCNA, and
lysosomal gene sets. Following the exclusion of collinear genes, we identified
11 robust genes, further refined through RF and Lasso, yielding 3 hub lysosomal
genes (S100A7, SERPINB13, and PLBD1) closely linked to disease occurrence, with
high predictive capability for disease diagnosis. Concurrently, we validated their
relative expression in separate bulk datasets and single-cell datasets. A
nomogram based on these hub genes may offer clinical advantages for
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patients. Notably, these three hub genes facilitated patient classification into two
subtypes, namely metabolic-immune subtype 1 and signaling subtype 2. CMap
analysis suggested butein and arachidonic fasudil as preferred treatment agents for
subtype 1 and subtype 2, respectively. Finally, through Cellchat and correlation
analysis, we identified PRSS3-F2R as potentially promoting the expression of hub
genes in the psoriasis group, thereby enhancing keratinocyte-fibroblast interaction,
ultimately driving psoriasis occurrence and progression.

Conclusion: Our study identifies S100A7, SERPINB13, and PLBD1 as potential
diagnostic biomarkers, offering promising prospects for more precisely tailored
psoriatic immunotherapy designs.
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Introduction

Psoriasis is a prevalent autoimmune inflammatory disorder that
impacts millions of people worldwide, with a prevalence rate of 2%–
3% (Damiani et al., 2021; Branisteanu et al., 2022). The diagnosis of
psoriasis is based on the characteristic well-demarcated,
erythematous, and pruritic plaques covered with silvery scales
(Rendon and Schakel, 2019). However, the impact of psoriasis
extends beyond the skin, with associated manifestations in nails
and joints, among others. The release of pro-inflammatory cytokines
into systemic circulation is responsible for a range of comorbidities,
including metabolic syndrome (MetS), cardiovascular disease
(CVD), inflammatory bowel disease (IBD), and malignancy,
among others (Tashiro and Sawada, 2022; Wu et al., 2022).
Psoriasis is a chronic systemic disease that negatively affects
patients’ quality of life, leading to a significant disease burden.
The understanding of the systemic effects of psoriasis and the
identification of comorbidities are crucial to improving patient
outcomes and reducing the disease burden.

Psoriasis is a multifaceted disorder that results from the intricate
interplay of multiple factors, including immune dysregulation, host
genetics, environmental triggers, and skin barrier disruption
(Bochenska and Gabig-Ciminska, 2020). Despite extensive
research, the precise mechanisms underlying psoriasis
pathogenesis remain unclear. However, it is well-established that
the sustained inflammation, hyperproliferation, and abnormal
differentiation of epidermal keratinocytes are key hallmarks of
the disease. In particular, T cells and their cytokines, such as
TNF-α, IL-23, IL-12, and IL-6, are known to play a central role
in psoriasis pathogenesis, leading to the activation of cascades of
inflammatory responses that promote keratinocyte proliferation and
neutrophil recruitment (Jadali and Eslami, 2014; Gran et al., 2020).
Recent research has highlighted the critical role of autophagy
pathways in regulating inflammatory responses in psoriasis
(Reveille, 2011; Yin et al., 2018). Autophagy, a collection of
lysosomal processes that contribute to intracellular homeostasis,
has emerged as a potential and promising therapeutic target for the
treatment of psoriasis (Deretic, 2021; Yang and Wang, 2021). In
particular, Lee et al., 2011 demonstrated that blockade of autophagy
process promoted the relative expression of p62 and generation of
inflammatory cytokines in primary human keratinocytes. Moreover,
a recent study has confirmed that prolonged exposure to the pro-
inflammatory cytokine TNF-α decreases the levels of major

cathepsins in lysosomes, leading to impaired autophagy (Klapan
et al., 2022). Therefore, lysosomes and autophagy pathways
represent critical targets for therapeutic intervention in psoriasis.

In recent years, there has been a burgeoning interest in
elucidating the contribution of lysosomes to autoimmune
pathologies (Ge et al., 2015; Kimura et al., 2017). Among cellular
organelles, lysosomes emerge as pivotal entities implicated in
orchestrating the inflammatory cascade. The seminal link
between lysosomes and cutaneous inflammation was first
delineated through seminal investigations during the 1970s
(Chayen and Bitensky, 1971; Winkelmann, 1971; Lazarus et al.,
1975). Subsequent studies have yielded pivotal insights into the
intricate involvement of lysosomes in modulating inflammatory
responses and autoimmune disorders (He et al., 2011;
Reinheckel, 2013; Ballabio, 2016), thereby elucidating a lysosome-
to-nucleus signaling axis and a regulatory network of lysosomal
genes governing cellular clearance and metabolic homeostasis.
Furthermore, mounting evidence underscores the disruptive
impact of aberrant lysosomal function on immune dysregulation
and inflammatory manifestations (Ge et al., 2015; Sa and Festa,
2016). For instance, He et al., 2011 uncovered the pivotal role of
lysosomes in modulating glucocorticoid signaling pathways, thereby
laying a mechanistic foundation for combinatorial therapeutic
approaches utilizing glucocorticoids and lysosomal inhibitors to
ameliorate inflammation and autoimmune maladies.
Nevertheless, the quest for discerning lysosomal-associated
biomarkers in psoriasis remains incomplete, underscoring a
pressing need for further investigation. Similarly, our
comprehension of the intricate mechanisms underpinning the
involvement of lysosomal genes in mediating cell-cell interactions
is still in its incipient stage, warranting continued exploration
and scrutiny.

Bioinformatic approaches are becoming increasingly important
in unraveling the complex mechanisms underlying various diseases
(Zhou et al., 2020; Wu Z. et al., 2021; Liang et al., 2021). In the
context of psoriasis, Li et al., 2023 conducted comprehensive
bioinformatic analyses, culminating in the identification of five
putative hub genes (SOD2, PGD, PPIF, GYS1, and AHCY)
associated with psoriasis, as confirmed through RT-qPCR and
immunohistochemistry. Similarly, Yue et al., 2022 elucidated
several biomarkers with therapeutic potential in psoriasis.
Moreover, IFIT3 emerged as a novel regulatory factor implicated
in psoriasis pathogenesis (Li et al., 2022).
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In our study, we employed multiple bioinformatic methods to
identify promising molecular lysosomal biomarkers, and seek potential
molecular targets for precision therapy in psoriasis. By focusing on vital
lysosomal genes and searching for diagnostic targets, the study sheds
light on the correlation of diagnostic targets with immune cells and
immune responses, thus providing new insights into the pathogenesis of
psoriasis. These findings highlight the crucial role of lysosomes in
regulating immune microenvironment of psoriasis. In conclusion, a
deeper understanding of the heterogeneity of the immune
microenvironment in psoriasis and the role of lysosomes in
regulating autophagy may provide new insights into the
development and treatment of psoriasis.

