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Introduction: MicroRNAs (miRNAs) are small and non-coding RNA molecules
which have multiple important regulatory roles within cells. With the deepening
research on miRNAs, more and more researches show that the abnormal
expression of miRNAs is closely related to various diseases. The relationship
between miRNAs and diseases is crucial for discovering the pathogenesis of
diseases and exploring new treatment methods.

Methods: Therefore, we propose a new sparse autoencoder and MLP method
(SPALP) to predict the association betweenmiRNAs and diseases. In this study, we
adopt advanced deep learning technologies, including sparse autoencoder and
multi-layer perceptron (MLP), to improve the accuracy of predicting miRNA-
disease associations. Firstly, the SPALP model uses a sparse autoencoder to
perform feature learning and extract the initial features of miRNAs and diseases
separately, obtaining the latent features of miRNAs and diseases. Then, the latent
features combine miRNAs functional similarity data with diseases semantic
similarity data to construct comprehensive miRNAs-diseases datasets.
Subsequently, the MLP model can predict the unknown association among
miRNAs and diseases.

Result: To verify the performance of our model, we set up several comparative
experiments. The experimental results show that, compared with traditional
methods and other deep learning prediction methods, our method has
significantly improved the accuracy of predicting miRNAs-disease
associations, with 94.61% accuracy and 0.9859 AUC value. Finally, we
conducted case study of SPALP model. We predicted the top 30 miRNAs that
might be related to Lupus Erythematosus, Ecute Myeloid Leukemia,
Cardiovascular, Stroke, Diabetes Mellitus five elderly diseases and validated
that 27, 29, 29, 30, and 30 of the top 30 are indeed associated.

Discussion: The SPALP approach introduced in this study is adept at forecasting
the links between miRNAs and diseases, addressing the complexities of analyzing
extensive bioinformatics datasets and enriching the comprehension contribution
to disease progression of miRNAs.
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Highlights

• Developing effective computational methods to predict the
unknown miRNAs-diseases association is an urgent task.

• A SPALP method was proposed to predict the miRNAs-
diseases association.

• This paper mainly relies on sparse autoencoders and MLP
(Multi-layer Perceptron) to achieve the best results.

• This paper conducted a series of comparative experiments to
adopt appropriate parameters for SPALP model.

1 Introduction

MicroRNA (miRNA) is non coding single stranded RNA
molecule with a length of approximately 22 nucleotides encoded
by endogenous genes (A Brief et al., 2009; Zhang et al., 2022a). It
participates in post-transcriptional gene expression regulation in
animals and plants. In the 1990s, Lee et al. discovered a 22 nt small
non-coding RNA (named lin-4) in nematodes through genetic
screening (Lee et al., 1993). MiRNAs mainly bind with the
3′untranslated region of target genes to suppress or reduce the
expression level of these genes (Bartel, 2004). MiRNAs are involved
in a series of important processes in life, including early
development, cell proliferation, apoptosis, cell death, fat
metabolism, and cell differentiation (Xu et al., 2004). Abnormal
expression of miRNAs has been widely found to be closely related to
the occurrence and development of various diseases (Sayed and
Abdellatif, 2011; Tang et al., 2018; Wang et al., 2023a).

Subsequent studies have shown that miRNAs play a complex
and essential role in the pathogenesis of various diseases. Increasing
evidence demonstrates the intricate relationship between miRNAs
and multiple diseases, including cancers (Lynam-Lennon et al.,
2009). MiRNAs serve dual roles in cancer: they can act as
oncogenes (Oncomirs) (Esquela-Kerscher, 2006), promoting
tumor growth by inhibiting tumor suppressor gene translation,
or act as tumor suppressors, negating this effect by inhibiting the
miRNAs translation of oncogenes (Chakrabortty et al., 2023).
Besides cancer, miRNAs are also related to cardiovascular,
neurological, and infectious diseases. Scientists are actively
exploring the association between miRNAs and diseases (Nemeth
et al., 2023).

Early, traditional biological experiments were the primary
means for scientists to explore the association between miRNAs
and diseases. However, as research progressed and single-cell RNA
sequencing technology advanced, more miRNAs were discovered,
and their associations with diseases became increasingly complex.
The intricate interaction networks between miRNAs and target
genes (Mendes et al., 2009), miRNAs and proteins (Baek et al.,
2008), and miRNAs and epigenetics (Chuang and Jones, 2007) make
accurately predicting the association between specific miRNAs and
diseases a complex and challenging task (Jin et al., 2022). The
traditional methods of biological experiments are time-
consuming and costly, furthermore, it often have a low success
rate. Relying solely on these experiments to explore miRNAs-
diseases associations is no longer sufficient.

