
Identification of TIMP1-induced
dysregulation of
epithelial-mesenchymal
transition as a key pathway in
inflammatory bowel disease and
small intestinal neuroendocrine
tumors shared pathogenesis

Minh Tuan Tran*

Indian Springs School, Pelham, AL, United States

Inflammatory Bowel Disease (IBD) is believed to be a risk factor for Small Intestinal
Neuroendocrine Tumors (SI-NET) development; however, the molecular
relationship between IBD and SI-NET has yet to be elucidated. In this study,
we use a systems biology approach to uncover such relationships. We identified a
more similar transcriptomic-wide expression pattern between Crohn’s Disease
(CD) and SI-NET whereas a higher proportion of overlapping dysregulated genes
between Ulcerative Colitis (UC) and SI-NET. Enrichment analysis indicates that
extracellular matrix remodeling, particularly in epithelial-mesenchymal transition
and intestinal fibrosis mediated by TIMP1, is the most significantly dysregulated
pathway among upregulated genes shared between both IBD subtypes and SI-
NET. However, this remodeling occurs through distinct regulatory molecular
mechanisms unique to each IBD subtype. Specifically, myofibroblast activation in
CD and SI-NET is mediated through IL-6 and ciliary-dependent signaling
pathways. Contrarily, in UC and SI-NET, this phenomenon is mainly regulated
through immune cells like macrophages and the NCAM signaling pathway, a
potential gut-brain axis in the context of these two diseases. In both IBD and SI-
NET, intestinal fibrosis resulted in significant metabolic reprogramming of fatty
acid and glucose to an inflammatory- and cancer-inducing state. This altered
metabolic state, revealed through enrichment analysis of downregulated genes,
showed dysfunctions in oxidative phosphorylation, gluconeogenesis, and
glycogenesis, indicating a shift towards glycolysis. Also known as the Warburg
effect, this glycolytic switch, in return, exacerbates fibrosis. Corresponding to
enrichment analysis results, network construction and subsequent topological
analysis pinpointed 7 protein complexes, 17 hub genes, 11 microRNA, and 1
transcription factor related to extracellular matrix accumulation and metabolic
reprogramming that are candidate biomarkers in both IBD and SI-NET. Together,
these biological pathways and candidate biomarkers may serve as potential
therapeutic targets for these diseases.
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1 Introduction

Inflammatory Bowel Disease (IBD), encompassing the two
distinct phenotypes of Crohn’s Disease (CD) and Ulcerative
Colitis (UC), are chronic inflammatory disorders of the
gastrointestinal tract characterized by a dynamic interplay of
genetic, environmental, immunological, and microbial factors
(Zhang and Li, 2014). CD typically exhibits granulomatous
inflammation in different parts of the gastrointestinal tract
(Feuerstein and Cheifetz, 2017), whereas UC primarily affects
mucosal layers of the colon (Ungaro et al., 2017). In both CD
and UC, however, the chronic inflammatory condition displayed
significantly increases the risk of developing various gastrointestinal
malignancies, in which their relation with colorectal cancer is most
extensively studied. Specifically, the inflammatory
microenvironment drives genomic and epigenetic alterations,
introduces oxygen-reactive species and cytokine mediators like
the tumor necrosis factor-alpha (TNF-ɑ) or Interleukins-6 (ILs-
6), and disrupts the intestinal microbiota homeostasis, all of which
accelerates carcinogenesis (Axelrad et al., 2016).

Despite extensive efforts in deciphering the molecular
mechanisms behind various IBD-associated neoplasms, the
relationship between IBD and Small Intestinal Neuroendocrine
Tumors (SI-NET), a malignancy of the specialized
enterochromaffin cells found mainly in the distal small intestine,
remains largely elusive (Gonzáles-Yovera et al., 2022). SI-NET is a
rare cancer with growing prevalence, witnessing a 6.4-fold increased
incidence rate between 1973 and 2012 (Yao et al., 2008). Recent
efforts in uncovering SI-NET pathogenesis primarily lie in
identifying genetic mutations (e.g., copy number variants in
chromosome 18), implicating the role of micro-RNA and
transcriptomes, and exploring several regulatory pathways (e.g.,
PI3K/Akt/mTOR and TGF-β pathways) (Xavier et al., 2016);
however, impacts of other common carcinogenesis’ risk factors,
particularly those above IBD-related such as immune dysregulation,
environmental factors, or microbial compositions, are
mostly unknown.

Currently, the linkage between the two diseases is most
strongly implied through statistical analysis of disease
incidences: a study by Yu et al. (2022) found a 3.5 and 2.3-
fold increased risk of developing SI-NET secondary to CD and
UC respectively. Microbiologically, the intestinal microbiota
composition of IBD and SI-NET shares the depletion of
Faecalibacterium prausnitzii; still, its influence on the disease
phenotypes requires further investigations (Vitale et al., 2021).
Immuno-wise, a possible linkage between IBD and SI-NET lies in
the role of enterochromaffin cells, which are known to participate
in gastrointestinal inflammation and hyperalgesia, proliferating
in both inflamed and non-inflamed areas in IBD (O’Hara et al.,
2004). Moreover, pro-inflammatory cytokines TNF-ɑ and IL-6
are found in gastroenteropancreatic neuroendocrine tumors,
suggesting a role in tumor progression (Mahečić et al., 2020).
Despite a more inhibitory immune microenvironment within SI-
NET, high peri-tumoral immune activities, as observed in CD8+

cell populations, indicate potential immune involvement in
carcinogenesis (Vesely et al., 2022).

This study, through comparison of IBD and SI-NET
molecular profiles, aims to uncover 1) different relationships

between SI-NET and the two different IBD phenotypes, 2) pro-
inflammatory genes and proteins shared by IBD and SI-NET,
particularly in SI-NET pathogenesis and tumor
microenvironment, 3) diagnostic biomarkers and therapeutic
targets in both diseases, and 4) possible biological pathways
and molecular mechanisms that are both expressed in IBD
highly immune-active and SI-NET immunosuppressive
environment. We hypothesized that CD and SI-NET would
have a stronger relationship than UC and SI-NET, considering
the locations of inflammation, the shared immune cytokine
mediators, and incidence rates. Moreover, these shared
dysregulated genes between IBD and SI-NET would partake in
SI-NET tumor microenvironment and tumor-stroma
interactions exacerbated by inflammatory and cytokine-
mediated responses.

2 Materials and methods

2.1 Data curation

Microarray datasets of patients with Crohn’s Disease (CD),
Ulcerative Colitis (UC), and Small Intestinal Neuroendocrine
Tumors (SI-NET) were curated from the Gene Expression
Omnibus (GEO) database (Barrett et al., 2013), a freely-accessible
repository of genomic data. Selected datasets include at least three
mucosal biopsies of diseased and healthy control (HC) samples from
the terminal ileum for CD and SI-NET and the colon for UC.
Additionally, CD and UC samples must be taken from active
inflammatory sites excluding ulcers, and SI-NET samples must
be taken from well-differentiated primary tumors of
enterochromaffin cells. Subsequently, three different datasets,
GSE75214, GSE38607, and GSE65286, corresponding to CD, UC,
and SI-NET respectively, were selected for further analysis.

2.2 Data normalization and preprocessing

Initially, raw data from GEO supplemental files was loaded into
RStudio (version 2024.04.1) for quality control and normalization.
Data from Affymetrix platforms were normalized with the Robust
Multichip Average (RMA) method, which includes a three-step
process of background correction, quantile normalization, and
probe set summarization specialized for Affymetrix microarrays.
RMA preprocessing was performed with the “oligo” (Carvalho and
Irizarry, 2010) Bioconductor package (version 1.68.2). Similarly, for
the Agilent one-color array platform (GSE65286), data was
background corrected, quantile normalized, and log2 transformed
with the “limma” package (version 3.60.3) (Ritchie et al., 2015).
Moreover, quality control was performed with the
“arrayQualityMetrics” package (version 3.60.0), which generated
comprehensive assessments of individual array quality, array
intensity distribution, variance mean dependence, and between-
array comparison (Kauffmann et al., 2009). Finally, normalized
expression matrices were subjected to prefiltering and probe-ID
to gene conversions, in which multiple probes referring to the same
gene were averaged while control and low-quality probes were
disregarded.
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2.3 Comparison of gene expression profiles
of Crohn’s disease, ulcerative colitis, and
small intestinal neuroendocrine tumors

The different relationships between gene expression levels
of CD and SI-NET as compared to UC and SI-NET were
assessed by analyzing the global expression patterns in each
dataset as well as overlaps between differentially expressed
genes (DEGs).

2.3.1 Differential gene expression analysis, principal
component analysis, and bidirectional hierarchical
clustering

In Qlucore Omics Explorer version 3.9 (Qlucore AB, Lund,
Sweden)., expression levels of diseased and HC samples were
differentiated with the Welch t-test, an alternative for the
Student’s t-test that is more suitable for smaller-sized and less
uniformly distributed independent groups. Differentially
expressed genes (DEGs) in all datasets were filtered with an
adjusted p-value <0.01 and a│log2(Fold Change) > 1.5│. After
identifying the DEGs, principal component analysis (PCA) was
performed to visualize the separation between diseased and HC
samples, both before and after differential gene expression analysis.
Additionally, bidirectional hierarchical clustering was employed to
examine expression patterns and identify distinct clusters of DEGs.

