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Applying neural ordinary
differential equations for analysis
of hormone dynamics in Trier
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Introduction: This study explores using Neural Ordinary Differential Equations
(NODEs) to analyze hormone dynamics in the hypothalamicpituitary-adrenal
(HPA) axis during Trier Social Stress Tests (TSST) to classify patients with Major
Depressive Disorder (MDD).

Methods: Data from TSST were used, measuring plasma ACTH and cortisol
concentrations. NODE models replicated hormone changes without prior
knowledge of the stressor. The derived vector fields from NODEs were input
into a Convolutional Neural Network (CNN) for patient classification, validated
through cross-validation (CV) procedures.

Results: NODE models effectively captured system dynamics, embedding stress
effects in the vector fields. The classification procedure yielded promising results,
with the 1x1 CV achieving an AUROC score that correctly identified 83% of
Atypical MDD patients and 53% of healthy controls. The 2x2 CV produced similar
outcomes, supporting model robustness.

Discussion: Our results demonstrate the potential of combining NODEs and CNNs
to classify patients based on disease state, providing a preliminary step towards further
research using the HPA axis stress response as an objective biomarker for MDD.

KEYWORDS

major depressive disorder (MDD), machine learning (ML), artificial intelligence (Al), neural
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Introduction

The use of Machine Learning (ML) and Artificial Intelligence (AI) for data analysis and
pattern recognition has ballooned into a $500+ billion industry over the past several years
(Artificial Intelligence Market, 2023), leading to myriad advances in academic disciplines as
well. As part of the ML/AI advances, active research is ongoing to implement these methods
for diagnostic assistance in clinical settings (Giordano et al., 2021; Huang et al., 2023), for
precision medicine (Johnson et al,, 2021), and for drug discovery and development (Mak
et al,, 2023).

This led us to explore the application of Neural Ordinary Differential Equations (NODEs)
(Chen etal., 2018) to physiological systems (Lu et al., 2021a; Lu et al., 2021b; Bram et al., 2023).
Inspired by these works, we applied ML/AI to analyze dynamical hormone data from the
hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is the primary regulator of cortisol,
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FIGURE 1

Workflow of control vs. MDD classification based on NODE encodings of the underlying system dynamics. See Classification Based on Trained
NODEs subsection of Results for a more complete description of the procedure.

a steroid hormone involved in many physiological processes but
primarily associated with the stress response. We have specifically
examined the response of the HPA axis in healthy controls and
subjects with Major Depressive Disorder (MDD) while the patients
undergo Trier Social Stress Tests (TSST) (Kirschbaum et al., 1993;
Allen et al, 2017).

In the presence of a stressor, the paraventricular nucleus (PVN) of
the hypothalamus releases corticotropin-releasing hormone (CRH)
into the hypophyseal portal system for transport to the anterior
pituitary (Smith and Vale, 2006). Increased CRH concentration
causes the anterior pituitary to
hormone (ACTH) into the circulatory system. When circulating
ACTH reaches the adrenal glands, it stimulates production of
cortisol (Smith and Vale, 2006). ACTH and cortisol are easily

measured from blood, while CRH is not released into the systemic

release adrenocorticotropic

circulation and therefore cannot be easily measured.

In this work, we apply NODE models to replicate hormone
changes in patients undergoing TSST without prior knowledge of
the stressor. Additionally, the trained model can forecast stress
effects in new situations. Dynamic analysis indicates that the
stress effect is embedded in the non-autonomous vector fields
derived from the NODE model. These time-varying vector fields
(represented in 3-dimensions) can then be used as input for a
subsequent CNN. Our research illustrates how this combined
pipeline of NODEs and CNNs can effectively classify patients
from our dataset based on disease state. This represents a first
step towards clinical applications using the HPA axis stress response
as an objective biomarker for MDD. We also address the current
limitations of our results and suggest possible improvements.

