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Background: Patients with mitochondrial encephalomyopathy, lactic acidosis,
and stroke-like episodes (MELAS) usually present with multisystemic dysfunction
with a wide range of clinical manifestations. When the tests for common
mitochondrial DNA (mtDNA) point mutations are negative and the mtDNA
defects hypothesis remains, urine epithelial cells can be used to screen the
mitochondrial genome for unknown mutations to confirm the diagnosis.

Case presentation: A 66-year-old Chinese woman presented with symptoms of
MELAS and was initially misdiagnosed with acute encephalitis at another
institution. Although genetic analysis of blood lymphocyte DNA was negative,
brain imaging, including magnetic resonance imaging, magnetic resonance
spectroscopy, and clinical and laboratory findings, were all suggestive of
MELAS. Finally, the patient was eventually diagnosed with MELAS with the
mtDNA 5783G>A mutation in the MT-TC gene with a urinary sediment
genetic test.

Conclusion: This case report expands the genetic repertoire associated with
MELAS syndrome and highlights the importance that full mtDNA sequencing
should bewarranted beside the analysis of classical variants when amitochondrial
disorder is highly suspected. Furthermore, urine sediment genetic testing has
played a crucial role in the diagnosis of MELAS.
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Introduction

Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is
a matrilineal inherited multisystem disease characterized by stroke-like episodes
accompanied by seizures, headache, hemiparesis, cortical blindness, hearing disability,
and diabetes mellitus (Pavlakis et al., 1984; Goto et al., 1992). The main underlying
mechanism of the disease is caused by mutations in mitochondrial DNA (mtDNA).
Impairment of mitochondrial translation, which leads to a decline in protein synthesis
and energy depletion, eventually results in mitochondrial dysfunction and an inability to
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generate adequate energy to support various organs (Koga et al.,
2005; Alston et al., 2017). Approximately 80% of patients with
MELAS have been reported to carry the A3243G mutation in the
mitochondrial tRNA (leucine)-1 (MT-TL1) gene encoding tRNA
leucine. The T3271C mutation is responsible for MELAS in
approximately 7.5% of patients, but in up to 10% of patients
with MELAS, the mtDNA mutations remain unclear (Goto et al.,
1990; Goto, 1995; Lorenzoni et al., 2015). Although the mutations
were initially found in DNA isolated from muscle, they are typically
present in all tissues of patients and are less abundant in tissues of
oligosymptomatic or asymptomatic maternal relatives (Shanske
et al., 2004). Therefore, next-generation DNA sequencing from
patients’ blood samples has become the first-line diagnostic tool
(Baker et al., 2018). Somematernal relatives who were expected to be
carriers by pedigree analysis also showed no detectable A3243G
mutation in their blood. Thus, blood may not be the tissue of choice
for the detection of carriers or for diagnosingMELAS. Recent studies
have shown that urinary sediment seems to be a better choice for
diagnosing mtDNA mutations, as it is readily available, and the
mutation load is almost always greater than that in blood
(Frederiksen et al., 2006; Ma et al., 2009; Marotta et al., 2009).
Although the clinical symptoms of patients with MELAS typically
appear before the age of 40, there is still a lack of comprehensive and
unified diagnostic criteria (Leonard and Schapira, 2000). Here, the
present case report described a 66-year-old female patient with
MELAS harbouring them.5783G >Amutation in themitochondrial
cysteine transfer RNA (MT-TC) gene who was diagnosed by a
urinary sediment genetic test.

Clinical case

A 66-year-old female patient was first admitted to another
hospital 1 day after the onset of acute cognitive impairment and
psychobehavioural abnormalities, accompanied by hallucinations
and fever (Figure 1). Her medical history included hypertension and
myocardial ischaemia. She had a history of headache for many years,
and unexplained vision loss occurred in the left eye more than
30 years prior. Her father was of short stature and diagnosed with
dementia, and her mother suffered from heart failure. Her brother
died of an unspecified illness 3 years prior. The patient had a
daughter of slight stature.

Upon admission, she was 148 cm tall, and she weighed 43 kg. On
physical examination, her body temperature was 37.5°C. No
significant positive signs were found in the heart, lung or
abdomen. Neurological examination showed mild disturbance of
consciousness: GCS 12 (E3 V4 M5), attention disorder,
disorientation, psychosis manifesting as verbal abuse, abnormal
behaviours and hallucinations. Brain magnetic resonance imaging
(MRI) revealed high-intensity lesions in the left temporoparietal and
occipital areas and bilateral frontal lobe area on diffusion weighted
imaging (DWI) and fluid-attenuated inversion recovery (FLAIR)
imaging (Figure 2A). The patient underwent a lumbar puncture, and
cerebrospinal fluid (CSF) examination revealed that the pressure
was 162 mmH2O. Pandy’s test was weakly positive. The total cell
count in the CSF was 96 × 10̂6/L, and the white blood cell count was
8 × 10̂6/L. CSF biochemistry showed that the protein level was
0.71 g/L, glucose was 5.20 mmol/L and lactic acid was 2.8 mmol/L.