2.3.2 Rank-rank hypergeometric overlap
The three unfiltered gene sets of CD, UC, and SI-NET from the

Welch t-test were subjected to further downstream analysis with
rank-rank hypergeometric overlap (RRHO), a threshold-free
method that considers the global transcriptomes of each disease
phenotype (Plaisier et al., 2010). RRHO treated the gene expression
sets as per the hypergeometric distribution (i.e., Fisher’s one-tail
exact test) and calculated whether the observed overlaps are
statistically significant as compared to random chance. In this
approach, gene lists of UC, CD, and SI-NET were ranked based
on the recommended formula (Equation 1), with the most
upregulated genes ranked at the top and the most downregulated
genes at the bottom of the list:

rank � sign log2 Fold change( )[ ]* − log10 unadjusted p − value( )

(1)
The global transcriptomics analysis was performed with the

RRHO R package (version 1.44.0), in which the relationships
between two IBD phenotypes and SI-NET were analyzed with the
“RRHO” function and the statistical significance of the difference
between overlap was further determined with the
“RRHOComparision” function. Next, the relationship strength
between two ranked lists is assessed with Spearman’s ‘rho’
correlation, a substitute for Pearson’s correlation coefficient for
non-parametric data. Finally, RRHO results were validated through
gene set enrichment analysis (GSEA) Kolmogorov-Smirnov statistic-
based procedure, which compares the enrichment of the two
continuous ranked gene lists in one dimension (i.e., one varying
threshold). That is, the ranked gene list of SI-NET is differentiated into
upregulated and downregulated genes before comparison with the
ranked gene lists of CD and UC.

2.3.3 Jaccard similarity index of overlapping DEGs
The Venn diagram tool in Qlucore Omics Explorer was used to

identify common DEGs (co-DEGs) between CD and SI-NET and
UC and SI-NET respectively. DEGs are separated based on the
“direction” of fold change, such that identified co-DEGs are
commonly upregulated or downregulated in both disease states.
Subsequently, the overlaps between CD and SI-NET versus the
overlaps between UC and SI-NET were compared with the Jaccard
Index (Equation 2), a mathematical measurement of the similarities
of two different sets.

J A, B( ) � a ∩ b

a ∪ b
(2)

The Jaccard similarity index accounts for the different in dataset
sizes between CD, UC, and SI-NET. By comparing the list of DEGs
in each cohort directly, we aimed to capture the more specific
biological relationships between IBD and SI-NET.

2.4 Enrichment analysis of biological
pathways and functional annotations

The lists of DEGs in CD, UC, and SI-NET as well as
overlapping RRHO genes are subjected to downstream
enrichment analysis to elucidate the biological mechanisms
underlying changes in gene expression in each disease state. In
detail, gene set enrichment analysis (GSEA), a commonly used
algorithm to detect pathway-level changes, was used to determine
whether genes within a biological pathway are consistently up-or
downregulated in each condition. Complementing GSEA results,
over-representation analysis (ORA) was performed to identify
functional categories associated with sets of genes and,
henceforth, provide insights into the biological and
biochemical properties as well as cellular locations that
characterize the gene sets.

2.4.1 Gene set enrichment analysis
GSEA was performed in Qlucore Omics Explorer’s GSEA

workbench and the Reactome package
(c2.cp.reactome.v2023.2.Hs.symbol) curated from the Molecular
Signature Database (MSigDb) (Subramanian et al., 2005; Liberzon
et al., 2011). Currently, the Reactome package includes the greatest
number of gene sets among Canonical Pathways in MSigDb, accounting
for more specific biological processes. In addition to Reactome pathways,
the immune gene sets (c7.immunesigdb.v2023.2.Hs.symbol) were also
downloaded to further characterize the immunological landscape of SI-
NET and elucidate potential overlapping pathways with IBD.

Considering that the number of samples analyzed in this
study is limited and has a direct negative effect on the q-value
false discovery rate (FDR) computed by GSEA (i.e., pathways
with normalized enrichment score (NES) >│1.5│ and
p-values <0.025 yet FDR >0.25), statistically significant
biological pathways are determined as those with an NES >
│1.5│ and a more relaxed FDR <0.45. Afterward, pathways
were ranked based on NES, which ideally accounts for the
difference in gene set sizes and correlations with phenotypes
across gene sets.
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2.4.2 Over representation analysis
ORA was performed in the Database for Annotation,

Visualization, and Integrated Discovery (DAVID) to determine
gene ontology (GO) terms related to the dysregulated genes of
CD, UC, and SI-NET identified by RRHO (Huang et al., 2009;
Sherman et al., 2022). GO terms were subdivided into biological
process (BP), cellular component (CC), and molecular function
(MF) (Aleksander et al., 2023; Ashburner et al., 2000). Statistically
significant GO terms were required to meet a Benjamini–Hochberg
FDR <0.05 and were ranked based on statistical significance.

2.5 Network analysis

2.5.1 Protein-protein interaction network
construction

The protein-protein interaction network (PPI) of the co-DEGs
between CD and SI-NET andUC and SI-NETwas constructed through
the Search Tool for the Retrieval of Interacting Genes (STRING) web-
based platform version 12.0 (Szklarczyk et al., 2019). A medium
confidence score of 0.400 was set. The PPI network was then
transferred to the Cytoscape software version 3.10.1 for visualization
(with Cytoscape yFile Layout Algorithm version 1.1.3.) and further
topological analysis (Shannon et al., 2003).

2.5.2 Sub-network and topological analysis of PPI
Molecular Complex Detection (MCODE) version 2.0.3, a

Cytoscape add-on, was used to identify densely connected
modules (Bader and Hogue, 2003). The parameters were as
follows: degree cut-off = 2, node score cut-off = 0.2, K-core = 2,
max. depth = 100. Additionally, modules with an MCODE score of
less than five were discarded. Another Cytoscape plug-in,
cytoHubba version 0.1, was used to identify hub genes (Chin
et al., 2014). Considering the small scale of each PPI network,
only the top five genes were identified based on the Maximal
Clique Centrality (MCC) algorithm, which produced the most
accurate results in a yeast PPI simulation out of the
11 topological analyses presented by cytoHubba.

2.5.3 Enrichment analysis of protein interactions
The Cytoscape stringApp (version 2.1.1) group-wise functional

enrichment tool was used to identify the biological functions of the
individual and clustering proteins in the PPI network (Doncheva
et al., 2019). String Enrichment employs an ORA-based method to
identify significant biological pathways from 11 commonly used
functional path classification frameworks; among which, we focused
on GO terms and Reactome pathways to determine the biological
relevance of the interaction networks and easier compare with other
enrichment analysis results.

2.5.4 Transcriptional and post-transcriptional
network regulating hub genes

The correlation between IBD and SI-NET was finally analyzed at
the transcriptional and post-transcriptional level through network
analysis of transcription factors (TFs) and microRNAs (miRNA)
regulating identified hub genes. JASPAR 9th edition is an open-
access database of transcription factors for six taxonomic groups
(Castro-Mondragon et al., 2022). DIANA-TarBase version eight is

one of the largest micro-RNA (miRNA) interaction databases,
encompassing roughly 670,000 miRNA target pairs (Karagkouni
et al., 2018). JASPAR and DIANA-TarBase, along with
NetworkAnalyst version 3.0 (Zhou et al., 2019), a web-based
platform for topological analysis of gene expression data, was
used to identify significant TF and miRNA associated with the
top five hub genes in each of the four PPI networks. Cytoscape was
used to merge, visualize, and identify critical TF and miRNA.

3 Results

3.1 Molecular signatures of CD, UC, and
SI-NET

After data normalization and quality control, all active UC
samples primary SI-NET samples, and their relative HC were
selected for subsequent analyses. However, four samples
(GSM1845783, GSM1945790, GSM1945798, and GSM1945832)
from the CD dataset were identified as outliers with
“arrayQualityMetrics”. These samples present with potential
technological biases and therefore, are removed from further
downstream analyses. With a statistical threshold of q-value
FDR <0.01 and │log2(Fold Change) > 1.5│, a total of
1169 DEGs (675 upregulated and 494 downregulated) were
identified between CD versus controls. Similarly, 2331 DEGs
(1397 upregulated and 934 downregulated) and 4302 DEGs
(2178 upregulated and 2124 downregulated) were identified in
the UC and SI-NET cohorts respectively. The complete list of
DEGs is documented in Supplementary Table S1.