Materials and methods

Data sources and processing

In this study, the expression spectrums of bulk RNAseq data
derived from Lesion Skin (LS), Uninvolved Skin (US), and Normal
Skin (NS) samples were obtained from six public datasets, GSE13355
(64 NS, 58 US and 58 LS samples) (Nair et al., 2009) and GSE14905
(21 NS, 28 US and 33 LS samples) (Yao et al., 2008), GSE30999 (85 US
and 85 LS samples) (Suarez-Farinas et al., 2012), GSE34248 (14 US and
14 LS samples) (Bigler et al., 2013), GSE41662 (24 US and 24 LS
samples) (Bigler et al., 2013), and GSE53552 (24 US and 75 LS samples)
(Russell et al., 2014). The corresponding annotation file was utilized to
convert the probe ID to the gene symbol. If a gene possesses multiple

corresponding probes, the average value of these probes will be
calculated. Furthermore, those probes without matching genes were
removed from the analysis to ensure accurate results. Subsequently, a set
of 866 lysosomal genes was identified from the Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome
database (Supplementary Table S1). Due to the detailed phenotypic
information provided by GSE13355 and GSE14905, they were used to
identify the initial key lysosomal genes. Notably, a total of datasets of
this studywas integrated throughCombat function of the “sva” package,
and the integrated dataset was used as the training set for the
classification model, and each individual dataset was used as the
validation set. The detailed workflow of this study was shown
in Figure 1.

Differential expression analysis and
functional enrichment analysis

Considering the potential batch effect from different datasets, we
adopted a strategy of conducting differential expression analysis on
individual datasets and then taking intersections of differentially
expressed genes (DEGs). The “limma” (Ritchie et al., 2015) package
was employed to identify DEGs between LS and NS samples
obtained from GSE13355 and GSE14905, and the significant
threshold was set as FDR value <0.05 and |log2 fold change
(FC)| > 1, ensuring robust and reliable results. To visualize the
DEGs, we utilized the “ggplot2” packages to generate visually
volcano plots. Next, we narrowed down the DEGs to those that

FIGURE 1
The workflow of this study. This framework mainly includes the following steps: 1) Identifying potential lysosomal modulators of psoriasis. 2)
Features filtering via integrative machine learning model. 3) Validation of hub lysosomal genes at the bulk and single-cell levels. 4) Hub genes are
associated with pathogenesis of psoriasis. 5) Clinical significance of three hub lysosomal genes. 6) Molecular subtypes based on hub lysosomal genes.
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overlapped between the two datasets, allowing us to identify the
most significant genes related to the differences between LS and NS.
Then, the overlap DEGs were utilized for functional enrichment
analysis (GO and KEGG) to determine the major biological terms
through “clusterProfiler” (Wu T. et al., 2021) package. The
enrichment results were further visualized using “ggplot2” and
“ggraph” packages.

Evaluating immune cell infiltrations

Based on gene expression profiles of the integrated dataset,
we employed the “CIBERSORT” (Newman et al., 2015) approach
to identify relative immune cell composition in tissues. Only
samples with p-values less than 0.05 were regarded as accurate
immune cell fraction analysis. Additionally, we utilized
correlation analysis to examine the relevance between three
hub genes and immune cell infiltration. To infer the relative
abundance of immune-related and hallmark gene sets between
different groups, we utilized the single-sample gene set
enrichment analysis (ssGSEA) algorithm. The Wilcoxon test
was utilized for evaluating the differences in gene sets or
immune cell proportions between NS and US or LS. One
asterisk (*) represents p-values less than 0.05.

Co-expression network construction and
identification of significant modules

To explore the relevant modules and key genes that contribute to
the LS phenotype, WGCNA analysis was conducted on the
GSE13355 and GSE14905, separately. Using the “WGCNA”
package, a weighted co-expression network was established, and
only genes with a standard deviation greater than 0.5 across all
samples were included in the analysis. To eliminate outliers in the
data, the goodSampleGenes function was employed (Supplementary
Figures S1A, D). According to the scale-free topology criterion,
softPowers value ranging from 1 to 20 were screened out utilizing
the pickSoftThreshold function, with softPowers of GSE13355 and
GSE14905 both found to be 7 (Supplementary Figures S1B, C, E, F).
These softPowers values were selected to construct an adjacency
matrix, and the most proper β value was chosen to convert the
correlation matrix into an adjacency matrix, which was then
transformed into a topological matrix. Then, genes were clustered
based on TOM using hierarchical clustering method, with the
minimum module size set at 80. Similar modules were then
merged, and pearson correlation analysis was used to assess the
correlation of the merged modules with LS, US, and NS. Finally,
those genes closely associated with the LS phenotype was selected for
subsequent analyses based on geneModuleMembership >0.8 &
geneTraitSignificance>0.5 criteria.

Identification of key lysosomal genes
associated with LS

The key lysosomal genes were identified through intersection of
four gene sets as follows:

1) the common DEGs between GSE13355 and GSE14905.
2) the LS phenotype genes of GSE13355 obtained by WGCNA.
3) the LS phenotype genes of GSE14905 obtained by WGCNA.
4) lysosomal genes obtained by GO database.

Gene set enrichment analysis analysis

GSEA (Subramanian et al., 2005) is a common tool for
interpreting high-throughput genomic data by identifying
coordinated changes in predefined sets of functionally related
genes. “ClusterProfiler” is an R package that provides a user-
friendly interface for GSEA analysis. The first step in performing
GSEA with “ClusterProfiler” is to annotate the genes of interest.
Next, the genes are ranked based on their differential expression, and
a pre-defined gene set is tested for enrichment using the
hypergeometric test. Finally, the enriched gene sets are visualized
barplot implemented by “ggplot2”.

Biomarker recognition with machine
learning algorithm

To reduce the potential bias in target screening, multiple
machine learning algorithms were used to obtained the final hub
genes in psoriasis classification. Specifically, we firstly used
12 algorithms with variable screening, with different
combinations to filter out collinear genes. These algorithms
contain Lasso, SVM, glmBoost, Ridge, elastic network (Enet) with
different alpha values, RF, stepglm with different modes, partial least
squares regression for Cox (plsRcox), generalized boosted regression
modeling (GBM), LDA, XGBoost, and NaiveBayes. Then, we
extracted the algorithm with the highest AUC value and obtained
the robust genes. Subsequently, these robust genes were further fed
into RF and Lasso algorithms screening to obtain the final hub genes.
In the model training process, the combat_dataset was used to train
the model, and the external single dataset was used for model
validation. The detailed parameter settings and implementation
of the algorithm are as follows.