Electroencephalography (EEG) showed high-amplitude, irregular
slow waves and no definite epileptic wave emission. The patient was
initially diagnosed with acute encephalitis with an infectious or
autoimmune origin and treated with acyclovir and ceftriaxone.
Olanzapine was also administered to control psychotic
symptoms. Then, the detection of pathogenic microorganisms
in the CSF was negative. Moreover, autoimmune encephalitis-
associated antibodies and onconeural antibodies were all
negative. Enhanced MRI of the brain did not show significant
enhancement, and the abnormal signal range on DWI was
reduced. In view of the improvement in the patient’s state of
consciousness and psychiatric symptoms after treatment, the
patient’s family refused further examination and finally
demanded automatic discharge.

After discharge, the patient continued to present with psychiatric
symptoms and cognitive impairment but did not seek treatment
again. One year later, she was admitted to our hospital due to
paroxysmal unconsciousness with limb rigidity (Figure 1). A brain
MRI obtained on admission showed an increased DWI/FLAIR signal
in both frontal lobes and the corpus callosum. The right frontal,
temporal, parietal, and occipital cortices showed oedema with a
slightly elevated FLAIR signal (Figure 2B). Magnetic resonance
angiography (MRA) did not show significant vascular stenosis or
vascular occlusion. Brain MRI perfusion imaging was performed, and
the results showed a decrease in time to peak (TTP) and mean transit
time (MTT) and an increase in cerebral blood volume (CBV) and
cerebral blood flow (CBF) in the right frontal, temporal, parietal, and
occipital areas, which were considered hyperperfusion manifestations,
while hypoperfusion manifestations in the left lateral ventricle were
considered a compensatory phase. Magnetic resonance spectroscopy
(MRS) revealed an elevated and inverted lactate peak with a decreased
N-acetyl-aspartate level (Figure 3). Repeated CSF analyses clarified the
elevated level of lactate. The patient underwent a lactic acid exercise
test, and the results were positive. These ancillary test results
contributed to a possible diagnosis of MELAS. With the diagnosis
of suspected MELAS, the patient was treated with oral coenzyme Q10
(90 mg/day), L-arginine hydrochloride (7.5 g/day), and vitamin B1
(225 mg/day). For further histopathological diagnosis, muscle biopsy
of the left biceps brachii of the patient was performed. However, the
muscle biopsy results did not reveal ragged-red fibres (RRFs), which
are the classic manifestation of MELAS (Figure 4). Genetic analysis
(Guangzhou V-Medical Laboratory Co.) of blood lymphocyte DNA
was negative for MELAS pathogenic variants. However, the urinary
sediment genetic test (Guangzhou V-Medical Laboratory Co.) by
next-generation sequencing (NGS) revealed a mtDNA 5783G → A
point mutation (heteroplasmy level of the mutation was 94.15%),
confirming the diagnosis of MELAS. With continued treatment, the
patient’s disturbed consciousness and limb rigidity gradually
improved, but her cognitive function remained impaired. On day
16, she was transferred to a rehabilitation hospital.

mtDNA 5783G>A mutation analysis

The first morning urine sample of 30–40 mL was collected by a
clean 50 mL centrifuge tube and centrifuged at 1,000 rpm for 10 min
to obtain sediment. DNA was extracted using a commercially
available DNA isolation kit (Hipure Tissue and Blood DNA Kit,
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Magen, China). Guangzhou V-Medical Laboratory provided the
measurements of the urinary sediment genetic test using the NGS.
The main detection reagents involved in this test were the KMM-
101/KOD one TM PCR Master Mix (Toyobo, Japan) and DNA
Library Fast Construction Kit (CWBIO CW3045M, China). The
detection instrument was Nova 6000 (Illumina, United States).