Principal component analysis, an unsupervised dimensionality
reduction method, indicated that diseased and healthy control
tissues are more easily differentiated post differential expression
analysis, with the principal component 1 effectively capturing 58%,
64%, and 71% of the total variance in the data of CD, UC, and SI-
NET respectively (Figures 1A–C). Bidirectional hierarchical
clustering (Figures 1G–I) also depicted a clear separation between
expression levels of the top 50 DEGs in CD, UC, and SI-NET; still,
two control samples displayed a similar expression profile to CD.
These samples were still included for subsequent analysis,
considering there is no evidence of technical errors and that the
sample may provide insightful biological gene expression of normal
ileum mucosa. This is because when adjusting for a higher q-value
FDR and │log2(Fold Change)│, the samples were grouped among
controls rather than CD. Figure 1 also displays the volcano plots of
the top four DEGs with highest FDR and fold change in each disease
state (Figures 1D–F), and Table 1 contains information on the
selected dataset such as microarray platform, number of probe IDs,
number of genes after conversion, and number of samples selected
for analysis.

3.2 Comparison of the molecular
relationship between CD and SI-NET versus
UC and SI-NET

The ranked, unfiltered gene lists of each disease were compared
with rank-rank hypergeometric overlap (RRHO) in RStudio. RRHO
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FIGURE 1
Molecular signatures of CD, UC, and SI-NET (A–C): PCA plots comparing diseased and control samples. The PCA plots for CD, UC, and SI-NET
respectively indicate clear separation across samples from all three diseases and their respective control groups, with a high percentage of variance
explained by principal component 1. (D–F): Volcano plots of differential expression analysis. The volcano plots depict the top four differentially expressed
genes (DEGs) with both high fold change and statistical significance. (G–I): Bidirectional hierarchical clustering heatmaps of the top 50 DEGs. The
heatmaps show genes with the highest fold change and cluster samples based on similarity of expression levels. Two control samples are grouped among
CD samples, indicating potential misclassification, biological variability, or a distinct subgroup of control samples that exhibit similar gene expression
patterns to CD. These samples, nonetheless, are grouped among other controls when adjusting for higher q-value and fold change, eliminating the
possibility of misclassification. The complete list of DEGs are listed in Supplementary Table S1.
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calculates the statistical significance of the coordinated changes in
expression profiles of two gene sets with the hypergeometric
distribution and the Spearman’s correlation coefficient. The most
significant overlap in both UC and CD with SI-NET was seen in the
dark blue-colored regions of the top-right quadrant of the RRHO
heatmap (Figures 2A, B), which represents downregulated genes.
However, UC downregulated genes, as indicated in the lighter blue
regions, also have significantly more overlap with SI-NET
upregulated genes than CD downregulated genes. Noteworthily,
“RRHOComparision” results found several clusters of genes ranked
at the top between UC and SI-NET while at the bottom between CD
and SI-NET (Figure 2C), indicating potentially different molecular
mechanisms. Overall, a stronger relationship between CD and SI-
NET was found compared to UC and SI-NET, with a computed
rank-rank scatter Spearman rho of 0.192 (Figure 2D) and 0.125
(Figure 2E), respectively. CD and SI-NET share a total of 4488
overlapping significant genes, while UC and SI-NET share 3236.
Verification of RRHO results through gene set enrichment analysis
(GSEA) Kolmogorov-Smirnov statistic indicated similar trends:
between CD and SI-NET, a higher magnitude normalized
enrichment score (NES) of −1.46 (FDR = 0.059829) was
computed for matches (8217/10532) in downregulated genes,
while the statistics are 1.38 (FDR = 0.090226) and 7910/
10531 matches in upregulated genes (Figures 2F, G). Comparing
the ranked gene lists of UC and SI-NET, a higher NES score of 1.47
(FDR = 0.029005) was seen among upregulated genes (8213/
10531 matches) as compared to downregulated genes
(NES = −1.14, FDR = 0.24477, and matches = 8413/10532),
which accounts for the large overlap between downregulated UC
DEGs with upregulated SI-NET DEGs (Figures 2H, I). Overall, both
RRHO and GSEA suggest a moderate molecular relationship
between both IBD phenotypes and SI-NET regarding gene
expression levels.

In addition to comparing the whole transcriptomes of IBD and
SI-NET, we also compare the lists of DEGs and compute the Jaccard
Index (JI). Similar to RRHO results, there is a weaker correlation
among upregulated genes (JICD = 0.0263 and JIUC = 0.0450) than
downregulated genes (JICD = 0.1046 and JIUC = 0.1052). Though, a
comparison of overlapping DEGs indicated that there is a stronger
relationship between UC and SI-NET (overall JIUC = 0.0719) as
compared to CD and SI-NET (overall JICD = 0.0623), which is
different from RRHO results. Among the shared dysregulated genes,
101 downregulated (23%) and 40 upregulated (21.4%) genes are
found in both CD, UC, and SI-NET, indicating strong similarities
between overlapping dysregulated genes of CD and SI-NET with
that of UC and SI-NET. The discrepancies in JI analysis versus that
of RRHO and GSEA imply that while there might be generally
stronger similarities in transcriptome-wide gene expression profiles
of CD and SI-NET, certain biological pathways might be more

tightly linked between UC and SI-NET, considering a higher overlap
of DEGs. The Venn diagrams of overlapping genes are displayed in
Figures 2J, K while the complete lists of co-DEGs are documented in
Supplementary Table S2.

Next, we compared the functional annotations related to the
significant overlapping gene lists (identified by RRHO) of CD and
SI-NET versus that of UC and SI-NET through over-representation
analysis (ORA) of gene ontology (GO) terms, including biological
processes (BP), cellular components (CC), and molecular functions
(MF). A total of 127 GO terms (42 BP, 69 CC, and 16 MF) were
enriched among the overlaps between upregulated genes of CD and
SI-NET, whereas only 44 GO terms (11 BP, 26 CC, and 7 MF) were
identified as statistically significant among downregulated genes
(Supplementary Table S3). Between UC and SI-NET,
61 upregulated GO terms (8 BP, 40 CC, and 13 MF) and
28 downregulated GO terms (7 BP, 16 CC, and 5 MF) were
found (Supplementary Table S4). We identified significant
overlaps among the enriched functional annotations between GO
terms of UC, CD, and SI-NET. Seven out of eight enriched GO
processes are shared among all CD, UC, and SI-NET, most
significantly “collagen fibril organization,” “cell adhesion,” and
“extracellular matrix organization.” Among the top five enriched
BP terms in CD and SI-NET upregulated genes, only “cilium
assembly” was not found in UC. The term “microtubule
cytoskeleton organization” is exclusively shared between UC and
SI-NET. For GO components and GO functions, the top three CC
terms in both overlapping lists are “nucleoplasm,” “cytosol,” and
“cytoplasm” while the top 2 MF terms are “protein binding” and
“extracellular matrix structural constituent.”

Similarly, the downregulated genes in either CD or UC that
overlap with SI-NET partake in various metabolic processes,
namely, “xenobiotic metabolic process,” “fatty acid metabolic
process,” and “fatty acid beta-oxidation.” The main difference
between shared biological pathways is that downregulated genes
in CD and SI-NET also participate in various cholesterol and
lipoprotein metabolic processes, whereas the rest of the genes
shared between UC and SI-NET are more related to cellular
energy metabolism and transport processes. The enriched GO
components, however, differ: the top three enriched CC terms in
CD are “apical plasma membrane,” “extracellular exosome,” and
“brush border membrane,” whereas in UC, the “mitochondrion,”
along with “mitochondrial matrix” and “mitochondrial inner
membrane” play the most essential roles. Three shared GO
functions are identified across all diseased states, including “RNA
polymerase II transcription factory activity, ligand-activated
sequence-specific DNA binding,” “PDZ domain binding,” and
“flavin adenine dinucleotide binding.” Interestingly, the GO MF
terms “protein binding” or “identical protein binding” were
significantly represented in both sets of upregulated and

TABLE 1 Characteristics of the GEO datasets.

GSE GPL Microarray platform Probes Genes Samples Reference

75214 6244 Affymetrix Human Gene 1.0 ST Array 33297 20818 48 active CD & 10 HC Vancamelbeke et al. (2017)

38713 570 Affymetrix Human Genome U133 Plus 2.0 Array 54675 22486 15 active UC & 13 HC Planell et al. (2013)

65286 4133 Agilent-014850 Whole Human Genome 4 × 44K 45220 19750 10 primary SI-NET & 10 HC Andersson et al. (2016)
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FIGURE 2
Comparison of gene expression between IBD Subtypes and SI-NET (A–C): RRHO results comparing transcriptome-wide expression pattern
between CD and SI-NET, UC and SI-NET, and the overlap of CD/SI-NET and overlap of UC/SI-NET shows highest overlap among downregulated genes
(dark-blue colored). The accompanying color legend indicates the -log (p-value) of the region. Comparison of the overlap between CD/SI-NET and UC/
SI-NET indicates that several clusters ranked at the top in UC and SI-NET are ranked at the bottom in CD and SI-NET, highlighting possible different
biological mechanisms. (D,E): scatter plot with the Spearman’s correlation coefficient (rho) of the overlap between CD and SI-NET and UC and SI-NET.
Higher rho value between CD and SI-NET compared to UC and SI-NET suggests a closer molecular relationship between CD and SI-NET. (F–I): GSEA
validation of RRHO results, indicating higher similarity among downregulated genes between CD and SI-NET (NES = −1.46), whereas higher similarity
among upregulated genes between UC and SI-NET (NES = 1.47). (J,K): Venn diagram of overlapping differentially expressed genes between CD, UC, and
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downregulated genes across all disease states, highlighting the
fundamental roles of protein interactions in the molecular
pathology of CD, UC, and SI-NET.

