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Background: Tumor mutational burden (TMB) is a promising biomarker for
immunotherapy. The challenge of spatial and temporal heterogeneity and
high costs weaken its power in clinical routine. The aim of this study is to
estimate TMB preoperatively using a volumetric CT–based radiomic
signature (rMB).

Methods: Seventy-one patients with resectable lung adenocarcinoma (LUAD)
who underwent whole-exome sequencing (WXS) from 2011 to 2014 were
enrolled from the institutional biobank of Tianjin Medical University Cancer
Institute and Hospital (TMUCIH). Forty-nine LUAD patients with WXS from the
Cancer Genome Atlas Program (TCGA) served as the external validation cohort.
Computed tomography (CT) volumes were resampled to 1-mm isotropic, semi-
automatically segmented, and manually adjusted by two radiologists. A total of
3,108 radiomic features were extracted via PyRadiomics and then harmonized
across cohorts by ComBat. Features with inter-segmentation intra-class
correlation coefficient (ICC) > 0.8, low collinearity, and significant univariate
power were passed to the least absolute shrinkage and selection operator
(LASSO)–logistic classifier to discriminate TMB-high/TMB-low at a threshold
of 10 mut/Mb. The receiver operating characteristic (ROC) curve analysis and
calibration curve were used to determine its efficiency. Shapley values (SHAP)
attributed individual predictions to feature contributions. Clinical variables and
circulating biomarkers were collected to find potential associations with
TMB and rMB.

Results: The top frequently mutated genes significantly differed between the
Chinese and TCGA cohorts, with a median TMB of 2.20 and 3.46 mut/Mb and 15
(21.12%) and 9 (18.37%) cases of TMB-high, respectively. After dimensionality
reduction, rMB comprised 21 features, which reached an AUC of 0.895
(sensitivity = 0.867, specificity = 0.875, and accuracy = 0.873) in the discovery
cohort and 0.878 (sensitivity = 1.0, specificity = 0.825, and accuracy = 0.857 in a
consist cutoff) in the validation cohort. rMB of TMB-high patients was significantly
higher than rMB of TMB-low patients in both cohorts (p < 0.01). rMB was well-
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calibrated in the discovery cohort and validation cohort (p = 0.27 and 0.74,
respectively). The square-filtered gray-level concurrence matrix (GLCM)
correlation was of significant importance in prediction. The proportion of
circulating monocytes and the monocyte-to-lymphocyte ratio were associated
with TMB, whereas the circulating neutrophils and lymphocyte percentage, original
and derived neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio
were associated with rMB.

Conclusion: rMB, an intra-tumor radiomic signature, could predict lung
adenocarcinoma patients with higher TMB. Insights from the Shapley values
may enhance persuasiveness of the purposed signature for further clinical
application. rMB could become a promising tool to triage patients who might
benefit from a next-generation sequencing test.

KEYWORDS

radiomics, tumor mutational burden, machine learning, lung adenocarcinoma,
immunotherapy biomarker

1 Introduction

Immune checkpoint inhibitors targeting programmed death-1
(PD-1) or its ligand (PD-L1) have come up on the stage of first-
line treatment in non–small-cell lung cancer (NSCLC). Favorable
improvement on survival outcomes has been observed in both
metastatic and resectable populations and enhanced in non-
squamous NSCLC. Nevertheless, an estimated objective response
rate of 26.91% in a pooled meta-analysis has spoken yet again of
the necessity for precise beneficiary selection (Chen et al., 2021). To this
end, exploration in predictive biomarkers for immune checkpoint
inhibitors has never stopped. The first United States Food and Drug
Administration (FDA)-approved biomarker for checkpoint inhibitors
is the expression level of PD-L1, defined by positive staining of tumor
cytomembrane on immunohistochemistry (IHC) slides, which directly
regulates the adaptive anti-tumor immune response (Doroshow et al.,
2021). It has been confirmed effective but imperfect for the decision of
offering immunotherapy because it is insufficient to explain the
benefits of patients with a PD-L1 tumor proportion score
(TPS) <50%, which might be owing to the heterogeneity of tumor
microenvironments and other technical factors (Shen and Zhao, 2018).
In addition, predictive efficiency of PD-L1 expression varies across
histopathological subtypes of NSCLC. A retrospective study revealed
that patients with non-squamous NSCLC and higher PD-L1
expression were more likely to benefit from mono- or dual-
immune checkpoint inhibitors (Meshulami et al., 2023).

