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Introduction: CpG island (CGI) methylation is one of the key epigenomic
mechanisms for gene expression regulation and chromosomal integrity.
However, classical CGI prediction methods are neither easy to locate those
short and position-sensitive CGIs (CpG islets), nor investigate genetic and
expression pattern for CGIs under different CpG position- and interval-
sensitive parameters in a genome-wide perspective. Therefore, it is urgent for
us to develop such a bioinformatic algorithm that not only can locate CpG islets,
but also provide CGI methylation site annotation and functional analysis to
investigate the regulatory mechanisms for CGI methylation.

Methods: This study develops Human position-defined CGI prediction method
to locate CpG islets using high performance computing, and then builds up a
novel human genome annotation and analysis method to investigate the
connections among CGI, gene expression and methylation. Finally, we
integrate these functions into PCGIMA to provide relevant online computing
and visualization service.

Results: The main results include: (1) Human position-defined CGI prediction
method is more efficient to predict position-defined CGIs with multiple
consecutive (d) values and locate more potential short CGIs than previous
CGI prediction methods. (2) Our annotation and analysis method not only can
investigate the connections between position-defined CGImethylation and gene
expression specificity from a genome-wide perspective, but also can analysis the
potential association of position-defined CGIs with gene functions. (3) PCGIMA
(http://www.combio-lezhang.online/pcgima/home.html) provides an easy-to-
use analysis and visualization platform for humanCGI prediction andmethylation.

Discussion: This study not only develops Human position-defined CGI prediction
method to locate short and position-sensitive CGIs (CpG islets) using high
performance computing to construct MR-CpGCluster algorithm, but also a
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novel human genome annotation and analysis method to investigate the
connections among CGI, gene expression and methylation. Finally, we integrate
them into PCGIMA for online computing and visualization.
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1 Introduction

CpG island (CGI) methylation is one of the key epigenomic
mechanisms for gene expression regulation and chromosomal
integrity (Dor and Cedar, 2018). Especially, recent studies have
reported that position-sensitive CGI co-methylation mechanism is
essential for such functions that are related to histone modification
(Ming, et al., 2021). However, it is neither easy for current commonly
used classical CGI island prediction methods (Gardinergarden and
Frommer, 1987; Han et al., 2008; Takahashi et al., 2017) to locate those
short and position-sensitive CGIs which called CpG islets (Hackenberg
et al., 2006) due to the length limitation, nor investigate relationship
among CGI density, methylation, and gene expression specificity.
Therefore, it is urgent for us to develop such a bioinformatic
algorithm that not only can locate short and position-sensitive CGIs
(CpG islets), but also provide CGI methylation site annotation and
functional analysis to investigate the regulatory mechanisms for CGI
methylation (http://www.combio-lezhang.online/pcgima/home.html).

For CGI perdition method, we usually employ the unsupervised
clustering methods such as CpGCluster (Hackenberg et al., 2006)
and CPG_MI (Su et al., 2009) to locate CGIs with shorter length
than the supervised (Bock et al., 2007; Ning et al., 2017), since these
unsupervised algorithms do not need consider the constraints of
CGI length and content ratio (Hackenberg et al., 2010). However,
these methods are not only time-consuming for the big dataset, but
also cannot investigate the genetic characteristics of CGIs under
different CpG interval parameters. Therefore, our first scientific
question is how to develop a novel CGI prediction method with CpG
interval parameters selective feature and high-performance
computing, and investigate the differences in genetic
characteristics such as CpG coverage, CGI length, and GC
content of CGIs under various CpG interval parameters.

Several previous studies have interrogated the connections between
methylation and CGI (Reik, 2007; Smith et al., 2012; Liu et al., 2016; El-
Maarri, 2019; Acton et al., 2021). For example, Ziller et al. (2013) have
turned out that not only the hypermethylation of promoter CGI is
related to gene expression, but also CGImethylation in the gene body is
positively correlated with gene expression. However, these studies
usually interrogate the methylation characteristics of CGI from
partial sequence regions rather than genome-wide perspective.
Meanwhile, although our previous studies (Zhang et al., 2018;
Zhang et al., 2021a) have analyzed the relationship between CGI
density and gene expression after annotating genome-wide CGI-
related genes (CGI+) into high-CGI (HCGI), intermediate-CGI
(ICGI), and low-CGI (LCGI) genes based on the classification of
CGI density (Weber et al., 2007; Zhu et al., 2008), we are still
unclear the relationship between CpG methylation and gene
expression. Thus, our second scientific question is how to build up a
human genome-wide CGI-based methylation and gene expression

annotation and analysis method to investigate the relationship
among CGI density, methylation, and gene expression specificity.

