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A network, whose nodes are genes and whose directed edges represent positive
or negative influences of a regulatory gene and its targets, is often used as a
representation of causality. To infer a network, researchers often develop a
machine learning model and then evaluate the model based on its match with
experimentally verified “gold standard” edges. The desired result of such a model
is a network that may extend the gold standard edges. Since networks are a form
of visual representation, one can compare their utility with architectural or
machine blueprints. Blueprints are clearly useful because they provide precise
guidance to builders in construction. If the primary role of gene regulatory
networks is to characterize causality, then such networks should be good
tools of prediction because prediction is the actionable benefit of knowing
causality. But are they? In this paper, we compare prediction quality based on
“gold standard” regulatory edges from previous experimental work with non-
linear models inferred from time series data across four different species. We
show that the same non-linear machine learning models have better predictive
performance, with improvements from 5.3% to 25.3% in terms of the reduction in
the rootmean square error (RMSE) comparedwith the samemodels based on the
gold standard edges. Having established that networks fail to characterize
causality properly, we suggest that causality research should focus on four
goals: (i) predictive accuracy; (ii) a parsimonious enumeration of predictive
regulatory genes for each target gene g; (iii) the identification of disjoint sets
of predictive regulatory genes for each target g of roughly equal accuracy; and (iv)
the construction of a bipartite network (whose node types are genes andmodels)
representation of causality. We provide algorithms for all goals.
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1 Background and motivation

A frequent goal of expression-based causality research is to construct a directed graph of
genes having some inductive and some repressive edges. One of the popular approaches to
solve the gene regulatory inference problem is to build some kind of regression models to fit
the gene expression data and make regulatory relation inference based on the model
parameters. Some of these regression-based methods use linear regression like TIGRESS
(Haury et al., 2012), SCODE (Matsumoto et al., 2017), and Inferelator (Skok Gibbs et al.,
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2022), while others like GENIE3 (Huynh-Thu et al., 2010),
BiXGBoost (Zheng et al., 2019), OutPredict (Cirrone et al., 2020),
and SCENIC (Van de Sande et al., 2020) choose non-linear
regression models for the same goal. The main metric of these
methods is conformance to some gold standard (GS) network.
However, let us consider the actionable result of such research: to
influence the behavior of an organism to make it more useful (e.g.,
more drought-tolerant crop or one with higher nutrient yield).

This paper asks the question “Are networks a good
representation for actionable insights?” Because the edges are
simple edges between pairs of regulatory and target genes, the
network representation does not suggest any kind of synergy
between the putative causal regulatory genes, e.g., transcription
factors. So, the natural model choice for a given target gene g
given the network is a linear model on the genes pointing to g.

Any causality model should be able to make reasonably accurate
predictions. In Newtonian mechanics, e.g., a model involving mass
and gravity will be able to predict the speed curve of a ball on an
inclined plane. Predictive accuracy is not sufficient to establish
causality. Somemysterious force might cause the ball to move in that
way, but a causal model should be predictive. We consider predictive
accuracy to be a necessary condition of a causal model.

We now consider several approaches to prediction.

1. Starting with all transcription factors (TFs) as possible causal
features, both a non-linear random forest (RF)-style model
Mnonlin and a linear model Mlin are tried.

2. Based on the random forest model mentioned above, a
minimal set of TFs that could produce similar regression
results in a model Mminimal are iteratively searched for.

3. On the edges of a gold standard network for some target gene g,
a non-linear model Mnonlin or a linear model Mlin is used.

4. A random forest model that uses the same number of TFs for
each target g is formed as known from the gold standard
network. Those TFs are chosen according to their feature
importance starting from Mnonlin in approach 1 above.

As discussed later, (i) the non-linear models work better than the
linear models and (ii) starting with all transcription factors and then
shrinking that set based on model accuracy is better than using the
gold standard network.

Our models are all based on time series in which we predict the
mRNA expression level of the target gene based on the state of
regulatory genes at the previous time point. This agrees with the
biological intuition that the state of causal regulatory genes takes at
least minutes to affect their targets. One implication of this approach
to model building is that if a transcription factor T and a target gene
g are correlated (e.g., they rise in the same time points and fall in the
same time points), T will not be identified as causal. On the other
hand, if T rising (respectively, falling) at one time point were
associated with g rising (respectively, falling) at the next time
point, then causality might be hypothesized.

1.1 Contributions

Our novel contribution is a framework, algorithms, and software
for encoding possible causality in transcriptional settings into a

bipartite directed graph. Our framework consists of the
following workflow:

1. A machine learning method M that predicts the behavior of a
target gene g starting with all possible causal regulatory
elements (transcription factors for genomic networks) as
candidates is chosen. M may be statistical, a neural network,
a forest, or a linear model. We do not advocate any particular
model, although non-linear models generally have lower errors
than linear ones.