Subsequently, the FDA has approved tumor mutational burden
(TMB), which measures the number of somatic mutations per
megabase of specific cancer genomic sequences (Sha et al., 2020) as
the second pan-cancer companion diagnostics at a threshold of 10 mut/
Mb for PD-1 inhibitors after microsatellite instability or deficient
mismatch repair. TMB is convinced to be a snapshot of the
evolutionary complexity in cancer genome and the pivotal source of
neoantigens that contribute to tumor-specific T-cell response in tumor
microenvironments (Jia et al., 2018), and then eventually shapes the
individual response to immune checkpoint inhibitors (Rizvi et al.,
2015). Evidence from Checkmate-026 trail has suggested that TMB
can identify a subgroup that may benefit from PD-1 inhibitors among
NSCLC patients with PD-L1 expression levels ≥5% (Carbone et al.,
2017). A multi-center cohort study has revealed that TMB-high

outperformed PD-L1 in predicting the response and survival
outcomes of NSCLC patients who received PD-L1 inhibitors that
were associated with higher infiltrating CD8+ T cells and
upregulations of several immune-related signaling pathways (Ricciuti
et al., 2022). In a recent real-world study, elevated TMB (≥10 mut/Mb)
was confirmed to be associated with durable benefit on checkpoint
inhibitors across various cancer types (Gandara et al., 2023).
Nonetheless, there still remains challenges in the application of
TMB. First of all, TMB in lung adenocarcinoma is significantly
lower than that in squamous cell carcinoma, which may require a
larger panel, coverage, and depth to capture enough signals of
nucleotide variations. Second, it could be affected by temporal and
spatial heterogeneity of tumor as well; hence, single sample–based TMB
estimation is not recommended (Kazdal et al., 2019; Stein et al., 2019).
In clinical practice, the use of biopsy samples may magnify such an
effect that results in over- or underestimation of TMB. Furthermore,
despite next-generation sequencing (NGS) and panel-based targeting
sequencing substantially reducing the cost of genomic assessment,
testing TMB is still more expensive than that of
immunohistochemistry-based biomarkers. As a consequence, there is
still a need for developing non-invasive, comprehensive, and accurate
diagnostic frameworks to expand the application and value of TMB.

Radiomics, a machine learning-enabled high-throughput
characterization of images, has established robust and convincing
relations among imaging phenotypes, clusters of molecular
phenotypes, and genotypes in NSCLC (Wu et al., 2022). It takes
the advantages of imaging scans that globally, dynamically present the
landscape of in vivo heterogeneity as a part of the standard-of-care
procedures in cancer diagnosis, staging, and monitoring of
therapeutic effects (Bi et al., 2019). Heretofore, there exists
sufficient evidence that confirms imaging phenotypes, from
radiologic semantics to deep learning-encoded radiomic signatures,
which are capable of predicting specific driver mutations in NSCLC.
Liu et al. have reported the association between CT semantic features
and the epidermal growth factor receptor (EGFR) genotype (Liu et al.,
2016). A bulk of radiomic signatures that have integrated both intra-
tumor and peritumor information were successfully constructed to
predict the mutational status of the EGFR (Rios Velazquez et al., 2017;
Shang et al., 2023). The latest international large-scale multi-cohort
study enrolled 18,232 patients to further validate the efficiency of CT-
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based whole-lung biomarkers to recognize the EGFR genotype and
risk of resistance to tyrosine kinase inhibitors (Wang et al., 2022).
However, insights that expand the cross-scale relevance to mutational
loads of the whole genome are still limited. A plausible association has
been reported between CT semantics (Zhang et al., 2020) and
radiomic signatures (Yang et al., 2023) without the constant
threshold of TMB and interracial validation.

To this end, the current study purposes to develop and validate
an interpretable CT-based radiomic signature, radiological
mutational burden (rMB), which is capable of discriminating
lung adenocarcinoma between dichotomous TMB levels to triage
patients who are most likely to benefit from sequencing and immune
checkpoint inhibitors.

2 Materials and methods

This retrospective study was conducted in accordance with the
Declaration of Helsinki and approved by the institutional ethics
committee (Approval ID. Ek2021067). Informed consent was signed
to authorize the storage and further investigation of tissue samples
from each participant.

2.1 Patients

The TMUCIH-LUAD cohort, as the discovery cohort,
comprised patients who received surgical resection of primary
lung adenocarcinoma and authorized the storage of their samples
in the institutional biobank from 1 January 2011 to 1 January 2014.
The primary eligibility criteria included patients who had a) received
at least a wedge resection with systematic lymph nodes dissection; b)
received pathological confirmation of lung adenocarcinoma; c)
deposited paired tumor and control sample in the institutional
biobank; and d) completed preoperative CT scan 30 days before
surgery. The exclusion criteria included a) significant DNA
degradation or pollution of sample caused by proteins or RNA,
which may cause failure in library preparation; b) unavailable or
expired preoperative radiological studies in the picture archiving
and communication system; c) untraceable data from electronic
medical record or any disagreement in answering queries when
collecting clinical and pathological data.