Results

Figure 1 depicts the process by which classification decisions are
made. We will discuss each step in turn, starting with the inputs to
the system. The procedure requires the full time-series dataset for a
patient, along with the time at which each datapoint was collected.
We also need to have labels for the data, indicating the correct
classification decision (for use when training the CNN in the final
step of the process). See the Classification was performed based on
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trained NODEs subsection of Results for a description of the
classification training procedure.

An augmented NODE system captures
system dynamics accurately

The NODE architecture utilizes a feedforward artificial neural
network (ANN) as the right-hand side of an ODE, and the ANN
encodes a vector field. The NODE system is passed the initial
conditions for time, ACTH and cortisol (by adding the time
dimension to the inputs, we create an Augmented NODE system,
as in Dupont et al. (2019), along with the time interval for
integration. Due to the non-autonomous nature of the system
being modeled (because stress is input at 30 min for each time-
series), this dimension augmentation allows for more accurate
learning of system dynamics. The ANN representing the vector
field then outputs the instantaneous change in time, ACTH and
cortisol. If the initial condition is varied, then the NODE yields
different flows through the vector field it represents, equivalent to a
traditional ODE system.

We remove time points iteratively from the beginning of an
individual time-series dataset, obtaining 10 time-series from the
11 time points contained in the data, and train the NODE on all of
these samples. Training the network with various initial time points
allows the network to better learn the time dependence of the system,
since networks trained without this procedure did not exhibit the same
degree of time-dependent variation in the vector fields.

By solving this system (with the Python package torchdiffeq by
Chen et al. (2018) in which the system is largely solved using the
standard Python ODE solvers from the scipy package), we obtain
time series of predicted values. Using the mean squared error (MSE)
loss, we compare the predictions to the dataset for backpropagation.
Training is stopped after 2,000 iterations or when the maximum
MSE loss (for all 10 time-series) drops below 5% of the overall mean
of the full dataset. See Figure 2 for examples of the predictions
compared to the individual datasets (depicted are the first subjects
from the Control and Atypical groups).

As an illustration of the NODE system as a vector field,
Figure 3 shows the predicted time series when the initial
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FIGURE 2

NODE fits for the first subject in (A) Control and (B) Atypical MDD. In both (A,B), the upper graph shows the ACTH concentration time series and the
lower graph shows the cortisol concentration time series.
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FIGURE 3
Demonstration of the effects of varying initial conditions by +25% when solving the system learned by the NODE networks. Depicted subjects are the
first subject from (A) Control and (B) Atypical MDD.

conditions for ACTH and cortisol are adjusted by +25%. The The stress effect is embedded in the non-
modifications to the initial conditions cause the flow to shift ~autonomous vector fields computed from
slightly. It is interesting to note that though stress signal is not the NODE model

part of the underlying NODE system, since we do not have data on

its level, its effect on the hormone level changes were faithfully The ANN resulting from the above NODE training procedure is
recaptured by the NODE encoder. used to obtain a time-varying vector field by passing triples of (time,

Frontiers in Genetics 03 frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1375468

Parker et al.

10.3389/fgene.2024.1375468

A Control Patient 1
Vector Field

FIGURE 4

B Atypical Patient 1
Vector Field

16
14
CORT2

Time-varying vector fields learned from the data for the first subject from (A) Control and (B) Atypical MDD. Axes are ACTH concentration in pg/mL,
cortisol concentration in pg/dL and time in minutes. Rotating.gif versions of these plots are available in the Supplementary Material.
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Atypical Patient 1
Vector Field at t=4.67 min
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ACTH-cortisol plane at two different times for the first subject from (A) Control and (B) Atypical MDD. We see changes depending on time, as the

network has learned the nonautonomous system dynamics.

ACTH, cortisol) and obtaining a vector representing change in these
values at that point. See Figure 4 for examples of these 3-dimensional
vector fields learned from the individual subject time-series data.
The subjects correspond to those shown in Figures 2, 3 and the flows

Frontiers in Genetics

through the vector fields are consistent with those figures. Figure 5
shows the ACTH-cortisol plane at two different times for the same
patients, demonstrating the time-dependence of the system learned
from the data.
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ROC curves for classification between healthy control subjects and Atypical MDD subjects. (A) 1 X 1 CV, (B) 2 x 2 CV. See Classification was
performed based on time-varying vector field representations subsection of Results for details of the cross-validation procedure.