With the flourishing development of the computer field, machine
learning has been widely applied in various domains (Zeng et al., 2022a;

Chen et al., 2023a;Wang et al., 2023; Xu et al., 2023; Yan et al., 2023) due
to its ability to compute continuously exploding amounts of data at low
costs (Jordan and Mitchell, 2015; Zou et al., 2019; Li et al., 2021; He
et al., 2023). Jiang et al. used support vector machines (SVM) (Zhang
et al., 2022b) to predict associations between human diseases and
miRNAs (Jiang et al., 2013). Chen et al. proposed a decision-tree-
based ensemble method for miRNA-disease association prediction
(Chen et al., 2019). Zhao et al. used multifactorial random forest
(RF) statistical analysis to construct and test miRNA features
identified for Alzheimer’s disease (Zhao et al., 2020). William Kang
et al. proposed random forests to predict the association between
miRNAs and cancers (Kang et al., 2022). However, these machine
learning-based predictions’ accuracy rates for miRNAs and disease
association are relatively low. Traditional machine learning algorithms
are not highly precise and have not reached the desired level of accuracy.

As technology has evolved, deep learning (LeCun et al., 2015;
Tang et al., 2021; Zeng et al., 2022b; Wang et al., 2023b), with its
better predictive performance than machine learning, has been
applied in various industries. Liu et al. used autoencoders to
obtain low-dimensional feature representations and random
forests to predict the association between miRNAs and diseases
(Liu et al., 2022). Using regression models, Zhou et al. learned
feature representations from miRNA and disease similarity
networks. They input the integrated miRNAs and disease feature
representations into deep autoencoders, predicting new miRNA and
disease association through reconstruction error (Zhou et al., 2021).
Zhang et al. predicted miRNA-disease associations using node-level
attention encoders (Zhang et al., 2022c). By integrating latent
features and similarities, Liu and others used stacked
autoencoders and XGBoost to infer unknown miRNA-disease
associations (Liu et al., 2021).

This paper proposes a new deep learning-based method,
SPALP. It uses sparse autoencoders to extract latent features of
miRNAs and diseases, combining miRNA latent features with
miRNA similarity matrices into M-features and disease latent
features with disease similarity matrices into D-features.
M-features and D-features are then combined for feature
reconstruction. Finally, a multi-layer perceptron is used to
predict unknown miRNA-disease associations. This method
achieved an average AUC value of 0.9854 and an average
accuracy rate of 95.12% on HMDD V2.0(http://cmbi.bjmu.edu.
cn/hmdd). The model was then applied biologically, predicting the
top 30 miRNAs possibly associated with Lupus Erythematosus,
Ecute Myeloid Leukemia, Cardiovascular, Stroke, Diabetes
Mellitus five elderly diseases. Upon validation with RNADisease
V4.0 (Chen et al., 2023b), 27, 29, 29, 30, 30 of these miRNAs were
found to be associated with cardiovascular diseases. The SPALP
method proposed in this paper can effectively predict the
association between miRNAs and diseases, significantly assisting
downstream analysis in bioinformatics.

2 Materials and methods

2.1 Benchmark datasets

Constructing benchmark data is a sufficient and necessary
condition for building robust and reliable prediction model (Li
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and Liu, 2023; Zhang et al., 2023). We collected known association
information between miRNAs and diseases, miRNAs identification
name corresponding matrices, and miRNAs-diseases association
adjacency matrices. We constructed miRNAs functional similarity
matrices and diseases semantic similarity data. We generated latent

features of miRNAs and diseases based on the miRNAs-diseases
association matrix.

In this paper, we experimented with miRNAs-diseases
association provided by HMDD v2.0 (http://cmbi.bjmu.edu.cn/
hmdd), which includes 495 types of miRNAs and 383 kinds of

FIGURE 1
The workflow of the SPALP model.
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diseases. We constructed an adjacency matrix of miRNAs-diseases
interaction, MD, to facilitate the experiment and better represent the
relationship between miRNAs and diseases. Each row in this matrix
represents a type of miRNAs, and each column represents a type of
diseases. If the ith kind of miRNAs and the jth type of diseases have a
known association in the MD matrix, theMD(i, j) is set to 1; if there
is no association between that miRNAs and diseases, it is set to 0.
This method was used to construct the miRNAs-diseases association
adjacency matrix MD.

In HMDD v2.0, there are known 5,430 pairs of miRNA disease
associations, which are positive samples. We performed k-means
clustering on unknown samples and randomly extracted a
corresponding number of samples from each cluster as negative
samples (Zhou et al., 2020a). We used downsampling to balance the
positive and negative samples.

2.2 SPALP model

The SPALP model mainly consists of the following steps.

(i) Based on previous research, construct the miRNAs functional
and diseases semantic similarity matrices. Decompose the
known miRNAs-diseases association matrix into the
miRNAs and diseases feature matrices. The miRNAs

feature matrix is the miRNAs-diseases association matrix,
and the diseases feature matrix is the transpose of the
miRNAs-diseases association matrix.

(ii) Input the miRNAs feature matrix into a sparse autoencoder to
obtain the latent feature matrix. Similarly, input the diseases
feature matrix into a sparse autoencoder to get the latent
feature matrix.