A subset of the TCGA-LUAD cohort was included in this study for
externally validating the proposed rMB (www.cancerimagingarchive.
net/collection/tcga-luad) from the cancer imaging archive (TCIA). After
matching the radiological studies from the TCIA with the available
genomic profiles from the Genomic Data Commons (GDC, portal.gdc.
cancer.gov), a further exclusion of data was performed according to the
following criteria: studies without a CTmodality (Chen et al., 2021); the
lack of preoperative scan (Doroshow et al., 2021); and poor image
quality induced by mental implants or motion (Shen and Zhao, 2018).

2.2 Clinical data

Owing to the limited demographic and clinical information in
the TCGA-LUAD, eight baseline variables were collected and
aligned: age, sex, side and lobe of primary tumor, attenuation,

and the TNM stages according to the eighth edition of the
American Joint Committee on Cancer TNM staging system. In
the TMUCIH-LUAD cohort, the TNM staging was retrospectively
collected from pathological reports, whereas it was either edited
from existing staging variables or manually evaluated according to
the radiological profiles in the TCIA if absent in the original TCGA-
LUAD database. For cases with multiple lesions, the T-stage was
determined by the tumor resected for WXS sequencing.

In the TMUCIH-LUAD cohort, smoking history, pack-year
smoked grading, alcohol exposure, family history of malignancy,
and history of prior or synchronous malignancy were collected as
supplement to further discover the latent association between rMB
and TMB-related clinical variables. In addition to the three serum
tumor markers: carcinoembryonic antigen (CEA), neuron-specific
enolase (NSE), and tissue polypeptide–specific antigen (TPSA), the
percentage of circulating neutrophils, lymphocytes, monocytes, and
six derived inflammatory biomarkers that included the neutrophil to
lymphocyte ratio (NLR, absolute neutrophil count/absolute
lymphocyte count), derived NLR (dNLR, absolute neutrophil
count/the difference of absolute white cell count and neutrophil
count), platelet-to-lymphocyte ratio (PLR, absolute platelet count/
absolute lymphocyte count), monocyte-to-lymphocyte ratio (MLR,
absolute monocyte count/absolute lymphocyte count), systemic
immune-inflammation index (SII, absolute platelet count ×
NLR), and serum lactate dehydrogenase (LDH) were also
recorded from the laboratory information system to probe the
immune relevant of rMB.

2.3 Genomic profiling and TMB calculation

For the TMUCIH-LUAD cohort, a commercial whole-exome
target enrichment system (SureSelectXT V6, Agilent Technologies)
was utilized to perform the NGS test (Illumina HiSeq 2500 platform)
with purified DNA samples that were isolated from formalin-fixed
paraffin-embedded tumor slices. Normal lung tissue from the same
surgical specimen or 2–5 mL of blood sample stored in liquid
nitrogen was paired as the control sample. Somatic mutations
were called by the Mutect2 algorithm using reference genome
GRCh37 and then filtered. For the TCGA-LUAD cohort, an
ensemble of aliquot-level mutational landscape of each sample
was downloaded from the GDC. TMB was defined as the sum of
somatic mutations divided by the capture size of the coding base,
which was set to 35.8 Mb in this study. A cut-off value of 10 mut/Mb,
as approved by the FDA, dichotomized TMB into two levels: TMB-
low and TMB-high.

2.4 CT image acquisition and segmentation

For the TMUCIH-LUAD cohort, CT data were obtained from
four scanners (Discovery ST, Discovery 750HD, Lightspeed 16 from
General Electric Healthcare, Boston, Massachusetts, USA;
SOMATOM Definition AS+ from Siemens, Erlangen, Germany)
with a tube voltage of 120–140 kVp, automatic tube current, and a
field of view of 40 cm. The images were reconstructed in a matrix of
512 × 512 pixels, with slice thicknesses of 1.25 mm and 1.5 mm for
scanners from two vendors, respectively, without any overlapping
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between the slices. For the TCGA-LUAD cohort, the scanning and
reconstruction parameters varied across patients, with a tube voltage
of 120–140 kVp, automatic tube current, and a unified matrix of
512 × 512 pixels.

The original CT slices were resampled to 1 mm isotropic volumes
via B-spine interpolation, then segmented by a radiologist with
5 years’ experience in thoracic imaging. The contour of the gross
tumor volume was initialized by the active contour mode in ITK-
SNAP (version 4.0.2, www.itksnap.org). First, a bounding box that
completely covered the lesion within a proper interval of CT-value
wasmanually initiated to avoid the spatial or gray-level overflow of the
contour; next, active bubbles were randomly placed in the lesion,
which then automatically grew together with proper force of
smoothing and region competition; finally, segmentation was
adjusted along the edges of the lesion, slice-by-slice to ensure
accuracy. An additional test–retest subset, which comprised
30 volumes that were randomly sampled from the TMUCIH-
LUAD cohort, was re-segmented in the same fashion by another
radiologist, for evaluating the reproducibility of radiomic features. The
DICE coefficient was calculated to measure the similarity between the
gross tumor volumes from the two radiologists.