The top three functional terms, along with the number of genes
matches and Benjamini–Hochberg FDR, in each category (BP, CC,
andMF) of the up-and downregulated genes shared between CD/SI-
NET and UC/SI-NET are documented in Tables 2, 3 respectively.

3.3 Gene set enrichment analysis reveals two
distinct biological pathways differentiating
CD and SI-NET versus UC and SI-NET
relationships

We performed Gene Set Enrichment Analysis (GSEA) on the
complete ranked gene lists in each disease to identify relevant
biological pathways in the Reactome repository. With the
conventional statistical threshold of FDR <0.25, only three
significantly enriched pathways were identified in the ranked
gene list of SI-NET and two in CD. Recognizing the negative

impact of small sample sizes on statistical power, we used a more
lenient cutoff of NES > │1.5│ and FDR <0.45 to identify biologically
relevant gene sets, yielding a broader set of enriched pathways: 90 in
SI-NET (Supplementary Table S5), 67 in CD (Supplementary Table
S6), and 199 in UC (Supplementary Table S7).

Thereafter, these pathways were compared to identify biological
relationships between two IBD phenotypes and SI-NET at a systems
biology level. Two pathways, namely, “Defective C1galt1c1 Causes
Tnps” and “Interleukin 12 Family Signaling,” are strongly
upregulated in CD and UC while downregulated in SI-NET
(Figures 3A–F). Additionally, the regulation of several other
pathways, including “Pyroptosis,” “Azathioprine Adme,” “Acyl
Chain Remodeling Of Pg,” “Interleukin 12 Signaling,” and
“Regulation Of Signaling By Cbl,” differs between UC and SI-
NET. The contrasting regulation in these pathways indicates
different biological mechanisms in IBD and SI-NET, particularly
in several immune responses, cell death, and metabolic processes.
Contrarily, we also identified two pathways with the same direction
of regulation: “Cilium Assembly” (CD and SI-NET) and “Ncam
Signaling for Neurite Outgrowth” (UC and SI-NET) are both

TABLE 2 Top three enriched pathways among upregulated and downregulated overlapping genes between CD and SI-NET.

Regulation Category Term Count Benjamini

Upregulate GO BP Collagen fibril organization 33 5.90E-7

Extracellular matrix organization 59 1.00E-6

Angiogenesis 81 1.80E-6

Downregulate Cholesterol metabolic process 24 5.80E-6

Xenobiotic metabolic process 27 1.50E-5

Lipid metabolic process 37 3.10E-4

Upregulate GO CC Cytoplasm 1128 8.30E-19

Cytosol 1073 1.20E-12

Nucleoplasm 798 6.20E-12

Downregulate Apical plasma membrane 78 9.30E-21

Extracellular exosome 221 3.00E-14

Brush border membrane 25 3.90E-14

Upregulate GO MF Protein binding 2447 1.50E-29

Extracellular matrix structural constituent 62 5.30E-15

RNA binding 352 2.20E-9

Downregulate Protein binding 917 1.30E-7

RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding 18 1.70E-5

Zinc ion binding 95 5.60E-4

FIGURE 2 (Continued)

SI-NET. These numbers are then used to compute the Jaccard similarity index, in which the index of UC and SI-NET (0.0719) is higher than of CD and
SI-NET (0.0623). This shows that while CD and SI-NET might share a closer transcriptomic pattern, UC and SI-NET would share more exclusive
dysregulated genes and biological pathways.
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significantly upregulated (Figures 3G–J). GSEA statistical metrics,
including number of matches, enrichment scores, and false
discovery rates, for these two pathways are documented in
Figures 3K, L. The identification of “Cilum Assembly’’ shared
between CD and SI-NET through GSEA further corroborated
with ORA results, which also identifies cilium assembly as the
most significant pathway exclusively between CD and SI-NET.
Thus, enrichment results suggest that ciliary function plays an
indispensable role in the pathogenesis of both disease states,
possibly through regulating cellular signaling and tissue integrity.
In addition, UC and SI-NET shares the upregulation of NCAM
signaling, which participates in neuronal structural developments
and signaling, as well as cell adhesion. The enrichment of NCAM
signaling and neuronal functions possibly reflects the neuroimmune
interactions through the gut-brain axis in UC and neuroendocrine
differentiation in SI-NET.

3.3.1 Memory B Cells are core attributes of IBD and
SI-NET immune responses while CD4+ helper
T Cells, macrophages, and dendritic cells further
characterize UC and SI-NET relationship

Given that the role of immune responses in SI-NET
carcinogenesis is largely unexplored, we used GSEA to identify
enriched immunological pathways in dysregulated SI-NET genes,
focusing on common immune mechanisms with IBD. The “C7:
immunologic signature gene set” includes gene expression observed
across various immune cell types, states, and perturbations. Here, we
identified 27 enriched gene sets for SI-NET, 486 for CD, and

1285 for UC with a statistical threshold of NES > │1.5│ and
FDR <0.45. Interestingly, no statistically significant
downregulated gene sets were identified, despite the prevailing
notion of an immunosuppressive environment in SI-NET.
Among the significant pathways, one of them was common
across all conditions, while UC and SI-NET shared four
additional pathways. The complete list of dysregulated immune
pathways and relevant statistical metrics for SI-NET, CD, and UC
are recorded in Supplementary Tables S5–S7 accordingly.

The shared upregulation of genes from “GSE11961: Plasma Cell
Day 7 Vs. Memory B Cell Day 40 Downregulated” demonstrates a
consistent immunological relevance across CD, UC, and SI-NET,
with robust NESmetrics of 1.94, 1.7, and 1.59 respectively. This gene
set contains genes downregulated in plasma cells at day 7 but
upregulated in Nitrophenyl-specific/IgG1-expressing memory
B cells at day 40, indicating a strong connection to memory
B cell development in all three diseases (Kaji et al., 2012). In
addition to memory B cells, UC and SI-NET share similar
molecular profiles in the regulation of macrophages, dendritic
cells (DC), and CD4+ Th1. Specifically, the gene set “GSE19941:
Unstimulated Vs. Lipopolysaccharide- & IL-10-Stimulated In
Nfkb1−/−Il10−/− Macrophage Upregulated” (Yang et al., 2011) was
particularly represented among upregulated genes in UC (NES =
1.52) and SI-NET (NES = 1.57). These genes are upregulated in
macrophages lacking NFKB1 and IL10 compared to those
stimulated with IL-10 and Lipopolysaccharide, which activates
NFKB1 expression. This indicates a hyperactive inflammatory
state driven by dysregulated NF-kB signaling in macrophages,

TABLE 3 Top three enriched pathways among upregulated and downregulated overlapping genes between UC and SI-NET.