(iii) Combine themiRNAs latent feature matrix with the functional
similarity matrix to form the M-feature matrix. Combine the
diseases latent feature matrix with the semantic similarity
matrix to create the D-feature matrix. Then, combine the
M-feature matrix and the D-feature matrix to get the
M-D-feature matrix.

(iv) Input the M-D-feature matrix into a Multi-layer Perceptron
(MLP) for training.

(v) Use the MLP to predict unknown association between
miRNAs and diseases. Output the probability value of
miRNAs associated with a certain disease, sort them in
descending order according to the value, remove the
known miRNAs associated with the disease in
HMDDv2.0, and finally output the predicted miRNAs.

These steps will be detailed in Figure 1.

2.3 MiRNA functional similarity

The concept of miRNA functional similarity originates from the
research conducted by Wang et al. (Wang et al., 2010). This concept
is based on the observation that if a certainmiRNA is associated with
a specific disease, other similar miRNAs are also likely to be
associated with that disease. Based on this idea, we constructed
the miRNA functional similarity matrix, which each element in the
matrix expresses the functional similarity score between
two miRNAs.

TABLE 1 The parameter settings of SPALP model.

SPALP Parameter settings

Sparse
autoencoder

Learning rate = 0.001, optimizer: Adam, activation function:
sigmod loss = reconstruction error loss + sparse regularization

loss

MLP Optimizer: Adam, activation function: ReLU, maximum
number of iterations: 300

FIGURE 2
Convergence curves of loss function with different dimensions for (A) miRNAs and (B) diseases.
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2.4 Disease semantic similarity

Based on the approach by Wang et al. (Wang et al., 2010)
and the MeSH database, a Directed Acyclic Graph (DAG) can
be constructed, where the vertexes of DAG represent diseases,
and the edges of DAG represent relationships between the
vertexes. There is only one type of relationship can be
connected between child vertexes with their parent vertexes.
For a given disease A, it can be represented as DAG(A) = (T, E),
where T is the set of A and all its ancestor nodes (including
itself), and E is the collection of corresponding edges. We define
the contribution of t (disease) to the semantic value of A
(disease) as Eq. 1:

DA A( ) � 1 if t � A
DA t( ) � max ΔpDA t′( )∣∣∣∣t′ϵchildren of t{ } if t ≠ A{ (1)

Here Δ is the semantic contribution decay factor. Wang et al.
set its value at 0.5 in their study on disease semantic similarity.

The contribution of disease D to itself is 1, and the contributions
of other diseases to D decrease with increasing distance. They
define the semantic value DV(A) of disease A as Eq. 2:

DV A( ) � ∑
t∈TA

DA t( ) (2)

Between disease A and disease B, the semantic similarity b is
determined using the following formula Eq. 3:

S A, B( ) � ∑t∈TA∩TB
DA t( ) +DB t( )( )

DV A( ) +DV B( ) (3)

2.5 MiRNA and disease feature
reconstruction

From the adjacency matrix MD of miRNAs-diseases association,
we obtain the feature matrix related to miRNAs and the feature
matrix related to diseases. The dimension of the Minitial matrix is

FIGURE 3
Comparisons of (A) ROC curves and (B) PR curves with different dimensions.

TABLE 2 Comparison of different potential feature dimensions produced by sparse encoders.

Dimensionality Accuracy Precision Recall F1-score AUC

8 0.8359 0.8377 0.8330 0.8353 0.9093

16 0.8530 0.8288 0.8944 0.8604 0.9260

32 0.8908 0.8862 0.8953 0.8907 0.9517

64 0.9341 0.9437 0.9257 0.9346 0.9798

128 0.9461 0.9494 0.9415 0.9455 0.9859

256 0.9397 0.9397 0.9428 0.9441 0.9832

512 0.9382 0.9353 0.9405 0.9403 0.9802

The bold values represent the optimal value of the current column.
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FIGURE 4
Comparisons of (A) ROC curves and (B) PR curves with different reconstruction features.

TABLE 3 Comparison of different data combinations.

Accuracy Precision Recall F1-score AUC

Only Similarity 0.8203 0.8259 0.8138 0.8198 0.8991

Similarity and initial data 0.8954 0.9025 0.8902 0.8963 0.9591

Only Latent Feature 0.9382 0.9442 0.9320 0.9381 0.9811

SPALP 0.9461 0.9494 0.9415 0.9455 0.9859

The bold values represent the optimal value of the current column.

FIGURE 5
Comparisons of (A) ROC curves and (B) PR curves with different classifiers.
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TABLE 4 Comparison of different classifiers.

Accuracy Precision Recall F1-score AUC

Decision Tree 0.8341 0.8415 0.8277 0.8346 0.8997

KNN 0.8171 0.8289 0.8040 0.8163 0.9028

Logistic regression 0.8424 0.8422 0.8469 0.8445 0.9197

Random Forest 0.8747 0.8673 0.8879 0.8775 0.9475

XGBoost 0.9276 0.9130 0.9471 0.9298 0.9808

MLP 0.9461 0.9494 0.9415 0.9455 0.9859

The bold values represent the optimal value of the current column.