A total of 108 algorithm combinations were employed to build
prediction models utilizing the leave-one-out cross-validation
(LOOCV) framework. The Lasso, Enet, and Ridge algorithms
were applied using the “glmnet” (Engebretsen and Bohlin, 2019)
package. The regularization parameter (λ) was determined through
LOOCV, while the L1-L2 trade-off parameter (α) was varied from
0 to 1 (interval = 0.1). The stepwise GLM model was implemented
using the “stats” package, utilizing a stepwise algorithm based on the
Akaike information criterion (AIC), with the stepwise search
direction set to “both,” “backward,” and “forward,” respectively.
For the glmBoost model, implementation was carried out using the
“mboost” package. The plsRglm model was employed via the
“plsRglm” package, utilizing the cv.plsRglm function to determine
the number of components required, followed by fitting a logistic
model using the plsRglm function. The GBM model was
implemented through the “gbm” package, where the gbm
function selected the optimal number of trees based on LOOCV
error minimization. The SVM model was executed using the
“e1071” package, employing a regression approach to enable
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probability predictions. Additionally, the LDA, XGBoost, and
NaiveBayes algorithms were implemented using the “caret”,
“xgboost,” and “e1071” packages, respectively.

Expression validation of hub genes

To explore the relative expression of hub genes in LS, US, andNS
groups, we integrated the expression data from GSE13355 and
GSE14905 using the ComBat function of the “sva” package to
eliminate batch effects. The relative expression levels of three
identified hub genes were then visualized using boxplots.
Furthermore, external datasets, containing GSE30999, GSE34248,
GSE41662, and GSE53552 were applied to verify the relative
expression of hub genes between LS and US.

Establishment and evaluation of
the nomogram

Nomograms have emerged as useful tools for predicting the
survival or occurrence of disease by considering multiple prognostic
factors simultaneously. In this study, we constructed predictive
nomograms using the “rms” package, incorporating the
characteristics of S100A7, SERPINB13, and PLBD1. Calibration
curves were used to compare the expected values with the
standard values. To evaluate the predictive performance of the
nomogram, we utilized the decision curve analysis (DCA)
approach. The receiver operating characteristic (ROC) curves
were visualized using the “pROC” package.

Establishment of lysosomal
molecular subtypes

The identification of lysosomal molecular subtypes was
performed using the “ConsensusClusterPlus” (Wilkerson and
Hayes, 2010) package. To further validate the effectiveness of the
clustering results, principal component analysis (PCA) was
conducted using the “FactoMineR” package. In addition, these
molecular subtypes also were validated on several externally
independent validation sets, ensuring the robustness of clustering.
Based on the previously reported (Charoentong et al., 2017)
28 immune cell gene sets, we used the ssGSEA algorithm to
explore the heterogeneity of the immune microenvironment
between lysosomal molecular subtypes.

Gene set enrichment analysis (GSVA)

Functional enrichment analysis was conducted to investigate the
heterogeneity among lysosomal subtypes, utilizing the “GSVA” and
“limma” packages. Gene sets were obtained from the Molecular
Signatures Database (MSigDB), specifically “c2.cp.kegg.v7.4.symbols”
and “h.all.v7.4.symbols.gmt.” Statistical significance was determined by
assessing absolute t-values of GSVA scores for hallmark pathways and
biological functions, with values greater than 1 considered as indicative
of significance.

Estimation of small-molecule compounds

Connectivity Map (CMap) analysis was used to predict small-
molecule compounds targeting lysosomal subtypes 1 and 2,
following established procedures. In essence, 1309 drug
signatures were retrieved from the CMap database (https://clue.
io/), and the expression profiles of the top 150 upregulated and
150 downregulated genes were utilized. Subsequently, CMap scores
were computed using the eXtreme Sum (XSum) algorithm, and the
top five small-molecule compounds with the lowest CMap scores
were highlighted.

Single-cell RNA-seq data quantification and
quality control

The raw scRNAseq data were downloaded from GEO database
(GSE150672 (Hughes et al., 2020)). Eight samples (three normal
samples and five psoriasis samples) were included in our study. To
filter out low-quality cells and doublets (2 cells encapsulated in a
single droplet), for each sample, cells were removed that had either
fewer than 200 unique molecular identifiers (UMIs), over 4,000 or
below 200 expressed genes. To filter out dead or dying cells, cells
were further removed that had over 20% UMIs derived from
mitochondrial genome. This resulted in a total of 18,332 high-
quality single-cell transcriptomes in all samples. The total number of
UMIs per cell was calculated for the number of UMI sequences of
high-quality single cells and genes in the sample. The median
normalization process was used to normalize the number of
UMIs in each cell to the median of the total UMI of all cells.

PCA, t-SNE and UMAP reduction

Variable genes were selected using a threshold for dispersion,
with z-scores normalized by expression level. The top 2,000 highly
variable genes (HVGs) were projected onto a low-dimensional
subspace using PCA analysis. The number of principal
components (Npcs) were selected based on inspection of the plot
of variance explained (Npcs = 30). Single-cell clustering was
visualized using 2D uniform manifold approximation and
projection (UMAP) or t-Distributed Stochastic Neighbour
Embedding (tSNE) for the top 30 principal components with the
largest variance explained. The “Clustree” package was utilized to
identify the best resolution (resolution = 0.8) in tSNE dimensionality
reduction. Finally, 18,332 single cells, including 4,490 normal tissue-
derived cells and 13,842 psoriasis tissue-derived cells, were subjected
to further analysis. The FindAllMarkers function was used to
identify the significant markers of each cell cluster. Cell types
were assigned to each cluster of cells using well-known markers.

Benchmark of batch effect correction

To quantitatively assess the absence of batch effects in the single-
cell data utilized in this study, we compared two widely employed
batch correction algorithms, Seurat and Harmony. For Seurat, we
examined two modes: Canonical Correlation Analysis (CCA) and

Frontiers in Genetics frontiersin.org05

Deng et al. 10.3389/fgene.2024.1365273

https://clue.io/
https://clue.io/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1365273


FIGURE 2
Identification and functional annotation of differentially expressed genes (DEGs) in the expression profiling of GSE13355 and GSE14905 cohorts. (A)
Volcano plots of GSE13355 depicting the gene expression levels of the DEGs between psoriasis and normal specimens. (B) Volcano plots of
GSE14905 showing the gene expression levels of the DEGs between psoriasis and normal patients. (C) PCA plots showing the gene expression profiling of
GSE13355 cohort. (D) PCA plots depicting the gene expression profiling of GSE14905 cohort. (E) The intersection of DEGs via “limma” package
derived from GSE13355 and GSE14905 cohorts, which were shown in the Venn diagram. (F) Network plot illustrating interactions among 22 types of
immune infiltrating cells. The p-values were adjusted using the Benjamini–Hochberg method. Each cell cluster was depicted in a distinct color. Lines
connecting the cells represented their interactions, with the thickness indicating the strength of correlation. Positive correlations were denoted by red
lines, while negative correlations were represented by blue lines. (G) The circle network plot showing the top 5 significantly enriched GO terms, including
type Ⅰ interferon signaling pathway, antimicrobial humoral response, skin development and so on. (H) Bar plot showing significant pathways calculated by
intersected DEGs were involved in organismal systems, metabolism, human disease, environmental information processing, and cellular processes.
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Reciprocal Principal Component Analysis (RPCA). In the CCA
model, we segmented the total single-cell objects by sample, followed
by standardization and selection of highly variable genes per sample.
Subsequently, we employed Seurat’s functions including
SelectIntegrationFeatures, FindIntegrationAnchors, and
IntegrateData to select features, identify anchors, and integrate
the data. Notably, we set the parameters nfeatures to 2000 and
ndim to 30, concluding with dimensionality reduction clustering
based on the first 30 dimensions of PCA post-correction. For
Seurat’s RPCA mode, the calculation steps mirrored those of
CCA, with the sole distinction being the setting of reduction =
“rpca” during the execution of FindIntegrationAnchors. Regarding
Harmony integration, we utilized the RunHarmony function
implemented within Seurat, with batch information designated as
samples. Furthermore, to accurately gauge the effectiveness of batch
integration and the preservation of biological variations, we
employed the Local Inverse Simpson’s Index (LISI) indicator as a
metric, encompassing integration-LISI (iLISI) and cell type-
LISI (cLISI).