2. The set of possible causal regulatory elements for g is reduced
to a smaller set S1 that provides statistically equal (based on the
p-value) accuracy still based on M.

3. Inspired by an observation of the statistician Efron (2020), a set
D of mutually disjoint sets S1, S2 . . . Sn is found that all provide
statistically the same accuracy as S1 in predicting the expression
of some target gene g, possibly by training a newmodel for each
Si. D may contain S1 alone or may contain many sets.

4. A visual representation of these mutually disjoint subsets of
regulatory elements is provided for each given target gene g.
The visualization consists of a bipartite graph in which each
transcription factor of the disjoint subsets (S1, S2 . . . Sn) of
transcription factors feeds a model node whose output is the
target gene g.

2 Materials and methods

2.1 Expression prediction setup

All the experiments carried out in this study focus on time
series RNA sequencing (RNA-seq) data because gene regulation
through transcription factors is a temporal causal process.
Following this logic, we build regression models that predict
the expression of each target gene based on the TF expression
levels from a previous time point in the time series. Formally,
suppose we are given time series RNA-seq data consisting of
sequencing data from time points t0, t1, t2, . . .., ti, . . . , tn. We use
RNA-seq data at time ti to predict the expression of a target gene
at ti+1 (i ≥ 0, i < n).

In order to split the whole time series into training/testing
sets for validating the prediction quality of different methods, we
chose to always reserve the tail end of the time series for testing
while using the preceding part in training. More specifically, if
n < 5, then only tn will be used as the test sample with tn−1 being
the input. If 5 ≤ n < 10, tn and tn−1 are reserved for testing, with
tn−1 and tn−2 as model input. If n ≥ 10, then the final three in the
series constitute the testing set.

2.2 RNA sequencing data used

Bulk time series RNA-seq data from four different species
with varying experimental setups were used, totaling more than
100 data points for each species. The experimental sources for
each species are given here. For the training/testing setups below,
we train on a prefix of the time points and test on the remaining
time points.
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1. Saccharomyces cerevisiae (yeast): data from GSE145936 (Feder
et al., 2021), GSE153609 (Mitra et al., 2021; Tran et al., 2021),
GSE168699 (Li et al., 2021), and GSE226769 (Harris and Ünal,
2023) were aggregated into a gene expression dataset with
144 training samples and 58 testing samples.

2. Bacillus subtilis (strain 168) (B. subtilis): data from GSE108659
(Krawczyk et al., 2015), GSE128875 (Pisithkul et al., 2019), and
GSE224332 were aggregated into a gene expression dataset
with 84 training samples and 18 testing samples.

3. Arabidopsis thaliana (Arabidopsis): data from GSE97500
(Varala et al., 2018; Heerah et al., 2021) were used with
72 training samples and 24 testing samples.

4. Mus musculus (mouse): data from GSE115553 (Graham et al.,
2018), GSE151173 (Greenwell et al., 2020), and GSE171975
(Aviram et al., 2021) were aggregated into a gene expression
dataset with 208 training samples and 121 testing samples.

5. Homo sapiens (human): data fromGSE221103 and GSE221173
(Cazarin et al., 2023) were aggregated into a gene expression
dataset consisting of 109 training samples and
40 testing samples.

Thus, our study derives from 4 well-studied living organisms
ranging from bacteria to humans. We sought datasets having
time series RNA-seq data with relatively tight timing intervals
(no greater than 4 h in all cases) and suitably long series (≥4 time
points) to form training/testing splits. We collected as much
public bulk RNA-seq data about the four species as possible given
the above constraints. Because the data came from widely
different species (from bacteria to human), we expect that our
qualitative conclusions will be generalizable. For each species, we
obtained a GS regulatory network from the sources given
in Table 1.

2.3 Metrics

Because RNA-seq counts are strongly dependent on the amount
of cellular material that is read, relative expression is a better metric
to determine induction or repression than absolute expression. For
that reason, we measure expression based on the z-score of the
normalized RNA-seq counts in the form of transcripts per kilobase
million (TPM):

z � TPM − μ

σ
. (1)

To compare the performance of each method, we measure how
accurate the regression results were by checking the error of the
prediction on the test set for each of the target genes. More
specifically, the root mean square error (RMSE) of the model
prediction in the test set for the expression of each target gene
was compared across different regression models. Because every
regression model was trained/fitted to make predictions on the same
set of time series expression samples for each target gene in question,
the performance metrics can be compared based on a paired test. For
this purpose, we use a non-parametric paired test (Katari
et al., 2021).