FIGURE 6
Comparison of different methods.

TABLE 5 The top 30 miRNAs may be associated with Lupus Erythematosus.

Rank MiRNAs Evidence Rank MiRNAs Evidence

1 hsa-mir-17 RNADisease V4.0 16 hsa-mir-192 RNADisease V4.0

2 hsa-mir-19b RNADisease V4.0 17 hsa-mir-93 RNADisease V4.0

3 hsa-mir-429 RNADisease V4.0 18 hsa-mir-373 unconfirmed

4 hsa-mir-146a RNADisease V4.0 19 hsa-mir-21 RNADisease V4.0

5 hsa-mir-101 RNADisease V4.0 20 hsa-mir-92a RNADisease V4.0

6 hsa-mir-18a RNADisease V4.0 21 hsa-mir-30a RNADisease V4.0

7 hsa-mir-141 RNADisease V4.0 22 hsa-mir-106b unconfirmed

8 hsa-mir-125b RNADisease V4.0 23 hsa-mir-145 RNADisease V4.0

9 hsa-mir-205 RNADisease V4.0 24 hsa-mir-19a RNADisease V4.0

10 hsa-mir-126 RNADisease V4.0 25 hsa-mir-29a RNADisease V4.0

11 hsa-mir-200a RNADisease V4.0 26 hsa-mir-18b RNADisease V4.0

12 hsa-mir-142 RNADisease V4.0 27 hsa-mir-130a unconfirmed

13 hsa-mir-29c RNADisease V4.0 28 hsa-mir-7 RNADisease V4.0

14 hsa-mir-224 RNADisease V4.0 29 hsa-mir-9 RNADisease V4.0

15 hsa-mir-29b RNADisease V4.0 30 hsa-mir-302b RNADisease V4.0

The bold values represent the optimal value of the current column.
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495 × 383, and the dimension of the Dinitial matrix is 383 × 495 as
shown in Eqs 4 and 5.

Minitial � MD (4)

Dinitial � MDT (5)

These two feature matrices are input into a sparse
autoencoder, from which we obtain the latent features of

TABLE 6 The top 30 miRNAs may be associated with Acute Myeloid Leukemia.

Rank MiRNAs Evidence Rank MiRNAs Evidence

1 hsa-mir-17 RNADisease V4.0 16 hsa-mir-1 RNADisease V4.0

2 hsa-mir-18a RNADisease V4.0 17 hsa-mir-195 RNADisease V4.0

3 hsa-mir-19b RNADisease V4.0 18 hsa-mir-21 RNADisease V4.0

4 hsa-mir-19a RNADisease V4.0 19 hsa-mir-124 RNADisease V4.0

5 hsa-mir-125b RNADisease V4.0 20 hsa-mir-32 RNADisease V4.0

6 hsa-mir-20a RNADisease V4.0 21 hsa-mir-148a RNADisease V4.0

7 hsa-mir-92a RNADisease V4.0 22 hsa-mir-218 RNADisease V4.0

8 hsa-mir-130a RNADisease V4.0 23 hsa-mir-199b RNADisease V4.0

9 hsa-mir-23a RNADisease V4.0 24 hsa-mir-133a RNADisease V4.0

10 hsa-mir-142 RNADisease V4.0 25 hsa-mir-181a RNADisease V4.0

11 hsa-mir-373 RNADisease V4.0 26 hsa-mir-363 RNADisease V4.0

12 hsa-mir-203 RNADisease V4.0 27 hsa-mir-30b RNADisease V4.0

13 hsa-mir-125a RNADisease V4.0 28 hsa-mir-432 RNADisease V4.0

14 hsa-mir-130b RNADisease V4.0 29 hsa-mir-193b RNADisease V4.0

15 hsa-mir-205 unconfirmed 30 hsa-mir-224 RNADisease V4.0

The bold values represent the optimal value of the current column.

TABLE 7 The top 30 miRNAs may be associated with Cardiovascular disease.