Statistical analysis

All statistical analysis were performed utilizing R software 4.2.1.
Student’s t-test or Wilcoxon were utilized to investigate the
difference between two groups. The parameter of correlation
analysis between the variables was set as Pearson or Spearman.
All statistical p-values were two-sided, and p < 0.05 or one asterisk
(*) was regarded as statistical significance.

Results

Feature and functional alterations related
to psoriasis

In order to avoid artificially introducing correction errors, we
conducted differential expression analysis between psoriasis and
normal samples on the GSE13355 and GSE14905 cohorts,
separately. Consequently, our analysis identified 414 upregulated
genes and 393 downregulated genes in GSE14905, and
475 upregulated genes and 337 downregulated genes in
GSE13355 datasets (FDR <0.05, abs (log2FC) > 1; Supplementary
Table S2). Volcano plots were employed to visualize these DEGs
(Figures 2A,B), and PCA analysis also confirmed significant
differences between psoriasis and normal samples (Figures 2C,D).
Finally, a total of 323 DEGs were commonly identified between
GSE13355 and GSE14905 datasets (Figure 2E), and these genes were
used to explore whether they were associated with the immune
microenvironment. The expression profiles of the aforementioned
genes were extracted, and the relative infiltration of immune cells in
each sample was inferred using the ssGSEA method. Subsequently,
correlations between immune cells were computed, and hierarchical
clustering was employed to delineate distinct immune patterns. Our
findings reveal the presence of three discernible immune cell
patterns (Figure 2F), indicative of pronounced heterogeneity, as
evidenced by intricate positive and negative correlations among
them. Furthermore, these genes were also subjected to functional

enrichment analysis. The GO enrichment analysis revealed that
these DEGs were primarily involved in various biological processes,
including type Ⅰ interferon signaling pathway, antimicrobial
humoral response, skin development, defense response to
symbiont and defense response to virus (Figure 2G,
Supplementary Table S3). Moreover, KEGG pathways were found
to be mainly related to IL-17 signaling pathway, PPAR signaling
pathway, metabolism-related pathways and cellular processes
(Figure 2H, Supplementary Table S3). These results indicated the
presence of metabolic and immune dysregulation in psoriasis.

Immune microenvironment of psoriasis

In order to gain deep insights into the immune landscape of
psoriasis, we employed several computational methods
(CIBERSORT and ssGSEA algorithms) to calculate the infiltration
scores of immune cells and immune gene sets in different groups. It
was found that the infiltration levels of 22 immune cell types and
29 immune gene sets were significantly altered in LS samples compared
with NS samples (Supplementary Figures S2A–D). Specifically, we
found a higher B cell infiltration compared to NS samples, including
that of memory B cell, and plasma cells in patients with LS. Meanwhile,
LS patients exhibited higher T cell abundance, including the activated
memory CD4+ T cell, the T follicular helper cell, the regulatory T cell,
and the gamma delta T cell. In addition, natural killer associated cell,
macrophage M0, macrophage M1, dendritic cell, mast cell, and
neutrophil also had higher infiltration in patients with LS
(Supplementary Figure S2B). In order to further validate the results
of immune infiltration, another common immune gene set was
evaluated between LS and NS samples, which consistent with
previous results (Supplementary Figure S2D). It is noteworthy that
our analysis revealed a smaller disparity in immune cell abundance
between the US group and the NS group compared to the difference
observed between the LS group and the NS group (Supplementary
Figures S2A, C). This observation suggests that the extent of immune
infiltration may influence the progression of the disease. Moreover, we
investigated the relative score variances of the hallmark gene set across
different groups and observed that the majority of functional terms
exhibited significant upregulation in the LS group. Similarly, the
disparities observed within the LS group were more pronounced
compared to those within the US group (Supplementary Figures
S2E, F). Here, we have depicted the heterogeneity of the immune
microenvironment in psoriasis, and we planned to search for potential
biomarkers for the treatment of psoriasis.

Identification of LS-associated modules

To identify key genes and gene modules related to LS
phenotypes, we conducted WGCNA analysis on the basis of
the expression profile of GSE13355 and GSE14905. This study
focused on genes with a standard deviation greater than 0.5 in all
samples, which were consistently clustered to 7 modules in the
GSE13355 dataset and 13 modules in the GSE14905 dataset
(Figures 3A–C, E–G). After analyzing the person correlation
between modules and phenotypes, we found that the turquoise
module was highly linked to the LS phenotype, with correlation

Frontiers in Genetics frontiersin.org07

Deng et al. 10.3389/fgene.2024.1365273

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1365273


FIGURE 3
Identification of phenotype co-expression genes. (A)Cluster dendrogramof the co-expression network aftermergingmodules in GSE13355 cohort.
(B) Heatmap of correlation between modules and phenotypes showing that the turquoise module has the highest association with LS. (C) Gene
significance across modules in GSE13355 cohort. (D) Scatter plot of module membership (MM) versus gene significance (GS) in turquoise module. Those
genes with MM > 0.8 & GS > 0.5 were regarded as hub phenotype Genes. (E) Cluster dendrogram of the co-expression network after merging
modules in GSE14905 cohort. (F) Heatmap of correlation between modules and phenotypes in GSE14905 cohort. (G)Gene significance across modules
in GSE14905 cohort. (H) Scatter plot of MM versus GS in turquoise module. LS: Lesion Skin, US: Uninvolved Skin, and NS: Normal Skin samples.

Frontiers in Genetics frontiersin.org08

Deng et al. 10.3389/fgene.2024.1365273

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1365273


coefficients of 0.96 and 0.91 in the GSE13355 and
GSE14905 datasets, respectively (Figures 3B, C, F, G,
p-value < 0.001). The module membership (MM) and gene
significance (GS) scores of the turquoise module were further
used for phenotype gene screening. Those genes with MM >
0.8 and GS > 0.5 were considered statistically significant (Figures
3D,H). As a results, we identified 527 and 602 co-expressed genes
linked to the LS phenotype in the GSE13355 and
GSE14905 datasets, respectively. These genes were served as

phenotypic genes (pheGenes), which provide potential
therapeutic targets for psoriasis.