Regulation Category Term Count Benjamini

Upregulate GO BP Collagen fibril organization 23 1.50E-3

Cell adhesion 101 1.50E-3

Microtubule cytoskeleton organization 36 3.20E-3

Downregulate Xenobiotic metabolic process 22 2.50E-6

Fatty acid beta-oxidation 15 2.50E-6

Tricarboxylic acid cycle 12 3.40E-5

Upregulate GO CC Nucleoplasm 571 3.10E-11

Cytosol 743 1.60E-09

Cytoplasm 754 1.60E-09

Downregulate Mitochondrion 112 5.50E-13

Mitochondrial matrix 42 3.30E-07

Mitochondrial inner membrane 47 3.30E-07

Upregulate GO MF Protein binding 1716 9.80E-28

Extracellular matrix structural constituent 42 3.50E-8

RNA binding 136 5.90E-5

Downregulate Identical protein binding 100 1.40E-2

RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding 11 1.50E-2

Transferase activity, transferring acyl groups 10 2.20E-2
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FIGURE 3
Gene set enrichment analysis identifies common pathways between IBD and SI-NET (A–F): Pathways that are upregulated in IBD while
downregulated in SI-NET, including “Defective C1GALT1C1 Causes TNPs” and “Interleukin 12 Family Signaling.” These pathways indicate different
mechanisms related to C1GALT1C1-mediated glycoprotein synthesis and inflammatory signaling through Interleukin 12. (G–J): Pathways that are
common between SI-NET and each IBD subtypes. CD and SI-NET share the upregulation of “Cilium assembly,” implicating the role of ciliogenesis,
particularly ciliary signaling, in the pathogenesis of these two diseases. UC and SI-NET share the upregulation of “NCAM Signaling Neurite Outgrowth,”
which resembles a potential gut-brain axis in these two diseases. (K,L): Statistical metrics related to the common pathways between IBD and SI-NET.
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FIGURE 4
Protein Interactions and Network Analysis of co-DEGs Between CD and SI-NET (A,B): Protein-protein interaction (PPI) network of upregulated (red color
palette) and downregulated genes (blue color palette) shared between CD and SI-NET respectively. The darker tone indicates node (protein) with higher degree
(interaction), and thicker edge indicates stronger relationship. The inner circle includes the most essential genes in the network. For visualization, the
downregulated network only contains geneswith at least 3°. (C–F): Significant densely connected regions in the PPI network identified through theMCODE
algorithm (red colors are upregulatedmodules and blue colors are downregulatedmodules). The darker nodes are the seed nodes (central-most important node)
in the network. The color of the borderline resembles related significant enrichment terms. Overall, enrichment analysis indicates that the upregulated module
mainly involves “Response to Stimulus” and “Immune System,” whereas the three other downregulated modules are related to various “Primary and Cellular
Metabolic Processes.”While the upregulated genes in CD and SI-NET involve IL-6mediated immune responses,many of the other genes are substantially related
to the extracellular matrix (ECM), particularly fibroblast activation (FAP, COL3A1, TIMP1).
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particularly due to the loss of IL-10 suppression and the NFKB1
(p50) subunit. Similarly, gene expression patterns in UC and SI-
NET suggest proactive immune responses in DC, where upregulated
DEGs in UC and SI-NET correspond with upregulated genes in CpG
DNA—an agonist of Toll-Like Receptor 9 (TLR9) that are
recognized by the immune system as bacterial or viral
DNA—stimulated DC compared to wild-types DC (GSE17721:
Control 0 h Vs. CpG 0.5 h Dendritic Cells Downregulated)
(Amit et al., 2009).

In both UC (NES = 1.56) and SI-NET (NES = 1.56), we observed
an upregulation of genes associated with wild-type Th1 CD4+ cells
compared to Erg2−/− cells, as indicated by the gene set analysis from
“GSE46242: Control vs. Erg2 Deleted Th1 CD4+ T Cells
Upregulated” (Zheng et al., 2013). This upregulation corresponds
to genes typically expressed in Th1 cells expressing Erg2, which are
known to induce T cells’ anergy and contribute to peripheral
tolerance. Despite the marked immunoreactivity seen in memory
B cells, macrophages, and dendritic cells, the similar upregulation in
Erg2-active Th1 cells may suggest a compensatory mechanism in
UC aimed at reducing chronic inflammation. Additionally, this
could reflect an adaptive strategy in the SI-NET
microenvironment to evade immune surveillance through
enhanced peripheral tolerance. Interestingly, comparing gene
expression between macrophages and effector memory CD4+

cells using the ‘GSE3982: Macrophages vs. Effector Memory
CD4+ T Cell Downregulated’ set shows that the upregulated
genes in UC and SI-NET resemble the downregulated genes in
macrophages (Jeffrey et al., 2006). This suggests stronger CD4+

immunosuppressive responses (peripheral tolerance) than
proinflammatory responses mediated by macrophages with IFN-β.

3.4 Protein-protein interaction networks
identifies central protein complexes in CD,
UC, and SI-NET pathogenesis

Because enrichment analysis reveals that protein-protein
interactions play an essential role in the disease pathogenesis of
both IBD and SI-NET, we constructed protein interaction networks
(PPI) among the overlapping DEGs as separated by direction of
change. Hence, four interaction networks were generated with
STRING-db and were inputted in Cytoscape for further
subnetwork and topological analyses. Each node in the network
represents a protein and each edge represents an interaction between
two proteins. We thus filtered nodes that are not a part of the largest
sub-network (that is, in our PPI networks, nodes that have no
interactions or two nodes that have one, bidirectional interactions).
Finally, we performed enrichment analysis to identify the biological
function of the protein interactions in these densely connected
submodules, and the complete list of functional annotations are
listed in Supplementary Table S8.

Among the upregulated genes shared between CD and SI-NET,
STRING-db generated a network containing 73 nodes and 82 edges
(Figure 4A). Next, the MCODE algorithm was used to identify
protein modules within the network (Figure 4C). MCODE identified
one protein complex with a score of (5.25) that includes nine
proteins and 21 interactions, among which, Interleukin-6 (IL-6)
is the seed node. We then performed enrichment analysis to identify

the molecular function of the identified protein complex, which
participated in the process of “regulation of response to stimulus”
and “immune system.” Similar to previous over-representation
analysis, the gene products are mainly found in “extracellular
space” and “endoplasmic reticulum.” The identification of this
module as the most significant protein complex in the network
and subsequent functional annotation unveil a shared upregulated
immune mechanism behind CD and SI-NET that is particularly
mediated by IL-6 in the extracellular space and the endoplasmic
reticulum. In addition, we also found related molecular mechanisms
amongst UC and SI-NET PPI of upregulated genes. The PPI
contains 154 proteins and 144 interactions (Figure 5A), and sub-
network analysis also found one significant module with an
MCODE score of 7 (9 nodes and 28 edges) (Figure 5C). This
subnetwork and that of CD and SI-NET both contain COL3A1,
IGFBP7, THY1, and TIMP1, proteins that are crucial for
extracellular matrix organization, tissue repair, and cell adhesion.
These proteins might be particularly essential in cilium assembly
and neuronal structural developments, which are significant shared
pathways identified with GSEA. Enriched GO BP terms also
supported such a notion, indicating that the protein complex
notion, indicating that the protein complex shared between UC
and SI-NET is heavily involved in “multicellular organism
development” and “system development.” Thus, the main
difference between the upregulated protein networks of CD and
SI-NET vs. UC and SI-NET is the larger involvement of IL-6-
dependent immune responses presented in CD and SI-NET.

We identified much larger networks among downregulated PPI,
which reflects the larger overlap among downregulated genes
identified with RRHO and GSEA. Specifically, the network
constructed based on shared downregulated genes of CD and SI-
NET involves 246 nodes and 569 edges (Figure 4B). Subsequently,
three protein complexes with strongly related molecular functions
were identified with MCODE. Cluster 1 (Figure 4D) (MCODE = 9)
includes 11 proteins and 45 interactions, and is most significantly
involved in “metabolism” (i.e., “primary metabolic process” and
“cellular metabolic process”), “chemical homeostasis,” and
“multicellular organismal process.” Cluster 2 (Figure 4E)
(MCODE = 6.25, nodes = 9, edges = 25) is more involved in
enzymatic activities that regulate protein catabolism and formation,
such as “peptidase activity” or “proteolysis”. Moreover, analysis at the
molecular level indicates that these proteins partake in the bindings of
metal and zinc ions, which play essential roles in the formation and
structural stabilization of the peptidase enzyme family. The last
Cluster 3 (Figure 4F) (MCODE = 5.636, nodes = 12, edges = 31)
located in the PPI network of CD and SI-NET downregulated genes
includes proteins related to “transmembrane transporter activities” in
the “cell periphery”, primarily of “small molecules” and “organic
substances”. The molecular processes in Cluster three are critical for
nutrient importation and waste product exportation, which are
fundamental to metabolism. Similar to CD, the PPI network
(290 proteins, 480 interaction) (Figure 5B) of overlapping
downregulated genes of UC and SI-NET are heavily involved in
metabolism with two Clusters found. However, instead of protein
metabolisms, Cluster 1 (Figure 5D) of UC (MCODE= 10.167, nodes =
13, edges = 61) participates more in the metabolism of
monocarboxylic, lipid, and fatty acid. Moreover, these proteins are
mainly found in the mitochondrion and are molecularly involved in
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FIGURE 5
Protein interactions and network analysis of co-DEGs between UC and SI-NET (A,B): Protein-protein interaction (PPI) network of
upregulated (red color palette) and downregulated genes (blue color palette) shared between UC and SI-NET respectively. The darker tone
indicates node (protein) with higher degree (interaction), and thicker edge indicates stronger relationship. The inner circle includes the most
essential genes in the network. For visualization, the downregulated network only contains genes with at least 3°. (C-E): Significant densely
connected regions in the PPI network identified through the MCODE algorithm (red colors are upregulated modules and blue colors are
downregulated modules). The darker nodes are the seed nodes (central-most important node) in the network. The color of the borderline
resembles related significant enrichment terms. Overall, enrichment analysis indicates that the upregulated module mainly involves “Systems

(Continued )
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catalytic activity. The othermodule, Cluster 2 (MCODE= 5.2, nodes =
6, edges = 13) (Figure 5E), plays a broader role in regulatingmolecular
functions, such as the ion channel or the guanylate cyclase. To
conclude, analyzing the protein interaction mechanisms of
downregulated genes reveals different metabolic processes: while
CD and SI-NET downregulated genes are more involved in
protein catabolism, UC and SI-NET downregulated genes regulate
the process of lipid metabolism and catalyst activities.