Discussion

The defining clinical features of MELAS syndrome include
stroke-like episodes, seizures, visual disturbances, motor
weakness, and headache. Additionally, hearing impairment,
cortical blindness, and diabetes mellitus have been frequently
described in adults (Pavlakis et al., 1984). Typical MELAS
syndrome presents in childhood, with the majority of patients
presenting before 40 years of age (Leonard and Schapira, 2000).
Here, we report a case of a late-onset patient who initially presented
with psychiatric symptoms and cognitive impairment. In the
auxiliary examination, brain MRI showed abnormal signals in the
bilateral frontal lobes, and lumbar puncture showed increased white
blood cell count and protein levels, which indicated acute
encephalitis possibly caused by infective or autoimmune factors.
Negative results for pathogenic microorganisms, antibodies of
autoimmune encephalitis and paraneoplastic syndrome suggested
a further differential diagnosis, including MELAS. The clinical and
neuroimaging findings prompted the analysis of mtDNA thanks to
availability of urinary sediment DNA. The patient was eventually
diagnosed with MELAS, and the presence of a 5783G>A point
mutation in mtDNA was discovered with the assistance of urinary
sediment genetic test results. No such mutation was detected in her
daughter’s blood. Unfortunately, we did not test the urine of the

patient’s daughter for mitochondrial mutations because her
daughter refused our request. The follow-up studies should be
conducted for the patient and her family.

MELAS syndrome is a genetically determined disease caused by
mutations in mtDNA. The mtDNA A-to-G transition at nucleotide
3243 is the most common mutation (Goto et al., 1990; Kaufmann
et al., 2011), however, this site mutation was excluded from urine
and blood during the genetic screening of the patient. It is estimated
that up to 10% of MELAS patients have undetected mtDNA
mutations (Lorenzoni et al., 2015). In the present case, the most
common mutation was not detected. However, MELAS syndrome
was diagnosed by detection of a 5783G>A mutation in the MT-TC
gene in the urinary epithelia. The mitochondrial MT-TC mutation
may have pathogenic significance, as Kawazoe et al. reported a 68-
year-old woman who presented with myoclonic epilepsy with RRF
harbouring a novel homoplasmic m.5820C>A variant in theMT-TC
gene (Kawazoe et al., 2022). Although the 5783G>A mutation is
present in ClinVar and has been interpreted as Clinically benign
(https://www.ncbi.nlm.nih.gov/clinvar/variation/689987/), it has
also been confirmed the pathogenicity of the mutation
(Feigenbaum et al., 2006). Feigenbaum et al. reported an 8-year-
old girl with MELAS who presented with RRF myopathy, short
stature, and deafness. Whole mitochondrial genome sequencing
analysis was performed, and novel changes, including 5783G>A
in tRNAcys, were found. The 5783G>Amutation occurs in the T arm
of tRNAcys, leading to the disruption of the stem structure and
possibly reducing the stability of the tRNA (16). The finding of
5783G>A in the structurally important T-arm stem region of
tRNAcys was added to the understanding of tRNA gene
mutations. Meanwhile, several findings support the deleterious
effects of the 5783G>A mutation. First, the mutation is located
in the structurally/functionally important stem region of the T arm

FIGURE 1
Timeline of MELAS and therapeutic regimens.
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of tRNAcys. Second, the presence of this mutation in the tRNA gene
is consistent with mitochondrial proliferation and mtDNA
amplification. Third, significantly reduced respiratory chain
activity was observed in all four complexes in muscle biopsies,
consistent with widespread mitochondrial dysfunction due to
impaired tRNA function. All this evidence strongly supports that
this mutation is pathogenic (McFarland et al., 2002; Gropman et al.,
2004; Tarnopolsky et al., 2004; Feigenbaum et al., 2006). In the case
reported by Feigenbaum et al., patient with 5783G>A mutation had
a younger onset age and a more severe condition, who ultimately

developed renal failure and fatal cardiac dysfunction (Feigenbaum
et al., 2006). Previous studies revealed a correlation between the
proportion of mutant mtDNA in the age of onset and the affected
tissues (Macmillan et al., 1993; Mariotti et al., 1995) and also the
severity of the disease (Mariotti et al., 1995). While, Yokota et al.
found that heteroplasmy at the single-cell level was widely varied
among the primary fibroblasts derived from MELAS patients
(Yokota et al., 2015), which suggests that the mean heteroplasmy
level in the affected organ may not represent the disease burden.
Further investigation is required to perform why this case showed

FIGURE 2
MR imaging findings. (A) Diffusion weighted imaging (DWI) (a-d) and fluid-attenuated inversion recovery (FLAIR) (e-h) images at first presentation.
FLAIR imaging reveals high-intensity lesions in the bilateral frontal lobe and paraventricular area. The left temporal, parietal, occipital and bilateral frontal
lobes are hyperintense on DWI. (B) Diffusion weighted imaging (DWI) (a-d) and fluid-attenuated inversion recovery (FLAIR) (e-h) images of the case at
second presentation. FLAIR reveals high-intensity lesions in cortical and subcortical areas of the right frontal, temporal, parietal and occipital lobes.
The bilateral frontal lobes and corpus callosum are hyperintense on DWI.