2.4 Methods compared

For the purpose of predicting the expression of each target gene
on a future unseen time point, we fitted four different types of
regression models, as described above:

1. An RF model that takes the expression of all TFs as input.
2. A ridge regression (linear regression with L2 regularization)

model that takes the expression of all TFs as input.
3. A random forest model that takes only the expression of TFs

known from the GS network for each particular target gene
as input.

4. A ridge regression model that takes only the expression of TFs
known from the GS network for each particular target gene
as input.

Next, we test how good the transcription factors from the GS
network are compared to the same number of transcription
factors derived from a non-linear model. For each target gene
g, let kg be the number of transcription factors in the GS network
that point to g. In addition to the tests above, we compare a
random forest on those GS TFs against a random forest for g
based on the top kg TFs found using method 1 above. The idea is
to test the usefulness of GS edges for prediction. One may argue
that GS edges are inferred using different methods—usually by
modifying single regulatory genes and observing their
effect—and, therefore, should not necessarily be useful for
prediction but could still be useful if modifying a single gene
is all that is possible for practical reasons. We do not contest their
utility for such purposes. We do, however, aim to evaluate their
predictive power in a synergistic setting (i.e., when potentially
several regulatory genes can be simultaneously modified).

TABLE 1 Information on the gold standard (GS) networks used in this study. The number of target genes and transcription factors are for genes that are both
present in the regulatory network and the RNA-seq data for each species, respectively.

Species GS network source Number of target genes Number of TFs Number of regulations

Yeast YEASTRACT (Teixeira et al., 2023) 4,794 213 162,100

B. subtilis SubtiWiki (Pedreira et al., 2022) 1,878 146 3,973

Arabidopsis ConnecTF (Brooks et al., 2021) 18,855 57 141,445

Mice RegNetwork (Liu et al., 2015) 8,211 780 40,331

Humans RegNetwork (Liu et al., 2015) 17,533 1,351 132,259
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FIGURE 1
Size distribution of a minimal transcription factor (TF) set for each target gene. For every species, the majority of genes are best predicted by fewer
than 8 transcription factors, i.e., 96.6% for yeast, 73.5% for B. subtilis, 98.7% for Arabidopsis, 71.9% for mice, and 97.7% for humans.
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Finally, using the method given in Section 3, we construct a
minimal random forest model for each target gene g on the
training set and view its result on the test set. We choose random
forest because decision tree-based regression models have
proven to be among the best methods in gene regulatory
tasks (Huynh-Thu et al., 2010; Moerman et al., 2019; Zheng
et al., 2019). We did not expand our model selection because the
main focus of our work is not to find the best fitted machine
learning model for the task but rather to demonstrate a novel
approach to the representation of potential causality in gene
regulation.

3 Algorithms to construct bipartite
causality graphs

Having chosen prediction as the metric for causality, we now
turn to the other three goals of our proposed framework:

1. Finding minimal sets of predictive TFs.
2. Finding disjoint minimal sets that have p-value-

indistinguishable predictive accuracy.
3. Creating a bipartite visual representation of causality.

3.1 Minimal sets of predictive
transcription factors

Efron (2020) noted that disjoint sets of causal factors often have
similar predictive accuracy. Inspired by this observation, we propose
the following strategy. For a given target gene, a random forest
predictor that takes the expression levels of all known TFs is fit to
predict the expression of the target. Then, the number of TFs are
iteratively cut in half based on their feature importance in the fitted
model until a further reduction results in a statistically significantly
(p-value < 0.05) worse-performing random forest. We refer to the
final remaining set of TFs as the “minimal TF set per target.” The
pseudo-code for this feature selection process is shown in
Algorithm 1.

The histograms given in Figure 1 show the distribution of the
size of minimal TF sets yielded for each target gene for the four
species we investigated. These size distributions show that most of
the minimal sets consist of a rather small number of TFs. When
compared with the distribution of GS network coverage for each
target gene in Table 2, we see that an accurate regression model
constructed this way usually has fewer input transcription factors
compared to the GS networks.