3.4.1 Molecular functions and regulatory network
of central proteins in CD and SI-NET

Aside from evaluating the biological properties of important
protein complexes, we also found significant proteins (i.e., hub
genes) that have a large impact on the PPI network. These
proteins would display strong interactions with many other
proteins in the network, which are usually reflected through the
degree and strength of interaction. Here, we used the MCC
algorithm to identify the top five most important nodes in the
four PPI networks. Among the upregulated nodes shared between
CD and SI-NET, four of the five hub genes are presented in the one
protein complex identified, with COL5A2 as the only exception
(Figure 6A). The other four genes include COL3A1, IL6, THY1, and
TIMP1. Henceforth, the biological functions of these hub genes
would be closely similar to the description of protein modules,
underscoring the dynamic interaction between immune responses
(IL6), collagen-fibril organization in the extracellular matrix
(TIMP1, COL3A1, and COL5A2), and cell-cell or cell-
extracellular matrix interactions (THY1). Unsurprisingly, the five
central downregulated hub genes (APOB, G6PC, MLXIPL, PCK1,
and PPARGC1A) are all seen in Cluster 1 (the central-most module
in the network) of CD and SI-NET downregulated PPI (Figure 6B).
Interestingly, these downregulated hub genes share a closer
biological function with the modules identified by downregulated
genes shared between UC and SI-NET, such as lipid metabolism.

We assessed the expression levels of these central genes among
diseased and control cohorts with Violin plots to further validate
their significance before analyzing their regulatory networks
(Figures 6C–V). Thereafter, we constructed a hub gene-regulatory
network with NetworkAnalyst to identify transcription factors (TF)
and micro- RNA (miRNA) that associate with the hub genes.
Among the upregulated hub genes, 301 miRNA and TF have
567 interactions with the five hub genes (Figure 6X), and among
them, 15miRNAs interact with all five hub genes and 1 TF (YY1) has
strong connections with four of the five hub genes (all but COL5A2).
Surprisingly, we only discovered two miRNA (MIMAT0000422 and
MIMAT0000414) that engage with all downregulated hub genes and
1 TF (SRF) connecting with three hub genes (APOB, MLXIPL, and
PCK1) in a network of 168 miRNA and TF that have
258 interactions with the hub genes (Figure 6X). MIMAT000414,
however, is also identified among the 15 miRNAs that regulate all

five upregulated hub genes, suggesting dual regulation and
significant modulatory effects on the biological pathways shared
between CD and SI-NET.

3.4.2 Molecular functions and regulatory network
of central proteins in UC and SI-NET

Recognized upregulated (BGN, COL3A1, COL4A1, COL5A2,
and TIMP1) (Figure 7A) and downregulated (ACADS, ACADM,
CPT1A, CPT2, and HADHA) (Figure 7B) hub genes by MCC in UC
and SI-NET PPI network are all observed in previously identified
MCODE clusters (Cluster 1 of each group). Noteworthily, three of
the five upregulated hub genes in UC, namely, COL3A1, COL5A2,
and TIMP1, are also identified among the PPI network of CD and
SI-NET. These genes represent the most significant shared
molecular mechanisms between CD, UC, and SI-NET, which is
the involvement of tissue remodeling and cell adhesion. The main
difference, nonetheless, involves the presence of immune proteins
like IL-6 in the upregulated hub genes and modules of CD,
indicating possible involvements of immune responses exclusively
shared between CD and SI-NET. Among the downregulated hub
genes, we did not identify any overlapping genes.

Similar to CD and SI-NET hub genes, assessments of UC and SI-
NET hub genes as candidate markers for each disease were
determined with Violin plots of their expression levels (Figures
7C–V), which indicates a clear difference between diseased versus
control groups. The construction of regulatory networks by
NetworkAnalyst identified 345 TFs and miRNAs sharing
650 connections with the upregulated hub genes (Figure 7W) and
325 TFs andmiRNAs having 554 interactions with the downregulated
hub genes (Figure 7X). We found 18 miRNAs that regulate all five
upregulated hub genes and 1 TF (YY1) that regulate three of the five
hub genes (COL3A1, COL4A1, and TIMP1). Among the
downregulated hub genes, three miRNAs, including
MIMAT0000983, MIMAT0000226, and MIMAT0000267, interacts
with all hub genes, and 1 TF (NFIC) regulates all but ACADS.
Noteworthily, the miRNA MIMAT0000226 is related to all ten
hub genes (both up- and down-regulated) of UC and SI-NET,
suggesting a dual role in the regulatory networks and the disease
pathogenesis of UC and SI-NET.

Remarkably, we identified YY1 as having the most interactions
among all TFs in both upregulated regulatory networks of CD/UC
and SI-NET. This TF plays an essential role in regulating collagen
fibrosis-related genes (COL3A1, COL4A1, TIMP1), immune-related
gene (IL6), and cell-extracellular matrix interaction regulatory gene
(THY1), which are all key pathways shared between IBD and SI-
NET demonstrated by enrichment analysis. Moreover, 11 miRNAs
are shared between the two upregulated regulatory networks. Thus,
YY1, alongside with the 11 shared miRNAs between CD, UC, and
SI-NET regulated networks, possibly play essential roles as
candidate markers in both IBD and SI-NET.

FIGURE 5 (Continued)

Development” and “Multicellular Organism Development” whereas the two other downregulated modules are related to “Fatty Acid and Lipid
Metabolism.”Many of the upregulated genes are essential components in the extracellular matrix (ECM), indicating significant involvement of the ECM in
UC and SI-NET pathogenesis.
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FIGURE 6
Analysis of hub genes and construction of regulatory networks between CD and SI-NET (A,B): The top five most important genes in the networks of
upregulated (red color) and downregulated (blue color) common DEGs between CD and SI-NET. Most of these genes are presented in the protein
clusters identified through MCODE and suggest similar biological mechanisms; however, there are more presence of extracellular matrix-related
proteins compared to immune-related proteins among the upregulated network. This indicates strong immune-ECM interactions in the disease
states of CD and SI-NET. (C–V): Expression levels of the 10 hub genes in CD and SI-NET through volcano plots, which indicates clear distinction in
expression levels for most genes. (W,X): Construction of the regulatory networks, including transcription factors (TF) and microRNA (miRNA) regulating
the hub genes. 15 miRNAs are identified to regulate all five upregulated hub genes while only two miRNAs are known to regulate with all five
downregulated hub genes. Among them, MIMAT0000414 interacts with all 10 hub genes, indicating dual regulation. The TF with the highest interaction is
YY1 (4 interactions) among upregulated hub genes and SRF (3 interactions) among downregulated hub genes.
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FIGURE 7
Analysis of hub genes and construction of regulatory networks between UC and SI-NET (A,B): The top fivemost important genes in the networks of
upregulated (red color) and downregulated (blue color) common DEGs between UC and SI-NET. Most of these genes are presented in the protein
clusters identified through MCODE and suggest similar biological mechanisms; however, there is a significant presence of extracellular matrix-related
proteins (TIMP1, BGN), particularly in collagen synthesis (COL3A1, COL4A1, COL5A2). This indicates that UC and SI-NET pathogenesis involves
significant ECM accumulation, and possibly fibrosis. (C–V): Expression levels of the 10 hub genes in UC and SI-NET through volcano plots, which indicates
clear distinction in expression levels for most genes. (W,X): Construction of the regulatory networks, including transcription factors (TF) and microRNA
(miRNA) regulating the hub genes. 18miRNAs are identified to regulate all five upregulated hub genes while only threemiRNAs are known to regulatewith
all five downregulated hub genes. The TF with the highest interaction is YY1 (3 interactions) among upregulated hub genes and NFIC (4 interactions)
among downregulated hub genes.
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4 Discussion

To the best of our knowledge, we report for the first time
documenting the molecular relationships between IBD, one of
the most prevalent diseases worldwide (Wang et al., 2023), and
SI-NET, the most common malignancies of the small intestine
(Barsouk et al., 2019). We compared the molecular profiles
between two IBD subtypes, CD and UC, and discovered that
while CD and SI-NET share a more similar global
transcriptomics pattern, UC and SI-NET have a higher
proportion of overlapping DEGs, suggesting possible dysregulated
biological pathways exclusive for UC and SI-NET. We identified a
total of 321 co-DEGs (248 downregulated and 73 upregulated)
between CD and SI-NET and 445 co-DEGs (291 downregulated
and 154 upregulated) between UC and SI-NET, with an overall
Jaccard similarity index of 0.0623 and 0.0719 respectively. Our
analysis indicates that UC and SI-NET molecular profiles are
significantly similar, considering that the Jaccard similarity index
between IBD and colorectal cancer, the most common IBD-
associated malignancy, is only 0.076 (Al-Mustanjid et al., 2020).
At the systems biology level, we identified gene ontology (GO)
annotations related to collagen fibril organization, cell adhesion, and
extracellular matrix organization that are significantly expressed
among upregulated genes shared between SI-NET and both IBD
phenotypes, whereas the downregulated genes participate in
different metabolic processes of lipid, fatty acid, and glucose. We
also found two pathways shared with SI-NET that are specific to
each IBD subtype, namely, the upregulation of cilium assembly with
CD and NCAM signaling with UC. Immunologically, pathways
related to memory B cell formation are significantly upregulated in
IBD and SI-NET, whereas UC and SI-NET share exclusive
involvements of NF-kB dysregulated macrophages, pro-
inflammatory TLR-9 expressing dendritic cells, and anergic CD4+

T cells. Finally, through network analysis, we reported 7 protein
complexes, 17 most central hub genes, 11 miRNA, and 1 TF as
candidate markers of both IBD and SI-NET.