2.5 Development and validation of rMB

A total of 3,108 radiomic features were extracted on the
PyRadiomics platform (version 3.0.1). Initially, features with
near-zero variance were removed prior to further processing.
Then, the ICC was calculated to measure the consistency of
feature values against the variations of contour using the
test–retest subset, where features with ICC < 0.8 were removed.
Next, ComBat harmonization was applied to compensate cross-
vendor and cross-protocol variations on the feature scale, where the
batch effect was encoded into seven unique identifiers according to
the combination of the original slice thickness, types of convolution
kernels, and application of the contrast agent. A spreadsheet for
detailed scanning parameters and their ComBat unique identifiers
were presented in the Supplementary Material 1.

Feature selection was divided into three steps and was all applied
in the training set: first, the Spearman correlation coefficients were
calculated to filter the features that were irrelevant to TMB at the
threshold of 0.2. Then, collinearity between the features was diagnosed
iteratively by using thematrix of Pearson correlation in which features
with r ≥ 0.9 were regarded collinear, and then, the one with the smaller
mean absolute correlation was to be kept. Eventually, univariate
negative binomial regression and the Mann–Whitney U test were
used together to identify the final set of features associated with
continuous TMB and to categorize the TMB levels.

To develop rMB associated with the TMB levels, a logistic classifier
with LASSO-selected features was established after optimizing the
hyper-parameter λ by minimizing the area-under-the-curve (AUC)
error through 10-fold cross-validation, which gradually increased L1-
norm penalties to coefficients and thereby resulted in sparsity of feature
weights. The ROC curves were illustrated to diagnose the performance
of rMB in the development and validation cohorts. A comparison of
rMB between the TMB levels wasmade to diagnose discrimination, and
calibration curves with the Hosmer–Lemeshow test were utilized to
evaluate calibration subsequently. Shapley values attributed individual

predictions to feature contributions for post hoc interpretation of
LASSO–logistic classifier.

2.6 Statistical analysis

All machine learning pipelines and statistical analyses were
conducted in R version 4.3.2 (https://cran.r-project.org/src/base/R-4/
). Any two-tailed p-value < 0.05 was regarded as statistically significant.
Comparisons of categorical variables and frequencies of mutated genes
between groups and cohorts were made via the chi-squared test or
Fisher’s exact test. The Shapiro–Wilk test was used to examine whether
the continuous variables followed a normal distribution at each level.
The Student’s or Welch t-test and Mann–Whitney U test were used for
continuous variables according to the normality and variances of two
samples. A comparison between the AUCs was examined by using the
DeLong’s test. Associations between rMB, TMB levels, and clinical
laboratory variables were assessed by using the univariate linear and
logistic regression. The source code for each figure was provided in the
Supplementary Material 2.

3 Results

3.1 Patients and mutational landscapes

The TMUCIH-LUAD and TCGA-LUAD cohorts comprised
71 and 49 LUAD patients with a median TMB of 2.2 mut/Mb and
3.5 mut/Mb, respectively. There were 15 (21.13%) and 9 (18.37%)
TMB-high patients in each cohort. The mutational landscapes of
these cross-ancestry cohorts were disparate. The top 5 frequently
mutated genes significantly differed between the Chinese (EGFR =
40.85%, MUC16 = 21.13%, MUC5B = 15.49%, MUC17 = 14.08%,
CSMD3 = 12.68%) and TCGA (TP53 = 51.02%, LRP1B = 36.73%,
RYR2 = 36.73%, TTN = 36.73%, MUC16 = 34.69%) cohorts. There
were higher proportions of the EGFR (40.85% vs. 14.29%, p < 0.01)
mutant type but lower proportions of TP53 (9.86% vs. 51.02%, p < 0.01)
and KRAS (4.23% vs. 20.41%, p = 0.01) mutant types in the TMUCIH-
LUAD cohort. However, no significant difference of TMB was found
between the two cohorts before (p = 0.11) and after dichotomization
(p = 0.89). Detailed diagrams of patient selection and genomic
landscapes of these final cohorts are presented in Figure 1.

There was no statistical difference in baseline variables between the
TMB-high and TMB-low groups in the TMUCIH-LUAD cohort,
whereas T-stage indicated statistical differences in TCGA-LUAD
cohort (p = 0.03) for a higher ratio of advanced T stages among
TMB-high patients. Age and N stage (p < 0.01), but not other baseline
variables, such as sex, side and lobe of tumor, attenuation, and the T and
M stages, revealed statistical differences which suggested that it was
relatively fair to compare the performance of rMB in two cohorts. The
detailed comparison of the baseline variables is presented in Table 1.