Due to the time-varying nature of the 3-dimensional vector
fields, we can see the effect of the stressor on the ACTH-cortisol
plane when the patients’ hormone concentrations respond. The
stressor was initiated at 30 min and ceased at 50 min in the TSST
procedure. In Control Patient 1 (shown in Figures 2A-4A), the
system behaves as we would expect for the observed hormone
response to the stressor starting 10-15 min after it is initiated. The
effect of the stressor is not apparent until roughly 20-30 min after
initiation of the stressor in Atypical MDD Patient 1 (shown in
Figures 2B-4B). This is caused by the unusual nature of the stress
response in this patient, which the system is still able to effectively
learn from the data.

These vector fields contain a considerable amount of
information about the stress response of individual subjects,
so we used the vector fields as inputs in a classification procedure.

Classification was performed based on time-
varying vector field representations

Next, 10 x 10 x 10 x 3 representations of the vector fields for
each individual were extracted and used with a CNN for
classification. The representations were created by sampling
10 points for each of time, ACTH and cortisol and the
corresponding 3-dimensional vector of their instantaneous
change at that point. The samples were linearly spaced between
the minimum value in the time series minus 5% and maximum
value in the time series plus 5% for each variable.

Due to the limited availability of data for our tests, we were
concerned about the possibility of overfitting. By expanding the
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11 features of each individual patient to a 3D vector field, we

increased the number of features used for classification
substantially. To assess the impact of potential overfitting, we
performed two separate cross-validation (CV) procedures
wherein we tested the classification on many subsets of the
data. These CV procedures allowed us to obtain an estimate of
generalizability of the classification results. This involved leaving
out one sample from each group as test data, training on the vector
fields of the remaining individuals and comparing predicted
classes to the labels using binary cross-entropy loss. This was
repeated for all pairs of one subject from each group, a total of
210 train/test splits (15 control and 14 Atypical MDD subjects)
which we term 1 x 1 CV. We also performed a similar procedure
leaving out two subjects from each group, which we term 2 x 2 CV
(9,555 train/test splits performed).

The classification results were evaluated using the area
under the receiver operating characteristic curve (AUROC) as
ametric (Prusty et al., 2022). Figure 6A shows the result of the 1 x
1 CV procedure, while Figure 6B shows the results for the 2 x
2 CV. Both procedures give roughly the same relationship
between true positive rate (TPR) and false positive rate (FPR).
For the 1 x 1 CV, the optimal threshold for classification (based
on the MATLAB perfcurve function) gives 0.8286 TPR and
0.4714 FPR. This means that the classification procedure
identified around 83% of Atypical MDD patients correctly,
while still managing to classify healthy controls correctly
around 53% of the time. It should be noted that the algorithm
used for selecting the optimal classification threshold prioritizes
TPR over FPR, as a false positive is assumed to be less harmful

than a false negative.
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Discussion

There is an unmet need for
objective diagnosis

Major Depressive Disorder (MDD) is a mental health condition
characterized by weight loss or gain, hypersomnia or insomnia,
anhedonia, and persistent low mood among other symptoms
(Belmaker 2008). The MDD subtypes are
characterized by varied symptoms: Melancholic (weight loss and

and Agam,

insomnia), Atypical (weight gain and hypersomnia), and patients
that are neither Melancholic nor Atypical (Gili et al., 2012).
Currently, there are no reliable objective tools available for
diagnosing major depressive (MDD) or guiding
treatment for those suffering from this condition. Diagnosis

disorder

primarily relies on clinical interviews with questionnaires based
on the DSM-5 (Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition) (American Psychiatric Association,
2013). However, even experienced interviewers face challenges in
making accurate diagnoses, and significant variability exists among
clinicians assessing the same patient (Regier et al., 2013). Factors
affecting the reliability of diagnoses include comorbidities (Regier
etal., 2013) and cultural influences on how symptoms are presented
and reported (Sun et al., 2019).