Earlier studies have documented the complex, bidirectional
interplay between the extracellular matrix (ECM), chronic
inflammatory responses, and cancer growth [reviewed by
Marangio et al. (2022)]. In short, unresolved chronic
inflammation, as presented in IBD, induces production of ECM-
modifying enzymes that results in ECM degradation, which is
characterized by epithelial-mesenchymal transition, genome
instability, metabolism reprogramming, and immune evasion
(Landskron et al., 2014). Such remodeling of the ECM has been
shown to promote carcinogenesis in SI-NET, with a particular
emphasis on the overproduction of collagen III fibers,
myofibroblasts, and profibrotic growth factors (e.g., serotonin,
transforming growth factor beta (TFG-β), and PDGF) [reviewed
by Cives et al. (2019)]. In our study, we identified that dysregulation
of the ECM is consistently enriched with GSEA and ORA analysis of
statistically significant shared genes from RRHO analysis and key
protein complexes and hub genes from the PPI network of co-DEGs.
Noteworthily, our network analysis pinpointed TIMP1 as the main
tissue inhibitor of matrix metalloproteinase underlying ECM
dysregulation, as it consistently appears as one of the central-
most important genes in PPI networks of upregulated genes
shared by SI-NET and both IBD subtypes. Previous analysis of

TIMP1 expression levels using immunohistochemistry has shown
significantly elevated levels in gastroenteropancreatic (Voland et al.,
2008), bronchopulmonary (Blicharz-Dorniak et al., 2012), and primary
skin (Massi et al., 2003) neuroendocrine tumors as well as the glandular
epithelium of IBD (Jakubowska et al., 2016). However, our study is the
first to pinpoint the biological significance of TIMP1 as the main
regulator of ECM remodeling in SI-NET through bioinformatics
analysis. Specifically, TIMP1 inhibits the function of matrix
metalloproteinase (MMP), key regulators in ECM degradation, and
an imbalance of TIMP1/MMP expression in which TIMP1 is
upregulated results in enhanced proteolysis and eventually ECM
accumulation or fibrosis (Arpino et al., 2015). Besides TIMP1, our
network analysis identified other prominent upregulated genes involved
in ECM structural components (COL3A1 and COL5A2), cell adhesion
(THY1), and growth factor binding (IGFBP7). Our findings of
increased collagen fibril-associated gene expression in this study
align with previous research demonstrating elevated collagen type III
synthesis in both IBD and SI-NET, reflecting the state of ECM
accumulation (Cives et al., 2019; Domislovic et al., 2022).

One of the key characteristics of ECM accumulation is the
activation of myofibroblasts, which can be produced through the
epithelial-mesenchymal transition or fibroblast-to-myofibroblast
transition. ORA analysis in our study indicates that the shared
upregulated genes in IBD and SI-NET are enriched in the transition
from epithelial cells to mesenchymal cells, indicating that this process is
the main pathway for myofibroblast activation. In SI-NET particularly,
the functional interaction between mesenchymal cells and NET cells is
essential for tumor cell proliferation, which can only be regulated by ɑ-
smooth muscle actin-positive (ɑ-SMA) myofibroblast [reviewed by
Cives et al. (2019)]. The same review denotes that ɑ-SMA
myofibroblast promotes NET cell proliferation through secreting IL-
6, VEGF, and monocyte chemoattractant protein 1, and this
protumorigenic effect is exclusive through paracrine signaling. In
our study, we identified IGFBP7 as one of the most important
upregulated genes through module analysis. Interestingly, previous
studies of IGFBP7’s role in colorectal cancer have documented its
potential function as a paracrine signaling molecule in the tumor-
stroma crosstalk (Rupp et al., 2015). Moreover, our analysis revealed
significant related GO terms among upregulated genes, namely, “actin
cytoskeleton,” “actin binding,” and “actin filaments,” that are crucial for
enabling α-SMAmyofibroblasts contraction and exertion ofmechanical
forces on the ECM (Shinde et al., 2017). Interestingly, other genes in the
protein module like THY1 and TIMP1 also indicate the transition from
fibroblast to myofibroblast process, which is activated by mesenchymal
cells, to partake inmyofibroblast activation. Fibroblast-to-myofibroblast
differentiation, as assessed by the expression of ɑ-SMA protein, was
observed only among myometrial and orbital fibroblasts expressing
THY1 (Koumas et al., 2003). Additionally, in a study on urethral scar
tissues, TIMP1 expression strongly correlates with increased expression
of fibroblast cell growth and migration that is dependent on the ERK/
MAPK signaling pathways, as well as fibroblast-to-myofibroblast
transition key factors, including ɑ-SMA (Sa et al., 2015). To
summarize, we identified that TIMP1-induced ECM accumulation,
as characterized by increased levels of collagen III and the presence of ɑ-
SMAmyofibroblasts, is the key biological pathway underlying IBD and
SI-NET pathogenesis.

Our network analysis and GSEA results, however, suggest
different immune mechanisms regulating ECM-related pathways
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shared between SI-NET and IBD that are exclusive to each IBD
subtype of CD and UC. In a PPI network of overlapping CD and SI-
NET upregulated genes, we identified IL-6 as the seed node in the
most densely connected protein complex that relates to ECM
remodeling. Previously, it has been known that CD expresses a
higher level of IL-6 as compared to UC and IL-6 plays a fundamental
role in sustaining chronic inflammation through the upregulation of
anti-apoptosis proteins in CD4+ T cells (Alhendi and Naser, 2023).
Moreover, IL-6, alongside TFN-ɑ, is currently the only two known
cytokines that express higher levels in gastroenteropancreatic
neoplasms (Mahečić et al., 2020). IL-6, as aforementioned, is
secreted by ɑ-SMA myofibroblast upon activation. In return, it
promotes the progression of intestinal fibrosis by inducing the
proliferation of resident fibroblast and production of PDGF, as
well as regulating mRNA and protein levels of TGF-β, TFG-β RII,
and STAT-3 (Speca et al., 2012). Of particular interest, IL-6
expression levels are remarkably higher in CD samples with
mesenchymal cells (Ito, 2003), and its neutralization improved
fibrosis in chronic cardiac allografts (Diaz et al., 2009). Thus, we
identified IL-6 as the immune mediator of ECM accumulation
specifically between CD and SI-NET. While we did not detect
any inflammatory protein among upregulated genes of UC and
SI-NET, our GSEA results indicate the shared upregulation of
various immune cells, including macrophages, dendritic cells, and
anergic CD4+ T cells. We believe that NF-kB expressing
macrophages, linked to NFKB1 downregulation and associated
with heightened inflammatory responses in macrophages
(Somma et al., 2021), would have the most significant effect on
intestinal fibrosis in UC and SI-NET. This is achieved through
stimulation of fibroblast to produce ECM components, promotion
of epithelial-to-mesenchymal transition, and induction of
macrophage polarization toward a pro-fibrotic M2 subtype
(Kondaiah, 2023; Wang et al., 2024). However, considering that
most of the above influences of NF-kB are identified in pulmonary
fibrosis, further studies are required to validate its impacts on IBD
and SI-NET-related intestinal fibrosis. We found extremely few
relationships between TLR9-expressing dendritic cells and anergic
T cells in fibrosis progression. To conclude, analyses of PPI and
GSEA suggest the presence of cytokine IL-6 as the main immune
driver of ECM accumulation in CD and SI-NET, whereas UC and
SI-NET involves a more complex network of interactions with
macrophages, dendritic cells, and anergic T cells–an area that
requires further research.

Second to different immunological regulatory processes, certain
signaling pathways involved in IBD and SI-NET intestinal fibrosis
and fibroblast-to-myofibroblast transition are specific among IBD
subtypes. GSEA results suggest that ECM accumulation manifested
in CD/SI-NET and UC/SI-NET might have a bidirectional influence
on ciliogenesis and NCAM signaling for neurite developments,
respectively. The specific role of cilia in inflammation and
carcinogenesis remains largely controversial across different
studies: for instance, losses of primary cilia are linked with
worsen inflammation and carcinogenesis (Paul et al., 2022), while
its presence and development also serve as potential tumor markers,
such as for pituitary neuroendocrine tumors (Martínez-Hernández
et al., 2024). Regarding the specific context of fibrosis, nonetheless, it
is observed that the presence of primary cilium and ciliogenesis are
indispensable for pulmonary and cardiac fibrosis through regulation

of the Sonic Hedgehog, TGF-β, or SMAD3 signaling pathway (Lee
et al., 2018; Villalobos et al., 2019). These pathways, interestingly,
can induce ciliogenesis in return. Similarly, in UC and SI-NET,
NCAM (neural cell adhesion molecule) signaling and its relation to
intestinal fibrosis present one of the potential gut-brain axis involved
in disease mechanisms. NCAM-stimulated neuronal differentiation
through protein kinase C and MAPK activation are heavily
dependent on its interaction with the fibroblast growth factor
receptor (FGFR). Although the role of NCAM in intestinal
fibrosis is not as clearly defined, studies have shown that in renal
fibrosis, the interaction between NCAM and FGFR1, as induced by
TGF-β1, is crucial for facilitating the epithelial-to-mesenchymal
transition (Životić et al., 2018). Overall, these findings suggest
that the intestinal fibrosis of IBD and SI-NET involves a complex
signaling network that is specific among IBD subtypes.