Identification of lysosomal genes and
functional enrichment

A total of 19 phenotype genes were identified by intersecting the
DEG and pheGenes of the GSE13355 andGSE14905 datasets with well-

FIGURE 4
Identification of 19 key lysosomal genes. (A) Venn diagram showing 19 common lysosomal genes between BothDEGs, Lysosome, pheGenes_
GSE13355 and pheGenes_GSE14905. (B)Network plot exhibiting interactions within 19 key lysosomal genes. Each gene cluster was depicted in a distinct
color. Lines connecting the genes represented their interactions, with the thickness indicating the strength of correlation. Positive correlations were
denoted by red lines, while negative correlations were represented by blue lines. (C) The GO enrichment analysis of key lysosomal genes, covering
biological progress (BP), cellular components (CC), molecular functions (MF) categories. (D) Bar plot showing the significant lysosomal terms. The x-axis
represented normalized enrichment score of enrichment terms. (E) GSEA analysis showing Cytolytic Granule significantly involved in psoriasis samples
compared to normal samples. (F) Bar chart revealing that the expression of 19 lysosomal genes between psoriasis and normal samples. The statistical
comparison between two groups was conducted using the “emmeans” method, allowing for pairwise comparisons of group means. (G) Dot plot
depicting the correlation between 19 lysosomal genes and 29 immune gene sets, with the size of each circle reflecting the log-standardized p-value.
Positive correlations were indicated by red color, while negative correlations were represented by blue color. Additionally, the shade of color indicated
the correlation coefficient value.
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known lysosomal genes (Figure 4A). To assess the correlation among
lysosomal genes, we initially illustrated the comprehensive landscape of
interactions among 19 lysosomal genes, leading to the identification of
three distinct patterns. Within these lysosomal genes, the majority

displayed robust synergistic effects (Figure 4B), and functional
enrichment analysis revealed that they were primarily involved in
several immune reactions, such as neutrophil degranulation and
neutrophil-mediated immunity, as well as cell compositions

FIGURE 5
Machine learning identified key diagnosis genes for psoriasis samples. (A) Through the LOOCV framework, a total of 108 prediction models were
developed and their respective C-index values were computed across all validation datasets. (B–C, E–F) A total of 11, 10 key genes were identified with
optimal lambda values in the GSE13355 (B–C) and GSE53552 (E–F) cohorts using Lasso model. (D, G) The random forest algorithm ranks the important
genes based onMeanDecreaseGini (MDG) scores in the GSE13355 (D) and GSE53552 (G) cohorts and those genes with important score greater than
average were considered as key diagnosis genes (indicated by black bold). (H) The overlap of key diagnosis genes calculated by three different datasets is
shown in the Venn diagram.

Frontiers in Genetics frontiersin.org10

Deng et al. 10.3389/fgene.2024.1365273

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1365273


associated with lysosomes, including primary lysosomes and azurophil
granules (Figure 4C). Further, GSEA indicated that some lysosome-
related pathways might play significant roles in the occurrence and
development of psoriasis (Figures 4D,E). One plausible explanation
could be the significantly overexpression of the majority of lysosomal
genes in the disease group, while only ADRB2 and GPRASP1 exhibited
lower expression levels in the disease group compared to the normal
group (Figure 4F). Furthermore, we delineated the correlation patterns
between the 19 lysosomal genes and 29 immune gene sets. Consistently,
the findings underscored significant correlations each other
(Figure 4G). This evidence supports the notion that lysosomal
functions play vital roles in the pathogenesis of psoriasis,
highlighting the potential for these 19 lysosomal genes to serve as
therapeutic targets for the disease.

Identification of candidate hub lysosomal
genes via machine learning

To determine the optimalmachine learningmodel for predicting LS,
the combat_datasets was served as the training dataset and each
individual dataset as the testing dataset. The expression profiles of
19 lysosomal genes were selected as input variables, and 12 machine
learning models, including Lasso, SVM, glmBoost, Ridge, Enet with
different alpha values, RF, stepglm with different modes, plsRglm, GBM,
LDA, XGBoost, and NaiveBayes, were established to predict outcomes.
We fitted 108 kinds of prediction models via the LOOCV framework
and further calculated the C-index of each model across all validation
datasets (Figure 5A). Consequently, the optimal model was a
combination of glmBoost and Lasso with the highest average C-index
(0.955), and this model had a dominant C-index in each validation
dataset (Figure 5A). Then, we extracted 11 lysosomal genes from this
optimal model, which have undergone collinearity filtering. To further
identify potential candidate hub genes associated with psoriasis
diagnosis, we employed two common and effective machine learning
algorithms, containing Lasso regression and RF. The Lasso regression
analysis successfully identified 11, 10 and 11 genes that were closely
associated with psoriasis in GSE13355, GSE53552 and All_combat
datasets, respectively, as evidenced by their nonzero regression
coefficients (Figures 5B, C, E, F and Supplementary Figure S3A).
Furthermore, the RF algorithm allowed us to evaluate the importance
of each gene based on MeanDecreaseGini (MDG) scores, revealing 5,
6 and 6 candidate genes with higher than mean MDG scores in
GSE13355, GSE53552 and All_combat datasets, respectively (Figures
5D, G and Supplementary Figure S3A). Finally, the overlapping analyses
yielded a total of three lysosomal genes (S100A7, SERPINB13, and
PLBD1) as hub candidates for further study (Figure 5H).

Validation of hub genes at the single-
cell level

A total of 8 samples (three normal and five psoriasis samples)
were involved in this study, which came from GSE150672 cohort.
The quality control (QC) criteria are described in Methods
(Supplementary Figures S4A–C). Of these, 4,490 single cells
originated from normal tissues, while the remaining 13,842 were
psoriasis-derived cells (Figure 6B). Each major cell type can be well