1: function MINIMALSET(G, TFs, E)

2: F ← TFs

3: Mall ← initialized regression model

4: Fit Mall with F to predict G

5: if E > 0 then

6: Ebaseline ← E

7: else⊳ E == 0 implies that no error value has been

calculated yet

8: Ebaseline ← training Error of Mall
9: Fhalf ← top half most influential TFs used in Mall

10: flag ← True

11: while flag == True do

12: Mcurrent ← initialized regression model

13: Fit Mcurrent with Fhalf to predict target gene G

14: Ecurrent ← training Error of Mcurrent
15: if not Ecurrent > Ebaseline with statistical

significance then

16: F ← Fhalf
17: Fhalf ← top half most influential TFs used

in Mcurrent
18: else

19: flag ← False

20: return F

Algorithm 1. Minimal TF set per target: For each target gene G, initial set of

TFs, and RMSE E, the set of necessary transcription factors are repeatedly

reduced by half until the error increases significantly with respect to E. A

minimal set of TFs for a given target gene G will be a call to this function

MinimalSet(G, all TFs, 0).

3.2 Finding disjoint sets of predictive
transaction factors

After finding a minimal set of predictive TFs, our algorithm
performs a new round of TF searches to discover disjoint sets of
roughly equally predictive TFs. Algorithm 2 describes the process for
finding all such disjoint sets of a given target gene. Similar to the
minimal set search algorithm, we based our iterative search on the
random forest regression that takes all available TFs U as input.
Rather than stopping after a minimal set S1 is found, we test if using
all remaining TFs (U − S1) could also produce a regression
prediction as good as the baseline. If that is the case, we carry on
a similar feature reduction process that ends with a new “minimal
set” S2 fromU − S1. This process then repeats withU − (S1 ∪ S2) and
continues until the baseline performance cannot be beaten or there
are no TFs left. For each target gene g, we define the collection of

TABLE 2 Gold standard network edge coverage per target gene for different RNA-seq species compared with the size of minimal transcription factor set
sizes per target gene, derived using random forest regression. Distributions are presented as the median followed by the interquartile range (IQR), which is
the range between the 25th and 75th percentile of the data. The one exception is yeast, where the gold standard edges aremuchmore numerous. As shown
in the tables above, the minimal sets generally have better predictive power than the gold standard sets and roughly the same number of edges per target.

Median [IQR] Yeast B. subtilis Arabidopsis Mice Humans

Size of the TF set per target in the gold standard network 51 [41, 63] 1 [1, 2] 13 [6, 19] 4 [2, 7] 8 [4, 14]

Size of the minimal TF set per target using RF regression 3 [3, 3] 2 [2, 9] 3 [3, 3] 5 [2, 10] 3 [3, 3]

Number of target genes 385 733 1,373 310 698
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FIGURE 2
Distribution of the disjoint set count for each target gene. Many target genes can be bestmodeled by a handful of an explanatory set of TFs. For yeast,
44.2% of the target genes are best modeled by fewer than 5 explanatory disjoint sets of TFs, For B. subtilis, 44.1%, for Arabidopsis, 15.2%, for mice, 25.5%,
and for humans, 10.3%. Sometimes, many disjoint sets of TFs are redundant. Bipartite graphs capture this causality information.
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minimal sets discovered this way as the minimal disjoint sets of
predictive transcription factors for g or MinDisjoints(g) for short.

We then surveyed the distribution of how many MinDisjoints are
found for each target gene across the four species. The histograms given
in Figure 2 show that most of the target genes have a small number of
disjoint sets of TFs associated with them, while some target genes have a
large number of MinDisjoints. Our analysis did not yield biological
mechanisms for predictability/causality, so we have no mechanistic
explanation for howmultiple disjoint sets of TFsmight control the same
target gene. However, the result was not wholly unexpected, given the
well-known redundancy in biological systems.

1: D ← empty list

2: F ← All TFs

3: Mall ← initialized regression model

4: Fit Mall with F to predict target gene G

5: Eall ← training Error of Mall
6: Fm ← MINIMALSET(G, F, Eall)

7: Add Fm to D

8: Fr ← F \ Fm
9: flag ← True

10: while Fr ≠ Ø and flag == True do

11: Mr ← initialized regression model

12: Fit Mr with Fr to predict target gene G

13: Er ← training Error of Mr
14: if Er > Eall, with statistical significance then

15: flag ← False

16: break

17: F ← MINIMALSET(G, Fr, Eall)

18: Add F to D

19: Fr ← Fr \ F

20: For a given target gene G, D will be the set of

disjoint sets of TFs G.

Algorithm 2. Disjoint sets of TFs: Finding minimal sets of disjoint TFs

(MinDisjoints), where each minimal set has the same error as using all TFs.

3.3 Bipartite network representation

Networks have a pleasing visual representation, especially when
focusing on one or a few target genes. However, what we showed is that
the network itself is a poor basis for prediction. Now that we have
constructed multiple disjoint sets of predictive TFs for each target gene
g, we propose a bipartite representation for them. The bipartite
representation for each target gene g consists of a model node m
corresponding to each disjoint set dm from D(g). The TFs from dm in
turn point to m.