Meanwhile, although several CpGmethylation online service are
already available (Raney et al., 2010; Di et al., 2018; Xiong et al.,
2019), most of them only focus on CpG island prediction and data
downloading, but not provide visualization and analysis for the
distribution of CGI in different sequence regions and the
connections between methylation status of CGIs and gene
expression. Therefore, our third scientific question is how to
establish an easy-to-use web service for fast CGIs prediction and
visualization of the connections between CGIs and methylation.

For these reasons, we propose three major innovations to answer
the above scientific questions.

Firstly, we develop an unsupervised clustering-based CGI
prediction method (Human position-defined CGI prediction),
which not only employs high performance computing technology
to accelerate its predictive speed, but also offers a parameter selective
option that can help us to locate short CGIs (position-defined CGIs)
with unique location- or sequence-sensitive features and explore the
differences in the genetic characteristics of CGIs under various CpG
interval parameters.

Secondly, we build up a novel human genome annotation and
analysis function (Human position-defined CGI annotation and
analysis), which not only can study the methylation characteristics
of CGIs from a genome-wide perspective by computing the
methylation level of all CpG sites in the human genome, but
also improve the previous CpG-Island-based human gene
expression annotation and analysis method (Zhang et al.,
2021a) by integrating genome-wide methylation annotation to
further investigate the connections among CGI density, gene
expression and methylation.

Thirdly, we establish an easy-to-use web service “Position-
defined CGI methylation analysis (PCGIMA)” with relevant CGI
prediction, annotation, and data analysis functions, which provides
us an online platform for further study on the regulation mechanism
of CGI and methylation.

In conclusion, we develop a bioinformatic algorithm and web
service to investigate the regulatory mechanism of CGI
methylation. The main results include: 1) Human position-
defined CGI prediction method is more efficient to predict
position-defined CGIs with multiple consecutive (d) values
and locate more potential short CGIs than previous CGI
prediction methods; 2) Our annotation and analysis method
not only can investigate the connections between position-
defined CGI methylation and gene expression specificity from
a genome-wide perspective, but also can analyze the potential
association of position-defined CGIs with gene functions; (3)
PCGIMA provides an easy-to-use analysis and visualization
platform for human CGI prediction and methylation.
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2 Materials and methods

This study downloads human genome data from
GRCh38 assembly (Schneider et al., 2017) at NCBI (Pruitt
et al., 2005). To classify CGIs into density-defined and
position-defined groups, we download human CGIs data and
annotations from UCSC (Casper et al., 2018). Next, we use
human genome annotated data (release 24) in GenBank GBFF
format (Clark et al., 2016) from GENCODE (Wright et al., 2016)
to define different sequence regions. Finally, to study the
methylation level of CpG sites in different sequence regions,
we obtain all CpG methylation data of 29 human tissues
(Supplementary Table S1), including heart, spleen, lung and
esophagus, from ENCODE databases (Harrow et al., 2006). In
order to ensure data consistency, the above-listed annotation and
methylation data are all annotated according to GRCh38
(Schneider et al., 2017). Figure 1 describes the workflow of the
study with three essential steps: Human position-defined CGI
prediction (left side of Figure 1), Data annotation (right side of
Figure 1), and Human position-defined CGI methylation analysis
(Bottom side of Figure 1).

Here, we describe the key equations as follows:

(1) CGI prediction: We employed Eq. 1 to define CpGs clusters
(Hackenberg et al., 2006) at the start. Next, we consider these
CpG clusters with small p-values (Eq. 2) as CGIs (Hackenberg
et al., 2006).

di � xi+1 − xi − 1 (1)

Here, x and I represent the position and index of a CpG,
respectively.

P d( ) � 1 − p( )d−1p (2)

P(d) represents the probability to find a distance d between
neighboring CpGs. p corresponds to the probability of CpGs in the
sequence. Since our previous studies (Zhang et al., 2018; Zhang et al.,
2021a) has led to a conclusion that LAUPs (Lineage-associated
underrepresented permutations) are closely related to CGIs and
the shortest LAUPs of mammals range from 10bp to 14bp in length,
here we use the intermediate value of d = 12bp.

(2) MR-CpGCluster: We develop a MR-CpGCluster algorithm
(Supplementary Figure S1) to speed up CGI predict procedure
based on MapReduce (Dittrich and Quiané-Ruiz, 2012) and
Hadoop Streaming (Dede et al., 2016) techniques detailed by
Supplementary Method S1 for Human position-defined CGI
prediction method. Finally, our method computes the CGI
features of the position-defined CGIs for subsequent analysis.