Objective diagnosis based on measurable biomarkers would help
address this challenge. For example, the hypothalamic-pituitary-
adrenal (HPA) axis and the subsequent hormone regulation are
reported to be dysregulated in patients with MDD (Yehuda et al.,
1996; Gillespie and Nemeroff, 2005; Shea et al., 2005; Carroll et al.,
2007; Fink and Taylor, 2007; Murri et al., 2014), though there is
some dissent about what causes the dysregulation (Holsboer, 2000;
Ceruso et al., 2020). Unfortunately, after much effort in classification
of disease state based on TSST data, this goal remains elusive.

The limitations of the current results

Given the small number of patient samples used in this work
(reported tests were between healthy control and Atypical MDD
subjects and used 29 individuals), we cannot be certain of the
generalizability of this classification method. While the AUROC
measure after thorough cross-validation procedures can give a
degree of confidence, we cannot be fully certain that this will be
replicable across datasets.

Further, the lack of explainable parameters in ML/AI methods
gives us pause when assessing the reasonability of model decisions.
By contrast, traditional regression models or mechanistic ODE
models have parameters that are explicitly defined and
comparable among the model parameters. While differences in
the observed data can be used for classification purposes, we
cannot explicitly determine which features of the data are used in
decision making due to the largely black-box nature of neural
networks. In the next section, we will address these concerns and
provide an overview of how confidence in the results can be
increased in the future.

A limitation of the method unrelated to the mathematical
underpinnings of the classification is that conducting a TSST is
expensive and stressful. This limits the applicability of the method in
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its current state, although we do not believe these limitations are
insurmountable. For instance, the use of Virtual Reality TSST has
been shown to elicit comparable stress reactions to live TSST
(Shiban et al.,, 2016). This could significantly decrease the cost of
obtaining additional data and any eventual clinical applications of
the method.

Perspective: how to build a stronger tool

There is much room for improvement in the data available for
training. Ideally, further data from a larger population of control and
MDD subjects, as well as other types of data, should be assembled for
classification purposes. For example, positron emission tomography
(PET) or functional magnetic resonance imaging (fMRI) scans,
quantitative data on behavior changes, and other types of
physiological indicators of stress could be used in combination
with cortisol and ACTH. With the power of NODEs in
CNN
classification, mixed types of data that include both time-series

translating time-series data into images ready for
data and images from the same patients could be used together
to maximize diagnostic accuracy.

The second concern we would address is with the lack of
explainability in some ML/AI methods. There are interesting
techniques, such as Layer-wise Relevance Propagation (LRP)
(Bach et al, 2015), for explaining classification of images with
CNNs. This method creates a heatmap of how relevant each
pixel is to the final classification. The method has been extended
to apply to recurrent neural networks (such as long short-term
memory and gated recurrent unit networks) (Arras et al., 2017). The
incorporation of such methods promises to make the results more
explainable.

Using NODE:s to learn the underlying vector field of a system is a
first step towards a more complete understanding of the HPA axis
under stress and how the system is dysregulated in MDD. With data
scale and variety being overcome, objective diagnosis based on
measurable biomarkers promises to aid clinicians in better
helping MDD patients.

Methods
Data collection and selection

In clinical settings, there are two main avenues for physicians/
researchers to investigate patient HPA axis dynamics. The first
common test for diagnosis of HPA axis dysregulation is the
Dexamethasone Suppression Test (DST). In a DST, a small dose
(0.25-1.0 mg) of the synthetic glucocorticoid dexamethasone is
administered in the evening and plasma cortisol is measured
several times the next day (Gillespie and Nemeroff, 2005). While
there have been interesting results regarding the changes in MDD
patient responses to DST, we have chosen to focus on the second
method: stress tests.