Suppose that TFs A, B, and C through model M(A, B, C) provide
good predictions regarding target gene g. Suppose further that TFs D, E,
F, and H provide roughly equally good predictions on g. The classic
gene regulatory approach would be a graph with arrows from A, B, C,
D, E, F, and H all pointing to g. The bipartite approach would suggest
instead to show a bipartite graph that would have A, B, and C point to a
model node, which, in turn, points to g, and haveD, E, F, andHpoint to
a different model node, which also points to g.

To demonstrate this new representation, we picked one example
for each species we studied, as shown in Figure 3. Here, we

specifically highlighted one interesting scenario: a set of TFs were
found to form one of the disjoint sets for more than one target gene.
Such a relationship between two genes would not have been found in
a simple network representation. The bipartite representation
reveals group effects that would not otherwise be evident.

4 Results

4.1 Comparison of approaches

Figure 4 shows the accuracy of the six different modeling
approaches listed in Section 2.4. Basically, feeding expression
information from all the TFs into a random forest (“RF with all
TFs”) yielded the best outcome. Relying solely on known GS edges
(“RF with GS TFs”) usually performed poorly, even compared to
using the same number of TFs for each target gene from the random
forest model (“RF with top TFs”).

We note that linear models on all TFs are competitive and
sometimes better than random forests on minimal TF sets for B.
subtilis and mouse. Still, overall, given the same input information,
random forests perform better than linear models, which is the main
point of that comparison.

Tables 3–7 list the detailed pairwise non-parametric results
comparing the performance of all possible pairs of models. The
tables show that using all TFs in the regression yields the highest
prediction accuracy. Finding a minimal set of the most important
TFs yields almost the same accuracy as using all TFs.

A question to ask is what biological meaning disjoint sets of
transcription factors could have for a given target gene g. Our
computational analysis does not provide a biological meaning
other than predictive ability. Experimentalists might take various
disjoint sets of TFs and manipulate them to achieve some desired
effect on a target gene. The choice of such sets may depend on the
side effects such manipulation might have on other genes. This is a
direction for future work.

4.2 Batch effects

While the z-score takes care of quantity bias in different tests,
batch effects may cause predictions on batch A based on data from
batch A to be superior to predictions on batch A from data on many
batches. This is a limitation of any predictive model in biology.

To test this, we created our models based on multiple batches
and tested them on the tail end of all those batches. We compared
that approach with batch-by-batch predictions. Figure 5 shows that
the same model trained on all batches of data achieves the same level
or better predictive performance than when using batch X data on
batch X tail, for each batch X.

4.3 Ensemble of disjoint sets of
transcription factors

Another potential use of the identification of disjoint sets of
predictive TFs stems from the fact that each disjoint set represents a
regression model for the prediction of the target gene. For all the
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disjoint sets, we found a target gene g, and the regression model of
each disjoint set can provide a prediction about the expression of the
target gene, given the expression input of the TFs at the previous
time point. As has been shown in many previous studies in both
general machine learning and gene network inference (Dietterich,

2000; Marbach et al., 2012; Sagi and Rokach, 2018; Ganaie et al.,
2022), an ensemble consisting of the arithmetic mean of these model
predictions may lead to an overall better performing prediction.
Inspired by those results, we compared the predictive performance
of this ensemble of disjoint sets of TFs to that of all other RF-based

FIGURE 3
Bipartite representation of causality. Light circular orange nodes represent non-linearmodels that take transcription factors (dark orange rectangles)
as inputs and produce predictions on a single target gene (blue). Here, we show a particular case where disjoint sets of TFs can form high-quality
prediction models for one target gene, and the same TF can be in models for several target genes.

Frontiers in Genetics frontiersin.org08

Shen et al. 10.3389/fgene.2024.1371607

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1371607


regressions we discussed before, and the results are given in Table 8.
In most cases, this ensemble yielded regression accuracies second
only to the model that takes all TFs as input.

A complete list of all the minimal sets and disjoint sets of TFs for
each target gene we surveyed in this study is given in Supplementary
Table S1–S5.