Rank MiRNAs Evidence Rank MiRNAs Evidence

1 hsa-mir-20a RNADisease V4.0 16 hsa-mir-125a RNADisease V4.0

2 hsa-mir-17 RNADisease V4.0 17 hsa-mir-23a RNADisease V4.0

3 hsa-mir-18a RNADisease V4.0 18 hsa-mir-30b RNADisease V4.0

4 hsa-mir-34a RNADisease V4.0 19 hsa-mir-148a RNADisease V4.0

5 hsa-mir-19a RNADisease V4.0 20 hsa-mir-143 RNADisease V4.0

6 hsa-mir-155 RNADisease V4.0 21 hsa-mir-125b RNADisease V4.0

7 hsa-mir-92a RNADisease V4.0 22 hsa-mir-10b RNADisease V4.0

8 hsa-mir-21 RNADisease V4.0 23 hsa-mir-335 RNADisease V4.0

9 hsa-mir-27a RNADisease V4.0 24 hsa-mir-195 RNADisease V4.0

10 hsa-mir-205 RNADisease V4.0 25 hsa-mir-99b RNADisease V4.0

11 hsa-mir-145 RNADisease V4.0 26 hsa-mir-9 RNADisease V4.0

12 hsa-mir-24 RNADisease V4.0 27 hsa-mir-26b RNADisease V4.0

13 hsa-mir-126 RNADisease V4.0 28 hsa-mir-196b unconfirmed

14 hsa-mir-31 RNADisease V4.0 29 hsa-mir-210 RNADisease V4.0

15 hsa-mir-93 RNADisease V4.0 30 hsa-mir-127 RNADisease V4.0

The bold values represent the optimal value of the current column.
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miRNAs (M) and diseases (D). The dimension of the M matrix is
495 × 128, and the dimension of the D matrix is 383 × 128 as
shown in Eqs 4,5.

Based on the clustering results, the miRNA indices and
disease indices are extracted and combined into an index

matrix. Then, using the indices from the index matrix, the
features of miRNAs and diseases can be retrieved. The latent
features of miRNAs (M) are combined with the miRNA
functional similarity matrix according to miRNA indices to
form the M-feature as shown in Eq. 6.

TABLE 8 The top 30 miRNAs may be associated with Stroke.

Rank MiRNAs Evidence Rank MiRNAs Evidence

1 hsa-mir-124 RNADisease V4.0 16 hsa-mir-122 RNADisease V4.0

2 hsa-mir-34a RNADisease V4.0 17 hsa-let-7c RNADisease V4.0

3 hsa-mir-1 RNADisease V4.0 18 hsa-mir-9 RNADisease V4.0

4 hsa-mir-155 RNADisease V4.0 19 hsa-mir-298 RNADisease V4.0

5 hsa-mir-146a RNADisease V4.0 20 hsa-mir-17 RNADisease V4.0

6 hsa-mir-181a RNADisease V4.0 21 hsa-mir-34c RNADisease V4.0

7 hsa-mir-362 RNADisease V4.0 22 hsa-mir-126 RNADisease V4.0

8 hsa-mir-497 RNADisease V4.0 23 hsa-mir-125a RNADisease V4.0

9 hsa-let-7f RNADisease V4.0 24 hsa-mir-18b RNADisease V4.0

10 hsa-mir-145 RNADisease V4.0 25 hsa-mir-338 RNADisease V4.0

11 hsa-mir-20a RNADisease V4.0 26 hsa-mir-26a RNADisease V4.0

12 hsa-let-7i RNADisease V4.0 27 hsa-mir-494 RNADisease V4.0

13 hsa-mir-148a RNADisease V4.0 28 hsa-mir-199b RNADisease V4.0

14 hsa-mir-210 RNADisease V4.0 29 hsa-mir-23a RNADisease V4.0

15 hsa-mir-199a RNADisease V4.0 30 hsa-mir-222 RNADisease V4.0

TABLE 9 The top 30 miRNAs may be associated with Diabetes Mellitus (Type 2).

Rank MiRNAs Evidence Rank MiRNAs Evidence

1 hsa-mir-21 RNADisease V4.0 16 hsa-mir-128 RNADisease V4.0

2 hsa-mir-223 RNADisease V4.0 17 hsa-mir-146b RNADisease V4.0

3 hsa-mir-146a RNADisease V4.0 18 hsa-mir-24 RNADisease V4.0

4 hsa-mir-15a RNADisease V4.0 19 hsa-mir-320a RNADisease V4.0

5 hsa-mir-17 RNADisease V4.0 20 hsa-mir-122 RNADisease V4.0

6 hsa-mir-34a RNADisease V4.0 21 hsa-mir-483 RNADisease V4.0

7 hsa-mir-29b RNADisease V4.0 22 hsa-mir-191 RNADisease V4.0

8 hsa-mir-143 RNADisease V4.0 23 hsa-mir-197 RNADisease V4.0

9 hsa-mir-103a RNADisease V4.0 24 hsa-mir-221 RNADisease V4.0

10 hsa-mir-486 RNADisease V4.0 25 hsa-mir-144 RNADisease V4.0

11 hsa-mir-20b RNADisease V4.0 26 hsa-mir-140 RNADisease V4.0

12 hsa-mir-107 RNADisease V4.0 27 hsa-mir-183 RNADisease V4.0

13 hsa-mir-20a RNADisease V4.0 28 hsa-mir-182 RNADisease V4.0

14 hsa-mir-106b RNADisease V4.0 29 hsa-mir-106a RNADisease V4.0

15 hsa-mir-29a RNADisease V4.0 30 hsa-mir-153 RNADisease V4.0
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M − feature � M,Msim{ } (6)
The latent features of diseases (D) are combined with the disease

semantic similarity matrix according to disease indices to form the
D-feature as shown in Eq. 7.