mixed together according to sample classification (Figure 6A;
Supplementary Figure S4D), it suggested that there was no batch
effect in this scRNA-seq data. Moreover, we quantitatively
demonstrated the absence of batch effects within this dataset
(Supplementary Figure S5). We assessed the effectiveness of two
commonly used integration methods, Seurat (CCA and RPCA
modes) and Harmony, and evaluated the integration efficacy and
preservation of biological variation using iLISI and cLISI indicators,
respectively (Supplementary Figures S5E, F). Interestingly, Seurat
did not exhibit over-correction compared to the original
uncorrected data, whereas Harmony demonstrated slight
overcorrection (Supplementary Figure S5). Given the importance
of avoiding the introduction of artificial errors, we decided not to
perform batch effect correction in subsequent analyses. Based on
well-known markers, these cells were classified into 15 main cell
types (Figure 6C). Notably, when comparing normal cells with
psoriasis-derived cells, we found that endothelial, lymphocyte,
and T cells were increasingly enriched in psoriasis tissues, while
fibroblasts, hair follicle, keratinocyte and langerhans cells mainly
existed in normal tissues (Figures 6D,E). These results revealed the
heterogeneous landscape among normal and psoriasis samples. We
further screening for DEGs between the normal and psoriasis
tissues, some common genes (S100A7, SERPINB4) were observed
especially expressed in psoriasis tissues (Figure 6F). The faceted
volcanic plot further displayed the DEGs in each cell type
(Figure 6G). The feature plot and boxplot demonstrated that
three hub genes (S100A7, SERPINB13, and PLBD1) were mainly
expressed in keratinocyte cells of psoriasis condition (Figures
6H–M). Additionally, we integrated this scRNAseq data and bulk
RNAseq data from GSE13355 using the scissor method and found
that keratinocytes were most closely related to disease occurrence
(Supplementary Figure S6A). These evidences indicate that these
three hub genes may play roles in promoting the occurrence and
development of psoriasis by regulating the function of
keratinocyte cells.

Potential mechanisms of psoriasis
occurrence with Cellchat

We next aimed to investigate whether heightened expression of
hub lysosomal genes in keratinocytes coincided with altered
intercellular communication in LS. For this purpose, we
employed CellChat (Jin et al., 2021), a tool utilizing a database of
ligand-receptor interactions to analyze cell-cell communication
from scRNA-seq data. Notably, within our scRNA-seq data,
intercellular interactions in normal and LS tissues exhibited
marked differences (Figures 7A,B). Specifically, robust
interactions between lymphocytes, Schwann cells and other cell
types were prominent in normal tissues, whereas in LS,
fibroblasts and vascular-associated smooth muscle cells displayed
strong interactions with other cell types. Additionally, we observed
the strongest incoming interactions involving keratinocytes and the
strongest outgoing interactions originating from fibroblasts
(Figure 7C). Subsequently, we delved into cell-cell interactions in
LS, revealing notable communication probabilities between
fibroblasts and keratinocytes via PRSS3 binding to F2R and
F2RL2 receptors (Figure 7D). Moreover, we observed an overall
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FIGURE 6
Validation of three hub genes at the single-cell level. (A–C) t-SNE reduction of the cells, from left to right: colored by samples; conditions; cell types.
(D, E) The proportion of different cell types in different samples or conditions. (F) Volcano plot showing the DEGs between normal and psoriasis sample.
(G) The faceted volcanic plot displaying the DEGs in each cell type. (H–J) The feature plot showing cell type-specific expression levels of hub lysosomal
genes. (K–M) The boxplot plot revealing that three hub lysosomal genes were significantly highly expressed in the psoriasis group (p < 0.05).

Frontiers in Genetics frontiersin.org12

Deng et al. 10.3389/fgene.2024.1365273

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1365273


increase in signaling pairs between fibroblasts and keratinocytes in
LS compared to normal tissue, with the PRSS3-F2R signaling axis
emerging as the most significant (Figure 7E). Consequently, these
genes were subjected to correlation analysis with hub lysosomal
genes, revealing strong positive correlations with PRSS3 and
negative correlations with F2R (Figure 7F). These evidences
suggest a pivotal role for hub lysosomal genes in regulating cell
communication between keratinocytes and fibroblasts through the
PRSS3-F2R receptor axis.

Construction of characteristic nomogram
for predicting US and LS progression

After validating the relative expression of hub lysosomal genes at the
single-cell level, we sought to investigate their diagnostic utility through
analysis of bulk RNAseq data. Notably, S100A7 and PLBD1 displayed
marked upregulation in US samples, while all three hub genes exhibited
significant upregulation in LS samples compared to NS samples (Figures
8A,B). In addition, we also found that immune infiltrating cells
(Supplementary Figures S7A, B), immune-related gene sets
(Supplementary Figures S7C, D), and hallmark gene set
(Supplementary Figures S7E, F) was significantly associated with
three hub genes, especially in LS samples. Subsequently, we
constructed two nomograms for US and LS phenotypes by

integrating these characteristic genes (Figures 8C,D). Each gene in
the nomogram was assigned a score, enabling the computation of a
final score reflecting varying disease risks. Calibration curves for the
nomograms accurately estimated the progression of US and LS (Figures
8F,I). Decision curve analysis (DCA) demonstrated that the nomogram
provided superior clinical utility in predicting psoriasis occurrence
probability at a high-risk threshold of 0–1, compared to individual
curves for S100A7, SERPINB13, and PLBD1 (Figures 8E,H).
Furthermore, ROC curve analysis affirmed the model’s precision in
predicting psoriasis occurrence probability, outperforming single
independent predictive factors (Figures 8G,J). Additionally, the
heightened expression of these three hub genes in LS phenotypes
relative to US phenotypes was validated across four external RNAseq
datasets (Figure 8K). These findings underscore the potential of
identified hub lysosomal genes and nomograms as robust diagnostic
tools for psoriasis, offering valuable insights for clinical decision-making.

Construction of two molecular subtypes
of psoriasis

To delineate the expression patterns of hub lysosomal genes in
LS, we applied the consensus clustering algorithm to group disease
samples based on the expression profiles of the three hub genes. The
consensus matrix served as a similarity matrix to define final

FIGURE 7
Cellchat analysis indicates keratinocyte communicate with fibroblasts via PRSS3-F2R signaling. (A, B)Circle plots of signaling networks of normal (A)
and psoriasis (B). (C) Dot plot showing cell-cell interaction strengths between incoming and outgoing interactions of all cell types. (D) Dot plot revealing
signaling molecules between keratinocyte and fibroblasts or vascular associated smooth muscle cell. (E) PRSS3-F2R signaling between keratinocyte and
fibroblasts is highly expressed in psoriasis samples. (F) Correlation analysis reveals that three hub lysosomal genes are positively correlated with
PRSS3 and negatively correlated with F2R.
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FIGURE 8
Construction of the nomograms and the diagnosis value assessment. (A, B) Boxplot showing the relative expression of three hub lysosomal genes
between US and NS, LS and NS. (C, D) Nomogram showing three hub lysosomal genes utilized in the diagnosis of patients with US (C) and LS (D). (E)
Calibration curve showing predicted performance of the USmodel. (F) The clinical benefits of the USmodel evaluated using DCA curves. (G) ROC curves
were used to evaluate the accuracy of the US model. (H) Calibration curve showing predicted performance of the LS model. (I) The clinical benefits
of the LS model evaluated using DCA curves. (J) ROC curves were used to evaluate the accuracy of the LS model. (K) Violin plot showing the relative
expression of three hub lysosomal genes between US and LS in four independently external RNAseq datasets.
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subtypes. Upon analyzing the consensus clustering results and
assessing the cluster stability, we determined that k = 2 was the
optimal value, resulting in the classification of samples into Cluster
1 and Cluster 2 (Figures 9A,B; Supplementary Figure S8A). PCA

analysis further highlighted the pronounced differences between
Cluster 1 and Cluster 2 (Figure 9C). As anticipated, substantial
heterogeneity was observed in the expression of the three hub
lysosomal genes between these subtypes (Figures 9D–F).