Frontiers in Genetics frontiersin.org04

Cai et al. 10.3389/fgene.2024.1367716

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1367716


later onset of the syndrome and an overall milder clinical course
than that of the case reported by Feigenbaum et al. In a study on
deafness, Meng et al. investigated the molecular mechanism of

deafness-associated 5783C>T mutations that affect typical C50-
G63 base repair in tRNACys TC stems. The 5783C>T mutation
alters the structure and function of tRNACys, including reducing the

FIGURE 3
MR spectroscopy findings. Magnetic resonance spectroscopy (MRS) reveals a decreased N-acetyl aspartate (NAA) level and increased Cho and Cr
levels and lactic acid peak in right frontal, temporal, parietal and occipital lesions relative to the contralateral, normal areas.

FIGURE 4
Pathologicalfindings frombiopsiedmuscle. NoRRFwas foundonmodifiedGomori trichrome (MGT) staining (A); noobvious disordered arrangement of
myofibrillar reticulum was observed on nicotinamide adenine dinucleotide (NADH) staining (B); no ragged-blue fibres or succinate dehydrogenase (SDH)
strongly reactive blood vessels were observed on SDH staining (C); no COX-negative fibres were found (D); no significant increase in fat droplets was
observed on Oil Red O (ORO) staining (E); no significant increase in glycogen was detected with Periodic acid-Schiff (PAS) staining (F).
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melting point and producing conformational changes, instability
and defects in aminoacylation. Abnormal tRNAmetabolism impairs
mitochondrial translation, especially in polypeptides with higher
numbers of cysteine and tyrosine codons. Then, insufficient
oxidative phosphorylation, including instability and reduced
activity of respiratory chain enzyme complexes I, III, and IV and
intact supercomplexes, is ultimately present as a result of these
alterations (Meng et al., 2022). The pathogenic mechanism
underlying the 5783G>A mutation in the MT-TC gene may be
similar, and studies on the mechanism of the mutation need to be
further explored in the future.

In the present case, although the whole blood genetic test by NGS
was negative, the clinical manifestations, MRI/MRS and laboratory test
results of the patient all indicated that MELAS could not be excluded.
Therefore, a urinary sediment genetic test was performed, and a
disease-associated gene mutation was found. The levels of mutated
mitochondrial genes may be low in the blood of probands, and even
lower in asymptomatic or oligosymptomatic maternal relatives. This is
because changes in the level of mtDNA heterogeneity are
fundamentally related to the pathophysiology and clinical
progression of mitochondrial diseases. Studies have confirmed that
the percentage of mtDNA mutations in the blood decreases
exponentially with age (Rajasimha et al., 2008). The mtDNA
mutation rate is significantly different in different tissues, especially
in adults, muscle tissue, urinary sediment cells and hair follicles have
higher positive rates than that in peripheral blood cells (Ma et al., 2009).
Recently, applications of single-cell genomics have identified a high
prevalence of somatic mtDNA mutations, many of which are stably
propagated, facilitating clonal/lineage tracing studies and possibly
helping to improve the detection rate of pathogenic mtDNA
variants associated with MELAS in the blood (Walker et al., 2020;
Lareau et al., 2021). Nevertheless, Shanske et al. assessed themutational
loads of mitochondrial mutant genomes in other accessible tissues and
found that the proportion of DNA mutated genomes was generally
highest in urine sediment and lowest in blood (Shanske et al., 2004).
Similarly, Marotta et al. reported a patient with a known family
history of MELAS caused by the MT-TL1 m.3243A>G mutation,
which was detected only in urine but not in hair, blood, or skeletal
muscle (Marotta et al., 2009). In the research of Ma et al., the
A3243G mutation rate in urine was significantly higher than that
in blood in MELAS patients and carriers with minor symptoms or
normal phenotypes (Ma et al., 2009). These findings suggest that
assessment of the mtDNA mutation rate in urine is a noninvasive,
convenient and rapid method with diagnostic significance superior
to blood detection.

In conclusion, the case with late-onset MELAS with a 5783G>A
mtDNAmutation where the clinical onset was masqueraded as acute
encephalitis with an infective or autoimmune cause expands the
genetic repertoire associated with MELAS syndrome. The case also
highlights the importance that full mtDNA sequencing should be
warranted beside the analysis of classical variants whenmitochondrial
disease is highly suspected (Feigenbaum et al., 2006). In addition, the
analysis of urinary sediment testing emerged as pivotal in confirming
the suspected diagnosis of MELAS, aiding in treatment adjustment,
and improving the patient’s phenotype.
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