3.2 Development, assessment, and
interpretation of rMB

The average DICE of gross tumor volumes was 0.95 ± 0.03,
suggesting a consistent definition of tumoral contours and the
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satisfying reproducibility of segmentation between radiologists. On
this basis, the ICC filter selected 1,914 radiomic features that
remained robust against variations in segmentation.
Subsequently, 1,017 features with either collinearity or near-zero
variance were removed from the feature vector. Eventually, a total of
31 features were associated with continuous mutational counts and
TMB-high simultaneously, in which first-order statistics and the
Gabor filter served as the most frequent feature type and image filter.
None of the features derived from the original gray-level volumes
was incorporated in the final feature vector.

The LASSO–logistic classifier was parameterized with a log(λ)
of −5.038 by 10-fold cross validation where a weight of 4 was
attributed to TMB-high samples for the purpose of dealing with

TMB imbalance. A subset of 21 features reached the highest AUC
metric at 0.75 (95% CI: 0.66, 0.85) during convergence. The AUC of
the purposed rMB reached 0.90 (95% CI: 0.81, 0.98, p < 0.01) in the
discovery cohort with an accuracy of 87.32%, a sensitivity of 86.67%,
and a specificity of 87.50% and 0.88 (95% CI: 0.78, 0.97, p < 0.01) in
the validation cohort with an accuracy of 81.63%, a sensitivity of
66.67%, and a specificity of 85.00% at the same diagnostic threshold
of 0.73. There is no statistical difference between the AUCs of the
two cohort (D = 0.27, p = 0.79). The Hosmer–Lemeshow test
indicated that the classifier fit well in both cohorts (p = 0.27 and
p = 0.74, respectively). A summary of cross-validation, dynamic
constraints of feature weights with penalty, the ROC, and calibration
curves are illustrated in Figures 2A–D.

FIGURE 1
Patients and genomic landscapes. (A)Diagram of patient inclusion and exclusion in TMUCIH-LUAD; (B) genomic landscape of the top 20 frequently
mutated genes in TMUCIH-LUAD; (C) diagram of patient inclusion and exclusion in TCGA-LUAD; (D) genomic landscape of the top 20 frequently
mutated genes in TCGA-LUAD.
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TMB-high was significantly associated with increments in rMB
in the discovery cohort (−0.78 ± 1.66 vs. 1.37 ± 0.88, p < 0.01),
validation cohort (−0.87 ± 1.58 vs. 1.14 ± 0.69, p < 0.01), and whole
cohort (−0.82 ± 1.62 vs. 1.28 ± 0.81, p < 0.01), as is presented in
Figure 3A. In addition, a correlation between TMB and rMB was
confirmed in the discovery, validation, and whole cohorts (Pearson
r = 0.41, 0.41, and 0.36, respectively, all p < 0.01, Figure 3B).
Likewise, the sum of mutational counts was also associated with
rMB (negative binomial regression OR = 1.48, 1.42, and 1.43,
respectively, all p < 0.01). The Shapley additive explanations were
utilized to analyze the post hoc contribution of features to the rMB.
The correlation of the GLCM from square filtered volume, which
was negatively associated with TMB-high, served as the top feature
accounting for classifier predictions (mean |SHAP| = 1.43). The top
10 contributing features implied an association that lesions with
more heterogeneous radiological appearance were more likely to be
TMB-high tumors. The summary plots of feature contribution are
illustrated in Figures 3C,D.

3.3 Clinical and immune relevance of TMB
and rMB

There is no difference between TMB-low and TMB-high
patients in the history of malignancy and exposure to alcohol or
nicotine. TMB-high was significantly associated with increased
circulating monocyte percentage (5.81% ± 1.74% vs. 6.85% ±
1.54%, p = 0.04) and MLR (0.19 [0.14, 0.24] vs. 0.27 [0.18, 0.33],
p = 0.01). Trends of numerical differences in counts of circulating
WBCs, the lymphocyte percentage, and the SII were observed but
still beyond the statistical borderline (0.05 < p < 0.2).

It is interesting that after regrouping patients in terms of rMB
diagnostic threshold, associations between rMB-high and
increments in circulating neutrophils percentage, the NLR, the
dNLR, the SII, and the PLR turned up. There was also a
statistical difference in circulating lymphocyte percentage
between rMB levels. However, the difference in circulating
monocyte percentage between rMB-low and rMB-high had

TABLE 1 Comparison of TMB and baseline variables within and between cohorts.