4.4 An application: optimizing gene
expression

Suppose our goal is to cause a gene g to be expressed at a certain
level. We observed that the GS network, even when available, provides
quite poor predictions. A better approach is to start with a good

FIGURE 4
Root mean square error (RMSE) performance (lower is better) of different regressionmodels compared across four species; error bars represent the
standard error of each group. When we compare all themodels for each of the tested target genes, a paired non-parametric test can be applied between
each pair of models to see if the performance is statistically different. The best performing models that are statistically indistinguishable this way are
marked with *. “RF with all TFs” is always one of the best performing models. The caption of Table 2 provides a glossary of terms.
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TABLE 3 S. cerevisiae (yeast): Paired non-parametric results for the performance comparison on the test set between the model in blue and orange measured using root mean square error (RMSE) on target gene
expression in the test datasets. Entry (i, j) shows the 95% confidence interval as the difference of the ith bluemodelingmethodminus the jth orangemodelingmethod. A negative numbermeans themethod in blue has
a lower error and, hence, is better. When the difference in the blue method i with the red method j has a p-value below 0.05 based on a non-parametric paired test, the (i, j)th confidence interval will be red or blue.
Otherwise, the (i, j)th entry will be black. Glossary: (i) TF = transcription factor; (ii) GS = gold standard; (iii) RF = random forest; (iv) linear = ridge regression; (v) RF with top TFs = for each target gene g, the same number
of TFs from the random forest model are used as there were gold standard edges for g; and (vi) minimal TF =minimal set of most important TFs that provides p-value-indistinguishable results (on the training set) using
all TFs.

RF with all TFs Linear with all TFs RF with GS TFs Linear with GS TFs RF with top TFs RF with the minimal TF set

Mean RMSE 0.877 1.204 0.920 1.091 0.859 0.965

RF with all TFs - (−0.397,−0.257) (−0.055,−0.031) (−0.263,−0.166) (0.008, 0.027) (−0.119,−0.058)

Linear with all TFs (0.257, 0.397) - (0.214, 0.354) (0.047, 0.178) (0.275, 0.414) (0.169, 0.309)

RF with GS TFs (0.031, 0.055) (−0.354,−0.214) - (−0.218,−0.124) (0.046, 0.076) (−0.075,−0.015)

Linear with GS TFs (0.166, 0.263) (−0.178,−0.047) (0.124, 0.218) - (0.185, 0.279) (0.081, 0.172)

RF with top TFs (−0.027,−0.008) (−0.414,−0.275) (−0.076,−0.046) (−0.279,−0.185) - (−0.133,−0.079)

RF with the minimal TF set (0.058, 0.119) (−0.309,−0.169) (0.015, 0.075) (−0.172,−0.081) (0.079, 0.133) -

TABLE 4 B. subtilis: Paired non-parametric results for the performance comparison between themodel in blue and orangemeasured using RMSE on target gene expression in the test datasets. Entry (i, j) shows the 95%
confidence interval as the difference of the ith bluemodelingmethodminus the jth orangemodelingmethod. A negative numbermeans themethod in blue has a lower error and, hence, is better. When the difference
in the blue method i with the red method j has a p-value below 0.05 based on a non-parametric paired test, the (i, j)th confidence interval will be red or blue. Otherwise, the (i, j)th entry will be black. The caption of
Table 2 provides a glossary of terms.

RF with all TFs Linear with all TFs RF with GS TFs Linear with GS TFs RF with top TFs RF with the minimal TF set

Mean RMSE 0.454 0.469 0.599 0.675 0.556 0.489

RF with all TFs - (−0.035, 0.003) (−0.168,−0.122) (−0.247,−0.196) (−0.124,−0.080) (−0.053,−0.017)

Linear with all TFs (−0.003, 0.035) - (−0.161,−0.098) (−0.243,−0.168) (−0.113,−0.060) (−0.037,−0.001)

RF with GS TFs (0.122, 0.168) (0.098, 0.161) - (−0.099,−0.054) (0.015, 0.071) (0.080, 0.141)

Linear with GS TFs (0.196, 0.247) (0.168, 0.243) (0.054, 0.099) - (0.086, 0.153) (0.153, 0.221)

RF with top TFs (0.080, 0.124) (0.060, 0.113) (−0.071,−0.015) (−0.153,−0.086) - (0.044, 0.091)

RF with the minimal TF set (0.017, 0.053) (0.001, 0.037) (−0.141,−0.080) (−0.221,−0.153) (−0.091,−0.044) -
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TABLE 5 Arabidopsis: Paired non-parametric results for the performance comparison between the model in blue and orange measured using the RMSE on target gene expression in the test datasets. Entry (i, j) shows
the 95% confidence interval as the difference of the ith blue modeling method minus the jth orange modeling method. A negative number means the method in blue has a lower error and, hence, is better. When the
difference in the blue method i with the red method j has a p-value below 0.05 based on a non-parametric paired test, the (i, j)th confidence interval will be red or blue. Otherwise, the (i, j)th entry will be black. The
caption of Table 2 provides a glossary of terms.