D − feature � D,Dsim{ } (7)
The M-feature and D-feature matrices are combined to

create the final M-D feature matrix used for model
processing as shown in Eq. 8.

M −D − feature � M − feature, D − feature{ } (8)

This process allows for a comprehensive representation of miRNA
and disease characteristics, incorporating inherent features and
relational similarities to enhance the model’s predictive accuracy.

2.6 Sparse autoencoder

For a sparse autoencoder, the objective function consists of the
reconstruction error and the sparsity penalty term. The
reconstruction error part trains the network by minimizing the
error between the input and output. Its formula is as follows:

Jreconstruction W, b;xi( ) � 1
2
y x i( )( ) − x i( )�������� 2

(9)

WhereW and b are the network weights and biases, x(i) is the ith
sample in the training datasets, andy(x(i)) is the output of the network.

The sparsity penalty term can be implemented through a
sparsity constraint, which is formulated as follows:

Jsparse a( ) � ∑s
j�1
KL ρ( )ρ̂j( ) (10)

In this formula, s is the number of neurons in the hidden layer, a
represents the output of the hidden layer, ρ is the desired average
activation of the neurons, and ρ̂j is the actual average activation
computed.KL(ρ‖ρ̂j) represents the Kullback-Leibler divergence and
is calculated using the following formula:

KL ρ( )ρ̂j( ) � ρ log
ρ

ρ̂j
+ 1 − ρ( )log 1 − ρ

1 − ρ̂j
(11)

Sparse autoencoder uses network to learn features and perform
feature extraction. Including the sparsity penalty ensures that the
learned representations are robust and that the network does not
over fitting the training data. This approach is particularly beneficial
for capturing the essential characteristics of the data in a compressed
form, which is crucial for effective feature representation in complex
datasets like those involving miRNAs and diseases.

2.7 Multi-layer perceptron

A Multi-layer Perceptron (MLP) network consists of an input
layer, one or more hidden layers, and an output layer, which is a feed
forward neural network that learns the mapping relationship from
input to output for pattern recognition and classification tasks.

Assuming there are m samples with n features, the input layer X
can be represented asX ∈ Rm×n. If the MLP has only one hidden layer
with h neurons, then the weights and biases of the hidden layer can be
denoted asWh ∈ Rn×h and bh ∈ R1×h, respectively. If there are q output
labels, the weights and biases of the output layer are Wo ∈ Rh×q and
bh ∈ R1×q. The outputs of the hidden layer can be computed by the
formula (12). The output layer can be calculated using the formula (13).

H � XWh + bh (12)
O � XWo + bo (13)

We typically use the Rectified Linear Unit (ReLU)
activation function.

ReLU: y � max x, 0( ) (14)

For the lth layer ((l = 1,2,., L), the output is zl before the activation
function and the output is al after activation function. Then, the output
of the previous layer after activation becomes the input for the current
layer, and the output before activation of the current layer is:

zl � Wlal−1 + bl (15)
al � σ zl( ) (16)

Computing the output values through various weights and
biases of layer is commonly known as forward propagation. We
use a process called back propagation to calculate the error and
update the model. In back propagation, we derive from the output
layer back to the input layer to obtain the gradient formulas for each
layer’s weights. Wl and biases bl.

This structure allows the MLP to effectively capture and model
complex relationships in the data, making it a powerful tool for
classification and regression in various fields, including
bioinformatics and medical research.

2.8 Evaluation metrics

In our experiments, the Accuracy, Precision, Recall, F1-score,
True Positive Rate (TPR), and False Positive Rate (FPR) as
evaluation metrics facilitate the assessment of the performance of
SPALP model, which are constructed by True Positive (TP), False
Positive (FP), True Negative (TN), False Negative (FN) from
confusion matrix of two categories (Ai et al., 2023; Zhu et al.,
2023a; Zhu et al., 2023b; Wang et al., 2023c; Qian et al., 2023;
Zou et al., 2023). In order to display the performance of the model
more intuitively, the Receiver Operating Characteristic (ROC) curve
can be plotted by TPR and FPR and the Precision-Recall (PR) curve
can be plot by Precision and Recall. The area under the ROC curve is
represented by AUC.

Accuracy � TP + TN

TP + TN + FP + FN
(17)

Precision � P � TP

TP + FP
(18)

Recall � R � TP

TP + FN
(19)

F1 − score � 2TP
2TP + FP + FN

(20)
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TPR � TP

TP + FN
(21)

FPR � FP

FP + TN
(22)

3 Results and discussion

The experiments are implemented using the Python programming
language.The hardware environment is as following: 12th Gen Intel (R)
Core (TM) i7-12700F 2.10 GHz CPU, NVIDIA GeForce RTX
4090 GPU, 16G RAM and Win 10 operating system. The parameter
settings of SPALP model are shown in Table 1.