TMUCIH (n = 71) TCGA (n = 49) p-value

TMB-high TMB-low p-value TMB-high TMB-low p-value

Age (mean ± SD) 60.80 ± 9.08 60.96 ± 9.27 0.95 64.67 ± 9.19 66.47 ± 11.02 0.65 <0.01**

Sex (%) 1.00 0.88 0.19

Female 7 (46.67) 28 (50.00) 5 (55.56) 26 (65.00)

Male 8 (53.33) 28 (50.00) 4 (44.44) 14 (35.00)

Side (%) 0.58 0.69 1.00

Left 8 (53.33) 23 (41.07) 3 (33.33) 19 (47.50)

Right 7 (46.67) 33 (58.93) 6 (66.67) 21 (52.50)

Lobe (%) 1.00 0.24 1.00

Basal lobes 5 (33.33) 17 (30.36) 1 (11.11) 14 (35.00)

Upper lobe 10 (66.67) 39 (69.64) 8 (88.89) 26 (65.00)

Distribution (%) 0.72 0.22 0.21

Central 2 (13.33) 12 (21.43) 2 (22.22) 3 (7.50)

Peripheral 13 (86.67) 44 (78.57) 7 (77.78) 37 (92.50)

Attenuation (%) 0.19 0.06 0.31

Solid 14 (93.33) 41 (73.21) 9 (100.00) 24 (60.00)

Sub-solid 1 (6.67) 15 (26.79) 0 (0.00) 16 (40.00)

T-stage (%) 0.14 0.03a 0.77

T1 2 (13.33) 19 (33.93) 1 (11.11) 17 (42.50)

T2 6 (40.00) 24 (42.86) 4 (44.44) 15 (37.50)

T3 7 (46.67) 11 (19.64) 2 (22.22) 8 (20.00)

T4 0 (0.00) 2 (3.57) 2 (22.22) 0 (0.00)

N-stage (%) 0.13 0.38 <0.01**
N0 14 (93.33) 45 (80.36) 5 (55.56) 26 (65.00)

N1 0 (0.00) 10 (17.86) 3 (33.33) 5 (12.50)

N2 1 (6.67) 1 (1.79) 1 (11.11) 9 (22.50)

M (%) 1.00 1.00 0.57

M0 15 (100.00) 55 (98.21) 9 (100.00) 38 (95.00)

M1 0 (0.00) 1 (1.79) 0 (0.00) 2 (5.00)

TMB (median [IQR]) 12.70 [11.28,18.75] 1.90 [1.20,2.57] 14.86 [12.60,17.46] 2.67 [1.37, 4.84] 0.11

TMB group 15 56 9 40 0.89

aSignificant at p < 0.05; **significant at p < 0.01.
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narrowed such that it fell outside the significance level (5.83% ±
1.75% vs. 6.58% ± 1.63%, p = 0.11), albeit the significantly elevated
MLR still remained in rMB-high patients. A detailed comparison of
clinical variables and serum biomarkers is presented in Table 2.

4 Discussion

In this study, we successfully developed a CT-based radiomic
signature, rMB, to predict TMB-high status non-invasively for

patients with lung adenocarcinoma. rMB was validated in a
cross-ancestry cohort from the TCGA and presented satisfying
performance of discrimination and calibration. Efforts of post hoc
attributing variance of features to the model output were made
through the SHAP approach, which implied an association between
chaotic gray-level distribution and the higher possibility of TMB-
high. Retrospective analysis suggested that monocytes in the
peripheral blood and MTR were connected to TMB-high;
however, lymphocyte-associated circulating biomarkers were
more relevant to rMB-high.

FIGURE 2
Development and validation of rMB. (A) Change of cross-validation metric AUCs and corresponding confidence intervals during optimizing hyper-
parameter λ; (B) change of feature weights during LASSO–logistic classifier convergence; (C) evaluation of discrimination via the ROC curve; (D)
evaluation of calibration via the calibration curve.
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The cohorts of this study were representative to some extent.
The proportion of TMB-high (20% TMB ≥ 10 mut/Mb) among
120 involved LUAD patients was approximately 10%–25%, which
was consistent in the results from clinical trials (McGrail et al.,
2021) and cross-sectional studies (Chalmers et al., 2017). A
previous study had reported disparate genomic landscape of
LUAD in East Asia population with a lower median TMB of
2.04 mut/Mb (Chen et al., 2020), which suggests a more stable
genome comparison with the European population. However, it is
contrary that counts of mutations did not reveal any difference
between the TMUCIH and TCGA-LUAD cohorts in this study,
which could be ascribed to the non-random selection of

participants with imaging profiles from the original TCGA-
LUAD cohort, a Caucasian-predominant data set. Nevertheless,
a significant difference in driver mutation was also confirmed
(EGFR vs. TP53) in this study as expected. On the other hand,
there was no clinical variable associated with TMB-high from our
analysis. However, a history of tobacco exposure was a confirmed
dose–response risk factor of higher genetic alterations in advanced-
stage NSCLC (Wang et al., 2021). We blamed this inconsistency to
the fact that there is a higher number of LUAD patients who were
never smokers in the Asia population (Leiter et al., 2023), and
distinct genomic and evolutionary characteristics of lung cancer in
never-smokers were reported previously (Zhang et al., 2021). In