RF with all TFs Linear with all TFs RF with GS TFs Linear with GS TFs RF with top TFs RF with the minimal TF set

Mean RMSE 0.851 1.157 0.964 0.978 0.874 0.919

RF with all TFs - (−0.345,−0.268) (−0.135,−0.092) (−0.148,−0.108) (−0.032,−0.014) (−0.080,−0.057)

Linear with all TFs (0.268, 0.345) - (0.159, 0.227) (0.142, 0.215) (0.245, 0.322) (0.203, 0.274)

RF with GS TFs (0.092, 0.135) (−0.227,−0.159) - (−0.028,−0.001) (0.069, 0.112) (0.023, 0.067)

Linear with GS TFs (0.108, 0.148) (−0.215,−0.142) (0.001, 0.028) - (0.086, 0.124) (0.039, 0.081)

RF with top TFs (0.014, 0.032) (−0.322,−0.245) (−0.112,−0.069) (−0.124,−0.086) - (−0.057,−0.033)

RF with the minimal TF set (0.057, 0.080) (−0.274,−0.203) (−0.067,−0.023) (−0.081,−0.039) (0.033, 0.057) -

TABLE 6Mice: Paired non-parametric results for the performance comparison between themodel in blue and orangemeasured using the RMSE on target gene expression in the test datasets. Entry (i, j) shows the 95%
confidence interval as the difference of the ith bluemodelingmethodminus the jth orangemodelingmethod. A negative numbermeans themethod in blue has a lower error and, hence, is better. When the difference
in the bluemethod iwith redmethod j has a p-value below 0.05 based on a non-parametric paired test, the (i, j)th confidence interval will be red or blue. Otherwise, the (i, j)th entry will be black. The caption of Table 2
provides a glossary of terms.

RF with all TFs Linear with all TFs RF with GS TFs Linear with GS TFs RF with top TFs RF with the minimal TF set

Mean RMSE 1.194 1.305 1.480 1.686 1.331 1.293

RF with all TFs - (−0.217,−0.006) (−0.437,−0.136) (−0.669,−0.316) (−0.200,−0.074) (−0.169,−0.029)

Linear with all TFs (0.006, 0.217) - (−0.261,−0.088) (−0.503,−0.259) (−0.110, 0.059) (−0.055, 0.080)

RF with GS TFs (0.136, 0.437) (0.088, 0.261) - (−0.290,−0.122) (0.032, 0.266) (0.072, 0.303)

Linear with GS TFs (0.316, 0.669) (0.259, 0.503) (0.122, 0.290) - (0.203, 0.508) (0.248, 0.539)

RF with top TFs (0.074, 0.200) (−0.059, 0.110) (−0.266,−0.032) (−0.508,−0.203) - (−0.025, 0.101)

RF with the minimal TF set (0.029, 0.169) (−0.080, 0.055) (−0.303,−0.072) (−0.539,−0.248) (−0.101, 0.025) -
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TABLE 7 Humans: Paired non-parametric results for the performance comparison between themodel in blue and orangemeasured using the RMSE on target gene expressions in the test datasets. Entry (i, j) shows the
95% confidence interval as the difference of the ith blue modeling method minus the jth orange modeling method. A negative number means the method in blue has a lower error so is better. When the difference in
the blue method iwith red method j has a p-value below 0.05 based on a non-parametric paired test, the (i, j)th confidence interval will be red or blue. Otherwise, the (i, j)th entry will be black. The caption of Table 2
provides a glossary of terms.

RF with all TFs Linear with all TFs RF with GS TFs Linear with GS TFs RF with top TFs RF with the minimal TF set

Mean RMSE 0.931 1.088 1.049 1.474 0.995 1.004

RF with all TFs - (−0.192,−0.122) (−0.143,−0.093) (−0.616,−0.469) (−0.081,−0.047) (−0.088,−0.056)

Linear with all TFs (0.122, 0.192) - (0.005, 0.073) (−0.457,−0.314) (0.060, 0.126) (0.052, 0.117)

RF with GS TFs (0.093, 0.143) (−0.073,−0.005) - (−0.489,−0.361) (0.032, 0.076) (0.019, 0.072)

Linear with GS TFs (0.469, 0.616) (0.314, 0.457) (0.361, 0.489) - (0.413, 0.545) (0.400, 0.541)

RF with top TFs (0.047, 0.081) (−0.126,−0.060) (−0.076,−0.032) (−0.545,−0.413) - (−0.029, 0.012)

RF with the minimal TF set (0.056, 0.088) (−0.117,−0.052) (−0.072,−0.019) (−0.541,−0.400) (−0.012, 0.029) -