FIGURE 9
Construction of twomolecular subtypes based on three hub lysosomal genes in the integrated datasets. (A, B)Consensusmatrix heatmap when k =
2 (A) and k = 3 (B). (C) PCA analysis showing the significant difference between Cluster 1 and Cluster 2. (D–F) Bar chart showing the relative expression of
three hub lysosomal genes between Cluster 1 and Cluster 2. (G) Boxplot showing relative expression of immune check points. (H, I)Differential analysis of
hallmark terms (H) and enriched biological pathways (I) was conducted among distinct lysosomal subtypes, ranked by t values of GSVA scores.
t-value greater than 1 was considered statistically significant.
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Additionally, significant change in the expression of immune
checkpoint molecules (Figure 9G), immune infiltrating cells
(Supplementary Figure S8B), and hallmark gene sets
(Supplementary Figure S8C) was evident between these subtypes.
The external independent validation dataset confirmed the
clustering robustness and repeatability of the two subtypes,

whether it is the integrated dataset or the individual datasets
(Supplementary Figure S9).

Subsequently, we characterized enriched biological functions
and signaling pathways using hallmark and KEGG gene sets from
the MSigDB database and estimated the score of each patient using
GSVA. In Cluster 2, biological functions related to immune

FIGURE 10
The immune and metabolic characteristics of distinct lysosomal subtypes. (A) Heatmap revealing the relative ssGSEA scores of 28 immune cell
subsets across different subtypes. (B) Bar chart showing relative scores of highlighted metabolic gene sets between subtypes. (C) Heatmap reveals the
significant metabolic gene sets across different subtypes. (D) Heatmap indicating the differences in immune- or metabolism-related genes between
Cluster 1 and Cluster 2. (E, F) CMap analysis showing the potential therapeutic compounds for Cluster 2 (E) and Cluster 1 (F), respectively. *p < 0.05,
**p < 0.01, and ***p < 0.001.
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response, such as Interferon gamma response, Inflammatory
response, and Complement activation, were notably enriched
(Figure 9H). Metabolism-related functions, including Oxidative
phosphorylation, Glycolysis, and Xenobiotic metabolism, were
also highly enriched in Cluster 2. Conversely, biological functions
in Cluster 1 primarily involved Notch signaling, Hedgehog
signaling, Wnt/β-catenin signaling, and TGF-β signaling
(Figure 9H). Moreover, the pathways associated with lysosomal
Cluster 2 enrichment were consistently linked to metabolism and
immunity, encompassing metabolism-associated pathways and
Antigen processing and presentation. While lysosomal Cluster
1 exhibited activation of pathways such as the Notch signaling
pathway and Wnt signaling pathway (Figure 9I).

Immune and metabolic profiling of
lysosomal subtypes in psoriasis

To elucidate the immune and metabolic distinctions and their
interplay between these lysosomal subtypes, we initially compared
differences in 28 immune cell subsets within each subtype. Patients
in Cluster 2 exhibited significantly higher infiltration of various
T cell subsets, including Natural killer T cells, Effector memory
CD8 T cells, Activated CD4 T cells, Activated CD8 T cells, Gamma
delta T cells, T follicular helper cells, Regulatory T cells, Type 2 T
helper cells, Type 17 T helper cells, and Central memory
CD8 T cells, compared to those in Cluster 1 (Figure 10A).
Moreover, multiple B cell subsets, including immature B cells,
activated B cells, and memory B cells, as well as CD56dim
natural killer cells, macrophages, MDSCs, and neutrophils,
displayed higher enrichment scores in lysosomal Cluster
2 (Figure 10A).

Furthermore, we explored specific metabolic patterns between
subtypes and observed distinct metabolic signatures. Notably, Folate
biosynthesis, Galactose metabolism, Purine metabolism, and
Pyrimidine metabolism were significantly enriched in Cluster 2,
whereas Fatty acid biosynthesis and Lysine degradation were
notably enriched in Cluster 1 (Figures 10B,C).

As evidence of verification, we also evaluated the expression of
immune regulatory and metabolic genes in each subtype
(Figure 10D). In Cluster 2, nearly all immune markers related to
M1 Macrophage Polarization, M2 Macrophage Polarization,
Cytolytic effector pathways, Type I Interferon response, Type II
Interferon Response, Immune checkpoints, and Pro-inflammatory
factors were consistently highly expressed. Concurrently, lysosomal
Cluster 2 also exhibited enhanced expression of metabolic genes
involved in the TCA cycle, Pentose Phosphate Pathway, and
Glycogen Metabolism (Figure 10D). Notably, patients in Cluster
1 demonstrated specific upregulation of metabolic genes associated
with Glucose Deprivation compared to Cluster 2. Taken together,
these findings led to the identification of Cluster 1 as a signaling-
activation subtype and Cluster 2 as a mixed subtype characterized by
immune and metabolic interplay.

Finally, we investigated potential therapeutic drugs targeting
signaling-activation subtype 1 and immune-metabolism subtype
2 using CMap analysis. A lower CMap score for a small molecule
compound suggests a higher likelihood of it being effective in
treating the disease. In immune-metabolism subtype 2, fasudil,

exisulind, W.13, arachidonyltrifluoromethane, and
X5109870 emerged as the top five small-molecule compounds
with the lowest CMap score (Figure 10E). Conversely, in
signaling-activation subtype 1, butein, imatinib, MK.886, MS.275,
and TTNPB were identified as relevant small-molecule compounds
(Figure 10F). CMap analysis revealed that fasudil and butein were
the most promising therapeutic drugs for targeting immune-
metabolism subtype 2 and signaling-activation subtype 1,
respectively.

Discussion

Psoriasis is a complex immune-mediated systemic inflammatory
disorder (Masson et al., 2020). The pathogenesis of psoriasis
involves inflammatory mechanisms controlled by several key
genes. Research has found that dyslipidemia and immune
disorders might increase the risk of psoriasis (Aksentijevich et al.,
2020). Moreover, lysosomal dysfunction has been increasingly
associated with both disease and aging (Pu et al., 2016; Platt
et al., 2018). Despite researchers linking lysosomes to psoriasis
since the 1970s and several studies recently identifying
biomarkers for psoriasis, none have yet identified lysosome-
related biomarkers. Our preliminary research findings indicate a
close association between lysosomal pathways and the onset and
pathological progression of psoriasis. Consequently, this study
focuses on lysosome-related genes and employs various analytical
methods to screen for potential targets capable of predicting disease
occurrence and effectively treating psoriasis.