(3) CGI features computation: To compare the CGIs under
different CpG distance intervals (Eq. 1), we compute CGI
length, CG content, CpG O/E ratio (Gardinergarden and
Frommer, 1987) (Eq. 3) and CpG density (Eq. 4) for each
CGI (Hackenberg et al., 2006).

O/E � CpNum
CNum × GNum

× N (3)

CpGdensity � CpNum
N

(4)

FIGURE 1
Workflow of the study.
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Here, N is the length of the CGI, CpGNum, CNum and GNum
represent the number of CpG, number of C, number of G
respectively.

(4) Methylation level annotation: Eq. 5 classifies methylation
ratio into three levels with respect to the definition (Ziller
et al., 2013).

Methylation level chr, p( )

�
1, highly mehylated methylation ratio chr, p( )> 0.75
2, unmethylated methylation ratio chr, p( )< 0.1
3,moderatemethylated otherwise

⎧⎪⎨
⎪⎩

(5)
Here, chr and p represent the chromosome and position of a

CpG site, respectively.

3 Results

3.1 Human position-defined CGI
prediction method

Indicated by previous study (Hackenberg et al., 2006), we
consider CGIs as potentially functionally short islands (CpG
islets) if length of CGIs is less than 200bp. Here, Figure 2A
demonstrates that Human position-defined CGI prediction
method not only can locate the shortest average length (23.7bp)
under CpG interval d = 12bp, but also the percentage of
CGIs <200bp for Human position-defined CGI prediction
method are greater than both CpGCluster method (Hackenberg
et al., 2006) and density-defined CGI prediction method (Weber
et al., 2007; Zhang et al., 2021a).

Also, since proportion distribution of CGI features is closely
related to the regulatory mechanisms for CGI methylation
(Hackenberg et al., 2010), Human position-defined CGI
prediction method can describe the proportional distribution
of the predicted CGIs at different CGI length (Figure 2B), GC
content (Figure 2C), and O/E (Figure 2D). Here, we employ
default setup for CpG interval, d = 12bp (Zhang et al., 2018;
Zhang et al., 2021a).

It should be noted that Human position-defined CGI prediction
method can parallel carry out position-defined CGI prediction and
comparative analysis for multiple CpG intervals (d) byMR-CpGCluster.

3.2 Data annotation

Data annotation is described by the right side of Figure 1. Firstly,
the position-defined CGIs are classified into different densities by
Supplementary Eq. S2. And then, we classify each CpG methylation
site of CGIs into different gene functional regions by Supplementary
Table S2. Lastly, we classify the CpG sites into three methylation
levels by Eq.5.

Data annotation can help us investigate the distribution of all
CpG sites in different structural and functional categories of genome
sequences (Figure 3; Supplementary Table S3). For example, we not
only can compare the distribution of the number of CpG sites in
each region of the predicted CGIs under different CpG interval(d)
(Figure 3A), but also visualize the density of CpG sites in different
functional regions (Figure 3B).

FIGURE 2
Position-defined CGI prediction and analysis. (A) CGIs
comparative analysis. The proportion distribution of CGI at different
(B) CGI length, (C) GC content, and (D) CpG O/E ratios (Eq. 3) under
CpG interval d = 12bp.
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3.3 Human position-defined CGI
methylation analysis

The position-defined CGI methylation analysis is described by
the bottom side of Figure 1 with three functions.

First is “CGI density analysis” (Figure 4A), which is used to analyze
the classification of position-defined CGI under various CGI density
(Weber et al., 2007; Zhu et al., 2008) and CpG interval (d).

Second is “Methylation level analysis,” which not only can
analyze the specificity of methylation level for CpG sites under
different annotation categories and CpG interval (d) (Figure 4B), but
also allows the visualization and comparative analysis of
methylation level of position-defined CGIs at the genome-wide
perspective (Figure 4C).

The third is “GO enrichment analysis,” which employs
clusterProfiler (Yu et al., 2012) to make GO enrichment analysis
(Liu et al., 2020) for the CGI + genes (Coding genes that at least
one of its TSSs is located in the CGI) (Weber et al., 2007; Zhang et al.,
2021a) of position-defined CGIs. Here, Figure 4D shows GO
enrichment analysis for the CGI + genes under CpG interval d = 12bp.