Experimental Setups are following. The SPALP model consists
of a sparse encoder and a multi-layer perceptron. Thus, the latent
feature dimensions generated by the sparse encoder, different data
combinations, and various classifiers can all impact the results. To
explore the optimal parameters and the effectiveness of the model,
we set up the following experiments:

(i) Comparative analysis of different latent feature dimensions
produced by the sparse encoder.

(ii) Comparative analysis of the effects of different data
combinations.

(iii) Comparative analysis of the effects of different classifiers.
(iv) Comparative analysis of the performance of different

prediction models.
(v) Case study to biological validation of the SPALP model.

3.1 Analysis of latent feature dimensions
produced by the sparse autoencoder

To study the impact of latent feature dimensions on the SPALP
model, miRNAs latent features and diseases latent features of 8, 16,
32, 64, 128, 256, and 512 dimension size are adopted to the sparse
autoencoder. We first plot the loss function curves for miRNAs and
diseases latent features based on different dimension obtained
through the sparse autoencoder, respectively, as shown in
Figure 2. The curve loss is calculated by the sparse autoencoder,
representing the error between the original data and the output of
the decoder. Figure 2 shows when the dimension is set to 128, the
loss function reliably converges to its minimum value.

By comparing these two loss function graphs, we found that the loss
values ofmiRNAs latent features and diseases latent features continuously
decrease from 8 dimensions to 64 dimensions, indicating that the larger
the dimension of latent features before 64 dimensions, the better
performance can be obtained. However, the loss values of latent
features from 64 to 512 dimensions are essentially the same.

To further compare different dimensional size of latent features
impacting on the capability of SPALP model, we also plot ROC
curves and PR curves for comparison, with the results shown in
Figure 3. Figure 3 demonstrates that the ROC and PR curves can
converge to the best value when the dimension is 128, because the
area below the ROC and PR curves is the largest.

Additionally, to more clearly observe the evaluation metrics for 8,
16, 32, 64, 128, 256, 512 dimensions and to explore the optimal

dimension, the results of evaluation are shown in Table 2. When
the dimension is 128, the SPALP model can get optimal prediction
results. Furthermore, two phenomena can be observed. Firstly, when
the latent feature dimension size is below 128, there is a gradual
improvement based on various evaluation metrics from 8 to
128 dimensions. This indicates that when the dimension is below
128, the lower the dimension, the less comprehensive the feature
representation will be. Secondly, if the dimension size exceeds 128,
the performance of the SPALP model progressively worsens with
increasing dimension size. This decline in performance may be due
to redundancy in the data features, as excessive features can lead to over
fitting or noise in the model. Therefore, we selected 128 dimension as
the optimal latent feature dimension for the SPALP model.

3.2 Analysis of the effectiveness of
latent features

To explore the effectiveness of our model in predicting miRNAs
and diseases association, four sets of experiments about features are
designed in following.

The first group used only similarity data, i.e., miRNAs functional
similarity data and diseases semantic similarity data. The second
group combined similarity data with unprocessed data. The third
group used only latent features produced by the sparse encoder,
i.e., miRNAs and diseases latent features. The fourth group is
SPALP, which used both similarity data and latent features
processed by the sparse encoder.

By comparing these four groups, we investigate the
effectiveness of our model in the combined prediction of
miRNAs and diseases association. We plotted ROC and
Precision-Recall (PR) curves for the above combinations, as
shown in Figure 4. Additionally, we compiled statistics for the
different combinations, including Accuracy, Precision, Recall, F1-
score, and AUC values, as shown in Table 3.

From the figures and the table, the accuracy of these four
experiments is 0.8203, 0.8954, 0.9382, and 0.9461, respectively,
and the AUC value is 0.8991, 0.9591, 0.9811, and 0.9859,
respectively. The comparison indicates that the performance of
predictions using only similarity data has the worst results. The
performance improved when similarity data are combined with
unprocessed feature matrices. The best results are achieved using
SPALP, which combine latent features with similarity data.

3.3 Comparison of different classifiers

Several commonly used and effective classifiers are compared
with MLP, including K-Nearest Neighbors (KNN), Decision Tree,
Random Forest, Logistic Regression, XGBoost. ROC and PR curves
are plotted based on their performance in the experiments, as shown
in Figure 5. The larger the area under the ROC curve, the better the
prediction effect. For the PR curve, the larger the area wrapped by
the curve and the larger the equilibrium point (Recall = Precision),
the better the performance. Figure 5 demonstrates that MLP can
reach the optimal performance, which is best classifier.

Table 4 shows the comparison among the six classifiers
(Decision Tree, KNN, Logistic Regression, Random Forest,
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XGBoost, MLP) by accuracy, precision, recall, F1-score and AUC
values. Although, the recall value obtained by MLP classifier is
slightly lower than XGBoost, MLP is overall optimal classifier.

Evaluation criteria for classifier performance mainly include
Accuracy, F1-score, and the AUC value of the ROC curve. MLP had
the highest Accuracy, F1-score, and AUC values in this experiment,
indicating the most significant classification effect.