In this study, three hub lysosomal genes (S100A7, SERPINB13,
and PLBD1) were determined as potential diagnostic targets of
psoriasis in combination with DEGs analysis, WGCNA and
multiple machine learning methods (Figure 5). Specifically, our
study suggests that S100A7, one of the identified genes, may
serve as a promising therapeutic target with few undesired side
effects due to its narrow spectrum of biological effects (D’Amico
et al., 2016). Various treatments, including calcipotriol, a vitamin D
analog, and narrow-band UVB phototherapy, have been found to
reduce S100A7 expression and interfere with the inflammatory loop,
potentially leading to improved psoriasis outcomes (Hegyi et al.,
2012; Batycka-Baran et al., 2015). Furthermore, recent findings
suggest that the anthocyanidin delphinidin may also suppress
S100A7 expression (Chamcheu et al., 2015), highlighting its
potential as a new therapeutic approach. By downregulating
S100A7 expression, this may decrease the production of TNF, IL-
6, and IL-8 from neutrophils, which are known to play a crucial role
in the pathogenesis of psoriasis (D’Amico et al., 2016). As a cross-
class specific serine protease inhibitor of Cat L, SERPINB13 was
found to be mainly confined to the basal layer in normal skin
samples (Bylaite et al., 2006). However, in diseased skin,
SERPINB13 was significantly overexpressed and redistributed,
indicating its potential involvement in the pathogenesis of
psoriasis. Interestingly, our study also revealed that
SERPINB13 is a key regulator of psoriasis, as evidenced by its
rapid decrease in expression following dithranol treatment in
psoriatic patients (Benezeder et al., 2020). Despite the lack of
previous research investigating the relationship between
PLBD1 and psoriasis, our study has uncovered evidence
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suggesting that this gene may hold significant promise as a target for
the treatment of psoriasis. Our findings add to the growing body of
knowledge surrounding the underlying mechanisms of this complex
immune-mediated disease and highlight the potential for novel
therapeutic approaches. By targeting PLBD1, we may be able to
develop more effective and precisely tailored treatments for psoriasis
that improve patient outcomes. Further investigation is warranted to
fully elucidate the role of PLBD1 in psoriasis and its potential as a
therapeutic target. All in all, these findings not only provide insights
into the pathogenesis of psoriasis but also pave the way for more
targeted and effective treatments for patients with this complex
immune-mediated disease.

Aberrant activation of immune cells has been identified as a key
factor in psoriasis development. The increased infiltration of dendritic
cells, macrophages, neutrophils, and NK cells is a prominent feature of
psoriasis (Lowes et al., 2014), with each cell type playing a crucial role in
the pathogenesis of disease. Dendritic resting cells contribute to T
lymphocyte activation and cytokine/chemokine production (Chiricozzi
et al., 2018), while macrophages are critical for lymphocyte activation
and proliferation, facilitating the inflammatory process (Lorthois et al.,
2017). Neutrophils, a primary origin of pro-inflammatory mediators
like IL-17, have also been implicated in psoriasis progression (Chiricozzi
et al., 2018). Furthermore, NK cell infiltration and cytokine release are
believed to play a role in regulating immune responses in psoriasis
(Kucuksezer et al., 2021). In this study, we investigated the relevance
between characteristic targets and immune cells in psoriasis. Our
findings indicate that S100A7, SERPINB13, and PLBD1 may
contribute to the inflammatory process of psoriasis by impacting
macrophages infiltration, especially in LS samples (Supplementary
Figure S6). Furthermore, these three genes may also link to regulate
immune responses by affecting activated NK, T cell and neutrophils
infiltration. Our study provides new insights into the complex
immunopathogenesis of psoriasis, potentially aiding in the
development of targeted therapeutic strategies.

With the development of single-cell technology, we have gained the
ability to identify and validate hub genes at the single-cell level,
providing insights into their potential mechanisms underlying
disease onset and progression. In this study, we observed that three
hub lysosomal genes (S100A7, SERPINB13, and PLBD1) exhibit
predominant expression in keratinocytes, with their relative
expression levels being notably elevated in diseased tissues compared
to normal tissues (Figure 6). Additionally, our investigation revealed
that keratinocytes primarily interact with fibroblasts, with the PRSS3-
F2R ligand-receptor pair serving as a key mediator in this cell-cell
interaction (Figures 7A–E). Correlation analysis further demonstrated a
robust interaction between PRSS3 and the hub genes (Figure 7F).
Consequently, we reasonably speculate that these three hub genes play a
pivotal role in regulating cell-cell communication between keratinocytes
and fibroblasts through the PRSS3-F2R axis, thus highlighting their
potential significance in disease pathogenesis.

This study also offers promising insights into the molecular
subtypes of psoriasis, with implications for the personalized
treatment of patients. By utilizing a consensus clustering
approach, we were able to identify two distinct molecular
subtypes, Cluster 1 and Cluster 2, based on the expression
profiling of three key lysosomal genes (Figure 9). Notably, our
analysis revealed that the Cluster 2 subtype represents a mixed
subtype characterized by immune and metabolism, which exhibited

immune, metabolic phenotypes and more pronounced immune
checkpoint or metabolic expression compared to the Cluster
1 subtype, underscoring the importance of immune and
metabolic dysregulation in the pathogenesis of psoriasis (Figures
9, 10). For Cluster 1, it may be a signaling-activation subtype,
showing higher enrichment levels of disease signaling pathways,
such as: Notch signaling, Wnt/β-catenin signaling, and TGF-β
signaling pathways (Figures 9H,I). This classification strategy
enabled us to capture the intricate immune landscape of different
psoriasis groups, thereby enhancing the accuracy of early diagnosis
and intervention of psoriasis treatment.

Nevertheless, it is important to note that this study has certain
limitations. For instance, given that this study relied on publicly available
datasets, further validation through prospective samples is warranted for
experimental confirmation. Additionally, the sample size utilized for
identifying molecular subtypes or training machine learning algorithms
was relatively small, underscoring the need for a larger LS sample size for
robust validation. Finally, the inability to comprehensively evaluate
distinct subtypes of LS patients stems from the absence of critical
clinical characteristics such as medication responsiveness, smoking
and drinking habits, and prior therapies.

Conclusion

Our study successfully identified and validated three hub
lysosomal genes (S100A7, SERPINB13, and PLBD1) at the bulk
and single-cell levels, which were served as potential predictors of
psoriasis occurrence. Further, these hub genes were likely involved
in the cell-cell communication process between keratinocytes and
fibroblasts, and were influenced by the PRSS3-F2R. Furthermore, we
proposed a new molecular classification that distinguished different
subtypes in psoriasis samples. The significance of these findings lies
in the potential for developing more targeted immunotherapy for
psoriasis patients. Collectively, it offers hope for improved outcomes
and quality of life for psoriasis patients.
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