A Trier Social Stress Test (TSST) involves placing research
subjects in a stressful situation (mock interview and surprise
mental arithmetic test) while taking measurements regarding
their stress response (Kirschbaum et al., 1993; Allen et al., 2017).
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The TSST data we have used was from repeated blood draws at 10 or
15-min intervals during the test—the blood was subsequently
assayed for plasma ACTH and cortisol concentrations. This data
allows for examination of the system dynamics on a much shorter
and more granular timescale than a DST, including the initial uptick
in ACTH/cortisol on exposure to a stressor and its subsequent
decline to baseline due to feedback effects. We have used data from a
TSST study to perform this research (see Parker et al. (2022) for
details of data collection).

The number of control subjects was 15, and the total number of
MDD subjects was 43 (roughly evenly distributed between the three
subtypes). In Supplementary Figures SI, S2, we have carried out
boxplots of the hormone area under the curve (AUC) measures in all
these four groups.

In this work, we chose to carry out the classification between the
healthy control subjects and Atypical MDD subjects so that the two
groups being classified are roughly equal in numbers. The code
provided in the Supplementary Material can be modified to carry out
similar classification between healthy controls and Melancholic or
Neither MDD subtype groups, further demonstrating the generality
of our toolset.

Artificial neural network (ANN)

In their most basic form, ANNs consist of a single fully-
connected layer to perform a linear combination of the inputs
followed by a non-linear activation function (such as ReLU or
hyperbolic tangent) (Aggarwal, 2018). Adding in additional fully-
connected layers (or additional hidden nodes in each layer) increases
the complexity of the model and is thereby expected to improve
performance to an arbitrarily accurate level given enough data (by
the Universal Approximation Theorem (Hornik et al., 1989
Yu, 2021)).

In practice, however, this is not the case when using small
datasets. Without sufficient data, increasing the size of any NN
increases overfitting of the training data and thereby decreases
generalizability (Aggarwal, 2018). Further, ANNs do not allow us
to consider the data as a time-series, which loses information
contained in the data. Therefore, we have turned to several
network architectures that can accept time-series data as inputs.

Neural ordinary differential equation (NODE)

Another network architecture that we have applied is
NODE—first introduced by Chen et al. (2018). NODEs represent
the continuous time extension of Residual Neural Networks
(ResNets). The architecture of a ResNet is a network containing
residual connections in some subnetworks. These residual
connections lead to the relation between inputs and outputs seen
in Eq. 1.

y=F(x) +x (1)
where x represents the vector of inputs, y represents the vector of
outputs, and F is a function representing the operations performed

by the residual subnetwork. The residual connection passes the
inputs directly through to sum with the outputs—propagating the
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input signal deeper into the network in part to combat the vanishing
gradient problem (Aggarwal, 2018).

In deep ResNets, multiple residual subnetworks (often called
Residual Blocks) are stacked. If we imagine stacking an infinite
number of Residual Blocks, with each taking the inputs, adding some
value depending on the inputs and then passing it to the next block,
this is approximately equivalent to the NODE architecture (Dupont
et al, 2019). In NODEs, the system has its right-hand side
represented by a NN as shown in Eq. 2.

d
Z fan(@10) = fo(2) @)

dt

Where z is the vector of variable states and 0 represents the
matrix of parameters (weights and biases) of the network. This
system is residual because each time step of integration by the
differential equation solver increments the output from the previous
step. Unlike discrete-time ResNets, this process uses an adaptive step
size to take an arbitrary number of steps covering the desired time
interval of integration. It should be noted that Massaroli et al. (2020)
dispute the equivalence of NODEs and infinite ResNets due to the
depth-invariance of the parameters in the original NODE
formulation. Every time step of the system described above has
the same parameters 0 applied, while ResNets have a new parameter
matrix for every layer.

Network training

We performed the network training with the AdamW optimizer
using le-6 weight decay, le-3 learning rate and mean squared error
(MSE) loss. Activations were ReLU by default, although we tested
using alternatives including hyperbolic tangent. All code was written
in Python using PyTorch and torchdiffeq packages for NN
operations. All networks were trained/tested on a 2020 Macbook
Pro with an Apple M1 chip. See Supplementary Material S1 for the
full code archive. Various figures were generated in MATLAB (using
the results from the Python code) to make use of the GUI for
customization.
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