3.4 Comparison with other
computational methods

To further evaluate the performance of our model on
prediction task, we compared the SPALP model with other
methods (SMALF (Liu et al., 2021), GBDT-LR (Zhou et al.,
2020b), ABMDA (Zhao et al., 2019), HGANMDA (Zhengwei
et al., 2022), SAEMDA (Wang et al., 2022), ELMDA (Gu and
Li, 2023)).

SMALF uses stacked autoencoders for latent feature
extraction and XGBoost for classification. GBDT-LR initially
integrates miRNAs similarity and disease similarity to represent
miRNAs-diseases relationship, then applies GBDT to extract
new features, and finally, the logistic regression algorithm is
used to predict miRNAs-diseases association. ABMDA utilizes a
boosting algorithm integrated with many decision trees to mine
miRNAs-diseases association and accurately calculate miRNAs-
diseases similarity. HGANMDA uses a hierarchical attention
network to learn the importance of different neighboring nodes
and meta paths, and uses bilinear decoders to predict the
association of miRNA diseases. SAEMDA uses stacked
autoencoders to train and predict miRNA disease
associations, while ELMDA extracts structural features of
miRNA disease pairs and uses multi classifier voting to
predict disease-related miRNAs.

In this section, we designed a comparative experiment to
compare the above six models with the SPALP model. The
experimental results are shown in Figure 6. Using the data
provided in HMDDv2.0, the experimental results showed that the
SPALP model had the highest AUC value among these seven
models, indicating that the SPALP model has good predictive
ability for miRNA disease associations.

3.5 Case study

To further validate the performance of SPALP, five different
diseases are selected as case studies for predicting miRNA-disease
associations in our experiments. They are Acute Myeloid Leukemia,
Lupus Erythematosus, Cardiovascular disease, Stroke, Diabetes
Mellitus(Type 2) respectively. Also, they are common diseases in
the elderly population.

The SPALP model can predict unknown miRNAs disease
associations by integrating known miRNAs disease associations
and similarity information. Firstly, on the HMDD v2.0 database,
the SPALP model is trained using known miRNAs disease
associations. The association between all miRNAs and a certain
disease is used as the test set. Then, the trained model is used to
calculate the association miRNAs score for the aforementioned

diseases, which is a continuous value; Finally, arrange in
descending order based on the predicted score (probability
value). After removing miRNAs known to be associated with
these diseases in HMDD v2.0, output miRNAs predicted by the
SPALP model to be associated with a certain disease. RNARelease
V4.0 database can be obtained from http://www.rnadisease.org/#
and can be used to validate the top 30 miRNAs.

As shown in Tables 5–9, after validation in RNADisease V4.0,
27 out of the top 30 miRNAs predicted by the SPALP model that
may be related to Lupus Erythematosus passed the validation, as
shown in Table 5. In Table 6, except for hsa-mir-205, which was
not found in the miRNAs database related to Act Myeloid
Leukemia, all other miRNAs predicted by the SPALP model
were found. However, we found the miRNA hsa-mir-205 in
the miRNAs database related to Leukemia. Explain that hsa-
mir-205 is associated with Leukemia.Among the top 30 predicted
miRNAs, 29 can be validated for Cardiovascular disease
through RNADisease V4.0. More interestingly, for Stroke
and Diabetes Mellitus(Type 2), 30 miRNAs have been fully
verified in the RNADisease V4.0 database. These
results indicate that the SPALP model has a strong ability
to predict the association between unknown miRNAs
and diseases.

4 Conclusion

Along with the deepening of research on miRNAs, more and
more evidence suggests that it plays a crucial role in the
pathogenesis and progression of various diseases. Studying
the association between miRNAs and diseases helps to
understand disease mechanisms and provides new targets and
strategies for early diagnosis, treatment, and prevention. By
analyzing miRNAs expression profiles, scientists can identify
miRNAs associated with disease states, providing clues for
developing clinically potential biomarkers and
treatment methods.

This study integrates deep learning techniques and provides
a powerful model, SPALP. Due to the fact that the number of
known associations in the miRNA disease association dataset
only accounts for 0.0286% of the dataset, sparse autoencoders
are very suitable for processing such data, effectively capturing
key information in the data and extracting effective
information. This model uses a sparse autoencoder to
generate potential features of miRNA and diseases. By
combining miRNA and disease similarity data with latent
features to reconstruct features, and using MLP for training,
unknown associations between miRNA and diseases can be
predicted. We conducted biological verification on Lupus
Erythematosus, Acute Myeloid Leukemia, Cardiovascular
disease, Stroke, Diabetes Mellitus (Type 2), and output
the first 30 miRNAs that may be related to the disease, of
which 26, 29, 29, 30, and 30 passed the verification, proving
that SPALP is a model with good performance. We hope
to accelerate research on the association between miRNAs
and diseases. Our approach provides new insights into
the development of precision medicine and personalized
treatment, aiming to provide more accurate guidance
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for disease diagnosis and treatment strategies in
clinical practice.
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