TABLE 8 Paired non-parametric results for the performance comparison between themodel in blue and orangemeasured using the RMSE on target gene expressions in the test datasets. Each column is a comparison
for one of the four species that compared the ensemble prediction from disjoint sets of transcription factors (TFs) to other random forest (RF)-based methods. Entry (i, j) shows the 95% confidence interval as the
difference of the ith bluemodeling methodminus the jth orangemodeling method. A negative number means themethod in blue has a lower error and, hence, is better. When the difference in the bluemethod iwith
the redmethod j has a p-value below 0.05 based on a non-parametric paired test, the (i, j)th confidence interval will be red or blue. Otherwise, the (i, j)th entry will be black. The caption of Table 2 provides a glossary of
terms.

Ensemble of disjoint sets
in yeast

Ensemble of disjoint sets
in B. subtilis

Ensemble of disjoint sets
in Arabidopsis

Ensemble of disjoint sets
in mice

Ensemble of disjoint sets
in humans

RF with all TFs (−0.058,−0.017) (−0.009, 0.008) (−0.009, 0.001) (−0.038, 0.013) (−0.021,−0.003)

RF with GS TFs (0.227, 0.366) (−0.003, 0.034) (0.270, 0.349) (0.034, 0.223) (0.115, 0.181)

RF with top TFs (−0.010, 0.027) (0.122, 0.170) (0.090, 0.133) (0.169, 0.444) (0.085, 0.134)

RF with the minimal TF set (0.138, 0.231) (0.196, 0.249) (0.105, 0.146) (0.350, 0.681) (0.464, 0.610)
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predictive model for g on a small number of TFs T and then to
determine values of the TFs in T that might lead to the desired
expression level of g. This goal is supported by the three goals of
our framework: to find a good model, reduce the number of TFs while
preserving accuracy, and find possible alternative sets of TFs that also
yield high prediction accuracy. Gene regulatory networks do not
provide natural guidance for any goal like this.

Thus, the bipartite network approach provides an actionable
approach to causality. At the same time, it provides (i) a visualization
that shows alternative ways to manipulate a target gene and (ii) a
simple ensemble approach to prediction.

5 Empirical findings

Our empirical findings are as follows:

• We confirm previous observations (Pratapa et al., 2020; Zhao
et al., 2021) that non-linear models generally yield better
results (as measured by RMSE) than linear models.

• Using all TFs yields better predictive results than using the TFs
from GS edges. For each target gene g, there often exist several
disjoint minimal sets (mostly of size eight or less) that yield
predictive accuracy nearly as high as all TFs.

• Using all batches of each species together for training yields
results on the time series test tails of each batch that are as
good as or better than using each batch on its own test tail.

• For a given target gene g, forming a model consisting of the most
influential kg TFs in a non-linear model (e.g., random forests) as
measured on the training set, where kg is the number of TFs in the
GS network that point to g, yields better prediction accuracy on
the test set than using the same kind ofmodel on theGS TFs. This
superiority holds for all the species we tested from yeast with a

FIGURE 5
Random forest regression performance differencesmeasured across different data batches for different species. Here, all batches results are default
and presented relists shown in this work, where the random forest model using all TFs was trained on training data from all batches and tested on all the
tail testing parts from different batches. The same model was then trained and tested on individual batches for its respective high-variance target genes.
Note that for Arabidopsis, one singular batch was used, so such comparison was unnecessary, and for B. subtilis, the first batch does not have high-
variance target genes in its testing set, so the comparison was also omitted.
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mean value of 53 TFs for each target gene to B. subtilis with a
mean value of 1.9 TFs for each target gene.

6 Conclusion

Based on our empirical findings, we suggest a framework for
studying causality in gene regulation having three main features.

First, the figure of merit for causality should be predictive
accuracy rather than conformance with “gold standard” edges.
One reason is epistemic: any causal model should be predictive.
Another reason is pragmatic: prediction is useful if we want to
manipulate some property such as the expression of a target gene.

Second, the network representation of such causality should be a
bipartite graph consisting of gene (including transcription factor)
nodes and model nodes. Such graphs encode the synergy of multiple
TFs in the model nodes.

Third, the bipartite representation may include many model
nodes that point to the same target gene, where each model node has
a disjoint set of TFs as input. A single TF plays a role in disjoint sets
of several target genes.

In addition to suggesting a modified approach to causality
research for transcriptional regulation, we assert that our
framework is applicable beyond transcriptional causality. Our
main future work is to apply this form of analysis to other
multifactor causality domains. We welcome other researchers to
try this approach and offer our software to help.
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