FIGURE 3
Interpretation of rMB. (A) A bar plot demonstrates the ordered rMB of all individuals from two cohorts; the horizontal dotted line refers to the rMB
cutoff at 0.7347. (B) A scatter plot presents the correlation between rMB and log10 (TMB). (C) A bar plot reveals the importance of the top 10 radiomic
features incorporated in the classifier, which are represented by the average of the Shapley value. (D) A bee-swarm plot shows the contribution of each
sample to the predictions among the top 10 features. LoG, Laplacian of Gaussian; GLDM, gray-level dependencematrix; Dep, dependence; GL, gray
level; IQR, interquartile range; E5E5, edge-like base vector of LAWS texture with a length of five elements.
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addition, the effect of tobacco exposure on cancer genomic and
derived TMB of resectable early-stage LUAD, which took up most
patients (98.59%) in the TMUCIH cohort, may be weaker than it is
on advanced-stage patients.

The satisfying result of this study in discriminating TMB-
high LUAD patients using a machine learning-enabled radiomic
signature tied well with previous studies wherein mutational load
of cancer genome shapes radiological phenotypes in NSCLC.
Zhang et al. reported associations between the absence of
concavity, ill-defined border, less spiculation, normal adjacent
bronchovascular bundle, and larger size of tumor that predict
TMB-high NSCLC (Zhang et al., 2020). A recent study divided
these associations into radiomic signatures of intra-tumoral and
peritumoral regions, in which the former performed better in
distinguishing the TMB-high group (Yang et al., 2023). Overall,
these findings were in accordance with our findings with similar

AUCs. Comparing our results with these studies, it must be
pointed out that histological type should be considered
because squamous cell carcinoma does have a higher TMB
than LUAD (Chae et al., 2019). To the best of our knowledge,
this study is the first investigation that reports a LUAD-dedicated
imaging biomarker for preoperative TMB stratification. A further
attempt that used convolutional neural network, a representative
algorithm of deep learning, to predict TMB status provided a
comparable performance [AUC of test set: 0.81 (0.77,0.85)] in a
larger Chinese NSCLC cohort (He et al., 2020). However, the
class activation map shifted out of the contour of the tumor,
which may indicate the contribution of the peritumoral region or
a somewhat overfitting of the model. Leveraging the classic intra-
tumoral radiomic approach, the precise correlation between
TMB and radiological phenotypes could be established
without the concern of spatial factors.

TABLE 2 Comparison of clinical variables and serum biomarkers.

TMB-low
(n = 56)

TMB-high
(n = 15)

p-value rMB-low
(n = 52)

rMB-high
(n = 19)

p-value

Smoker (%) 1.00 1.00

Never 28 (50.00) 7 (46.67) 26 (50.00) 9 (47.37)

Ever 28 (50.00) 8 (53.33) 26 (50.00) 10 (52.63)

Package year (mean ± SD) 20.04 ± 29.35 14.97 ± 18.94 0.53 19.43 ± 29.37 17.71 ± 21.96 0.82

Alcohol (%) 0.54 1.00

Never 37 (66.07) 8 (53.33) 33 (63.46) 12 (63.16)

Ever 19 (33.93) 7 (46.67) 19 (36.54) 7 (36.84)

Family history of
malignancy (%)

0.34 1.00

Denied 46 (82.14) 10 (66.67) 41 (78.85) 15 (78.95)

Confirmed 10 (17.86) 5 (33.33) 11 (21.15) 4 (21.05)

Prior/synchronous
malignancy (%)

0.84 0.68

No 53 (94.64) 15 (100.0) 49 (94.23) 19 (100.0)

Yes 3 (5.35) 0 (0.00) 3 (5.77) 0 (0.0)

TPSA (median [IQR]) 30.00 [19.24, 67.54] 32.28 [25.39, 79.66] 0.57 28.69 [19.21, 67.62] 37.31 [26.69, 73.40] 0.49

NSE (median [IQR]) 11.77 [10.34, 14.16] 11.26 [10.11, 13.40] 0.81 11.17 [10.07, 13.55] 12.87 [10.98, 14.46] 0.13

CEA (median [IQR]) 3.90 [2.22, 8.69] 3.87 [3.22, 12.33] 0.21 3.90 [2.29, 7.51] 3.87 [3.10, 20.51] 0.24