3.4 Algorithm performance comparison

Firstly, As shown in Figure 5; Supplementary Figure S2, we
compare the computing speed for Human position-defined CGI
prediction method with MR-CpGCluster and this method
without MR-CpGCluster with three commonly used

FIGURE 3
Position-defined CGI annotation results. (A) Distribution of all CpG sites in different structural and functional categories of genome sequences. (B)
CpG density (Eq. 4) of different gene and sequence categories.
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standards: Speedup, Scaleup and Sizeup (Schatz, 2009). Figure 5
shows that the Speedup is positively related to the number of
nodes and the size of dataset. For example, when using 8 nodes
for a 3920 MB dataset, the ratio between the actual and ideal
Speedup is 6.00/8 = 75%, while with 6 nodes for a 980 MB
dataset, this ratio is 2.88/6 = 49.17%.

Next, we compare the computing efficiency for Human
position-defined CGI prediction method with commonly used
density-defined CGIs prediction method (Weber et al., 2007;
Zhang et al., 2021a) and another two classical distance-based CGI

prediction methods such as WordCluster (Hackenberg et al.,
2011) and CpGProD (Ponger and Mouchiroud, 2002) by CGI
length, GC content, and O/E ratio (Eq. 3), which are three
broadly used standards (Wang and Leung, 2004; Hackenberg
et al., 2010).

Table 1; Supplementary Figure S5 not only demonstrate
that the average length of CGIs of Human position-defined CGI
prediction method (23.7 ± 11.5bp) is statistically shorter, but
also the average GC content (89.3% ± 7.5%) and O/E value
(1.54 ± 0.27) of Human position-defined CGI prediction
method are statistically greater than other prediction
methods by statistical test (Zhang et al., 2021b; Zhang et al.,
2021d; Gao et al., 2021; Liu et al., 2021; Lai et al., 2022; Song
et al., 2022).

Note: Here, we employ default setup for CpG interval, d = 12bp
(Zhang et al., 2018; Zhang et al., 2021a).

3.5 Web service construction

Figure 6 shows the technical architecture of PCGIMA (http://
www.combio-lezhang.online/pcgima/home.html), which consists of
three modules: “Human position-defined CGI prediction,” “CpG
sites annotation analysis,” and “CGI methylation analysis.”

PCGIMA employs MR-CpGCluster to predict the position-
defined CGI for multiple consecutive (d) values. To compare and
analyze the CpG methylation levels in different genome regions, we
integrate the JavaScript version of IGV (Integrative Genomics
Viewer) (Thorvaldsdottir et al., 2013) into our Web service.
PCGIMA also imports the genome annotation information and
analysis results into the MySQL database (Xia et al., 2010) and use
eCharts (Bond and Goguen, 2002) to visualize CGI-related
analysis results.

“Human position-defined CGI prediction” module provides
two functions (Figure 2). One is “Position-defined CGI
prediction,” which can online predict position-defined CGI
for the human genome or a particular chromosome with
multiple consecutive (d) values. The other is “Position-

FIGURE 4
Human position-defined CGI methylation analysis. (A) The
classification of position-defined CGI under CGI density. (B) CpG
density of different gene and sequence categories. (C) Comparison of
the methylation ratio of position-defined CGIs. The horizontal
and vertical axes represent genomic chromosome position and the
methylation rate of the CpG site at corresponding position,
respectively. (D) GO enrichment analysis.

FIGURE 5
The speedup ratio of MR-CpGCluster.
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defined CGI features analysis,” which can describe the
connection between the proportion distribution of CGI and
CGI features.

“CpG sites annotation analysis” module consists of two functions.
First is “Human CpG sites Distribution analysis,” which can analyze
the distribution of CpG methylation sites in different structural and
functional categories of genomic sequences (Figure 3). Second is
“Human CpG sites permutation analysis” module (Supplementary
Method S4), which can analyze the CpG permutation patterns
(Zhang et al., 2018) of density- and position-defined CGIs.
“CGI methylation analysis” module also provides two functions.
One is “Position-defined CGI methylation analysis,” which can
analyze the specificity of methylation level for CpG sites under
different annotation categories (Figure 4B). The other is “GO
enrichment analysis,” which can make GO enrichment analysis
for the CGI + genes of position-defined CGIs (Figure 4D).
Meanwhile, PCGIMA also provides related source code and
data download services. The function descriptions are detailed
in Supplementary Method S4.

4 Discussion and conclusion

This study not only develops Human position-defined CGI
prediction method to locate short and position-sensitive CGIs (CpG
islets) using high performance computing to constructMR-CpGCluster
algorithm (Figure 1), but also a novel human genome annotation and
analysis method to investigate the connections among CGI, gene
expression and methylation. Finally, we integrate them into
PCGIMA for online computing and visualization.

For Human position-defined CGI prediction method, it not only
can efficiently locate CpG islets (Figure 2A; Table 1), but also it can
parallel predict position-defined CGIs with multiple consecutive (d)
values and investigate the genetic characteristics of position-defined
CGIs under different CpG interval parameters (Figures 2B–D;
Supplementary Datas S1–S3).

For annotation method, it can investigate the connections
between position-defined CGI methylation and gene expression
specificity from a genome-wide perspective by considering
functional regions (core promoters and gene bodies) and the
distribution of methylation sites of genes for different
expression breadth (Figure 3). Our annotation method
(Figure 3A) reveals that the distribution proportion of
methylation sites in TS genes for short positional-defined
CGIs (d = 12) is 9.97%, which is less than that for long
positional-defined CGIs (d = 50, 11.46%).

TABLE 1 CGI prediction methods comparison.

CGI prediction
methods

CGI
number

Average length ±
standard deviation

Average GC ±
standard deviation

Average O/E ±
standard deviation

Average CpG
Density ± standard
deviation

Human position-defined 89,063 23.7 ± 11.5 89.3% ± 7.5% 1.54 ± 0.27 0.294 ± 0.066

CGI prediction method

CpGCluster 198,445 274.7 ± 249.8 63.8% ± 7.6% 0.86 ± 0.27 0.087 ± 0.04

WordCluster 198,703 273.2 ± 246.4 63.8% ± 7.5% 0.86 ± 0.27 0.087 ± 0.04

CpGProD 76,793 1,043.8 ± 761.7 54.6% ± 6.1 0.64 ± 0.1 0.047 ± 0.016

Density-defined CGIs 30,477 774.7 ± 826.9 66.5% ± 4.7% 0.86 ± 0.14 0.094 ± 0.018

FIGURE 6
The technical architecture of PCGIMA.
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For Human position-defined CGI methylation analysis, not only
CGI density analysis (Figure 4A) finds an interesting phenomena
that short position-defined CGIs (CpG islets) are closer to LCGI by
classifying the position-defined CGI under various CGI density
(Weber et al., 2007; Zhu et al., 2008) and CpG interval (d), but
also methylation levels analysis demonstrates that the average
methylation levels are obviously low for CpG islets from overall
scale and genome-wide perspective, respectively (Figures 4B, C) as
well as Go enrichment analysis implies that the position-defined
CGI-related genes could be associated with unique gene regulatory
functions (Figure 4D; Supplementary Figure S4).

For Algorithm performance comparison, Figure 5 turns out that
MR-CpGCluster method is faster than classical CpGCluster for the
big dataset, which implies Human position-defined CGI prediction
method can parallel process the big CGI data.

Moreover, previous studies indicate that CGIs with length less
than 200 bp may be functional CpG islets (Hackenberg et al., 2006)
and high GC content and O/E values represent enrichment of
methylation sites (Gardinergarden and Frommer, 1987; Takai
and Jones, 2002). Since Table 1 demonstrates that the average
CGI length of the Human position-defined CGI prediction
method is much less than 200bp (column 3 of Table 1), and the
average GC content and O/E value are statistically greater than other
prediction methods (column 4 and 5 of Table 1), we can conclude
that Human position-defined CGI prediction method can locate
more potential short CGIs with special functions than previous CGI
prediction methods (Takai and Jones, 2002; Takahashi et al., 2017).

Lastly, Figure 6 shows that since we utilize the MR-CpGCluster
to speed up CGI prediction and incorporate extensive visualization
methods to increase user usability, PCGIMA provides an easy-to-
use analysis and visualization platform for human CGI prediction
and methylation. It should be noted that since the human genome
annotation and analysis results have been computed and imported
into the database in advance, it is fast (about 2–3 min) for PCGIMA
to show the analysis results except the “Human position-defined
CGI prediction.”

Although our study already made great progress in CGI
prediction, annotation, analysis, and visualization, it still needs
further improving. Firstly, we should make detail annotations for
human position-defined CGIs in terms of functional and structural
features. Secondly, we should interrogate the lineage-based and
function-based subsets for CGIs and their regulatory implications
(Blackledge et al., 2013). Finally, we should employ advanced high
performance computing technology (Jiang et al., 2015; Zhang et al.,
2021c; Xiao et al., 2021) to improve PCGIMA in the distant future.
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