WBC (mean ± SD) 6.24 ± 1.32 6.99 ± 1.48 0.06 6.22 ± 1.30 6.88 ± 1.50 0.07

Neutrophils % (mean ± SD) 60.21 ± 9.17 62.43 ± 8.21 0.40 59.21 ± 8.29 64.73 ± 9.73 0.02a

Lymphocytes % (mean ± SD) 30.71 ± 8.27 26.98 ± 7.15 0.12 31.72 ± 7.32 25.01 ± 8.43 <0.01**

Monocytes % (mean ± SD) 5.81 ± 1.74 6.85 ± 1.54 0.04a 5.83 ± 1.75 6.58 ± 1.63 0.11

NLR (median [IQR]) 1.86 [1.46, 2.59] 2.40 [1.99, 2.74] 0.12 1.80 [1.38, 2.44] 2.41 [2.02, 3.68] 0.01a

dNLR (median [IQR]) 1.43 [1.14, 1.86] 1.75 [1.34, 2.04] 0.31 1.37 [1.13, 1.81] 1.75 [1.48, 2.64] 0.03a

PLR (median [IQR]) 121.24 [95.00, 162.65] 126.92 [107.22, 178.77] 0.38 119.81 [93.13, 153.53] 143.24 [109.50, 200.44] 0.047a

MLR (median [IQR]) 0.19 [0.14, 0.24] 0.27 [0.18, 0.33] 0.01a 0.18 [0.14, 0.23] 0.29 [0.18, 0.34] <0.01**

SII (median [IQR]) 436.46 [318.96, 604.53] 560.54 [431.74, 966.83] 0.16 434.89 [313.73, 557.12] 601.24 [405.55, 1,151.92] 0.01a

LDH (mean ± SD) 185.21 ± 32.29 176.07 ± 29.88 0.33 183.00 ± 29.41 184.05 ± 38.50 0.90

aSignificant at p < 0.05; **significant at p < 0.01.

Continuous variables which follow a normal distribution are presented in the format of mean ± standard deviation (SD); otherwise, they are presented as median [interquartile range (IQR)].
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The post hoc analysis of immune biomarkers revealed that a
proportion of monocytes in the peripheral blood and derived
MLR were associated with TMB-high. This could imply that
immunogenicity of the tumor is driven by neoantigen, a
downstream effect of increased genomic alterations (Haddad
et al., 2022), which mobilizes circulating monocytes infiltrating
the tumor to play the role of regulators in tumor
microenvironments. A previous finding has suggested that
circulating CD14 (+)CD16(−)HLA-DR(hi) monocytes could
predict benefits of immunotherapy in melanoma (Krieg et al.,
2018). There has also been encouraging evidence that
emphasizes the link between enriched tumor monocytes and
immunochemotherapy outcomes in esophageal
adenocarcinoma (Carroll et al., 2023). On the flip side, when
regrouping patients in terms of the rMB levels, biomarkers
relevant to lymphocytes and the SII accounted for the
variance in radiological signals instead of those relevant to
monocytes. We believe that such a conversion may be
associated with the restriction of spatial attention on the
primary tumor site because tumor-infiltrating lymphocytes
and cytotoxic killing induced by CD8(+) T cells serve as the
last effective factor in neoantigen-induced antitumor immunity
(Gueguen et al., 2021). Moreover, these results highlight that
little is known about the relationship between radiological
phenotypes and the mononuclear phagocytic system, as well
as their interaction with adaptive immune resistance at the
tumor site and through circulation.

Our study does have some limitations. First, the small sample
size with a lack of clinical and biomarker information in the
TCGA cohort weakens the power of predictive model and rMB
performance, and the candidate set of discriminative features
may differ from our study where local optima may conceal the
real patterns in these cross-scale data. A multicenter cooperation
is expected to validate our insights in a larger cohort. Second, the
mixture of contrast-enhanced studies may lead to potential bias
even if standardization and rescaling of original image, feature
vectors, and ComBat harmonization were taken to compensate
for such a confounding effect. The use of contrast-enhanced
images may guide the model to magnify a specific histological
feature of a tumor such as angiogenesis. A further comparison or
pathological contrast would help in isolating the impact of such
factors. Moreover, the correlation among TMB, rMB, predicted
neoantigens, and tumor-infiltrating immune cells ought to be
further assessed. Finally, the performance of rMB in guiding the
application of immune checkpoint inhibitors should be tested in
a real-world data set with survival outcomes.

In conclusion, the intra-tumor radiomic signature could predict
lung adenocarcinoma patients with higher TMB. Insights from
SHAP interpretation may enhance the persuasiveness of the
purposed signature for further clinical application. rMB would be
a promising tool to triage patients who might benefit from
an NGS test.
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