One of the most significant consequences of intestinal fibrosis is
metabolic reprogramming, for it alters the normal intestinal tissue
architecture, impairing nutrition absorptions, affecting gut motility,
disrupting the intestinal microbiota, and introducing hypoxia, all of
which contributes to malabsorption (Zhan et al., 2021). It has been
recorded that fibroblasts that are involved in intestinal fibrogenesis
show limited function in the metabolism of fatty acids while
demanding more glucose and glutamine [reviewed by Bos and
Laukens (2020)]. Our study documents similar dysregulation: we
identified that genes and GO terms, such as “fatty acid β-oxidation,”
“fatty acid catabolic process,” “mitochondrial fatty acid β-oxidation
of saturated fatty acids,” and “fatty acid β-oxidation using acyl-
CoAdehydrogenase,” are consistently downregulated. Specifically,
all five overlapping downregulated genes (ACADM, ACADS,
CPT1A, CPT2, HADHA) of UC and SI-NET are involved in
various aspects of fatty acid metabolism, particularly
mitochondrial fatty acid β-oxidation. Among the downregulated
hub genes of CD and SI-NET, we also found the dysregulation of
lipid metabolism (APOB), oxidative phosphorylation
(PPARGC1A), and glycogenolysis and gluconeogenesis (G6PC,
MLXIPL, and PCK1). Typically, myofibroblast activation and
ECM accumulation demand high energy resources, suggesting an
expected upregulation of lipid metabolism as a primary energy
source for ATP generation. Nonetheless, our study and many
others suggest a distinct downregulation of lipid metabolism in
intestinal fibrosis, particularly in expression levels of related genes
and metabolites (Wu et al., 2023). This dysregulation is believed to
be mediated by TGF-β, which downregulates PPARs transcription
factors essential for fatty acid uptake and oxidation. The
downregulation of PPARs further exacerbates intestinal fibrosis,
for PAAR inhibits ECM transcription and promotes internalization
and degradation [reviewed by Bos and Laukens (2020)].

The dysfunction of lipid metabolism, henceforth, results in
additional needs for the metabolism of glucose, the other source of
cellular energy. In the context of SI-NET and IBD, suchmetabolismwas
mainly performed through glycolysis as per the Warburg effect, a
phenomenon in which cancer cells prefer glycolysis over oxidative
phosphorylation (regulated by PPARGC1A) to produce glucose, even
in the context of ample oxygen (Liberti and Locasale, 2016). The same
study explains that this phenomenon arises since glycolysis, while not as
efficient as mitochondrial oxidative phosphorylation, produces energy
at a faster rate that is readily available for cancer cells. However,
enrichment analysis in our paper also suggests another mechanism:
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our study indicates impaired function of the mitochondria, which is
essential for oxidative phosphorylation. Additionally, the activation of
aerobic glycolysis also requires the dysregulation of glycogenolysis,
whose enzymes-PEPCK, FBPase, and G6Pase-antagonize glycolysis
function, particularly in the cancer context (Wang and Dong,
2019).Our study found that G6PC is notably downregulated,
suggesting its key role as a suppressor of aerobic glycolysis in IBD
and SI-NET. Similarly, gluconeogenesis is counterproductive to
glycolysis as it reverses seven of the ten main reactions involved in
glycolysis, except for pyruvate to PEP conversion, fructose 1,6-
bisphosphate to fructose 6-phosphate conversion, and glucose 6-
phosphate to glucose conversion (Gupta and Gupta, 2021). The
distinct downregulation of PCK1 and of proteolysis, which feeds
amino acid substrate into the gluconeogenesis cycle, in our study
suggests gluconeogenesis malfunction as to promote the glycolytic
switch. This metabolic reprogramming toward a glycolytic switch,
while induced by intestinal fibrosis, also partakes to further exacerbate
fibrosis by providing ATP to suffice the high energy demand for
myofibroblast activation [reviewed by Bos and Laukens (2020)].

We further decipher the regulatory networks of these central
genes and biological pathways by constructing networks of TF and
miRNA that regulate the hub genes. For this, we rank each node
based on the degree of interactions, with TFs and miRNAs that
regulate more genes considered asmore significant. Thus, we found a
total of 11 miRNAs that regulate all ten upregulated genes of both
IBD subtypes and SI-NET, and 1 TF (YY1) that regulate seven of the
ten upregulated hub genes.We found no similar miRNA or TF in the
regulatory network of downregulated hub genes. Among the
11 miRNAs, four are members of the let-7 miRNA (miR-7)
family, including hsa-let-7b-5p (MIMAT0000063), hsa-let-7e-5p
(MIMAT0000066), hsa-let-7g-5p (MIMAT0000414), and hsa-let-
7i-5p (MIMAT0000415). The functionality of miR-7 has been
implicated in the pathogenesis of various autoimmune diseases,
including IBD; however, results are inconsistent. Specifically, it is
described that miR-7 upregulation mitigates intestinal inflammation
in IBD by inhibiting the RNF183 protein, which induces NF-kB
activation (Yu et al., 2016). In contrast, miR-7 upregulation has also
been documented in IBD-diseased tissues and intestinal epithelial
cells (IEC), promoting IEC proliferation and inflammatory cytokines
secretion (Chen et al., 2023). This indicates that deficiency of miR-7
can ameliorate the pathological damages of IBD. As for most
malignancies, miR-7 acts as a tumor suppressor by disrupting the
PI3K/Akt signaling pathway for cellular proliferation and migration,
and its downregulation is also related to decreased effectiveness of
cancer therapies (Gajda et al., 2021; Chen et al., 2023). Still, several
other studies analyzing miR-7-5p level in SI-NET indicate strong
upregulation in both primary and liver metastasis tumor samples as
compared to healthy controls (Malczewska et al., 2018). The specific
biological impact of this upregulation, however, remains unexplored.
Interestingly, miR-7 upregulation, through targeting various
signaling pathways like EGFR or FAK, is linked to the reversal of
the transition from epithelial to mesenchymal cells in cancer of the
liver, ovary, or breast (Kong et al., 2012; Zhou et al., 2014; Zhang
et al., 2020). This indicates a more nuanced role of miR-7 in the
pathogenesis of IBD and SI-NET, particularly in the context of
intestinal fibrosis, that is yet to be uncovered. Aside from the miR-7
family, only miR-29b-3p (MIMAT0000100) is known to be
associated with both IBD and SI-NET. miR-29b-3p expression

level is significantly increased in CD active inflamed tissues and
UC serum blood compared to respective control samples (Viennois
et al., 2017; Moon et al., 2024); however, it is found downregulated in
CD strictured tissue due to its role as an anti-fibrotic regulator
(Biancheri et al., 2013). The same study indicates that this
downregulation is mediated by TFG-β, and miR-29b upregulation
can result in collagen III degradation. Similarly, in SI-NET, miR-
29b-3p deficiency was seen in both primary and metastatic samples
(Malczewska et al., 2018). Moreover, miR-29b-3p downregulation
might also correlate with worse cancer prognosis, though not
statistically significant (p = 0.1166) (Bowden et al., 2017).
Nonetheless, miR-29b-3p dysfunction confirmed its regulatory
mechanism in promoting ECM accumulation, the innermost
significant pathway shared between IBD and SI-NET in this
study. Lastly, while we identified YY1 to be the most significant
TF regulating both upregulated hub genes shared between CD, UC,
and SI-NET, its particular role in the pathogenesis of both diseases
remains largely unknown.

There are several limitations in our study. The main limitation is
that the microarray expression data were analyzed only through
computational and statistical approaches and lacked laboratory
experimental validations. While we tried to compensate for such
limitation with extensive literary review, several of the biological
pathways (e.g., the role of TLR9-expressing dendritic cells and
anergic T cells) and regulatory molecules (e.g., YY1) found in our
study have also not been documented elsewhere. Additionally, we
used relatively small sample sizes, particularly in the UC and SI-NET
cohorts. Lastly, the SI-NET samples were extracted from patients
undergoing Somatostatin analog treatment, which could possibly
interfere with the transcriptomic expression level analyzed in this
study. Henceforth, further studies are needed to validate and uncover
more molecular signatures shared between IBD and SI-NET.

5 Conclusion

We report for the first time, to the best of our knowledge, the
molecular relationships between IBD and SI-NET. Our Jaccard
similarity index suggests overlaps that is comparably as strong as the
relationship between IBD and colorectal cancer. Our systems biology
analysis indicates TIMP1-mediated myofibroblast activation and
intestinal fibrosis as key dysregulated pathways in both diseases,
interacting bidirectionally with fatty acid and glucose metabolic
reprogramming, namely the Warburg effect. Therefore, future
clinical studies should further elucidate the role of these processes as
to validate the pathways in which chronic inflammation induces
carcinogenesis. Moreover, reversal of these dysregulated pathways
(e.g., inhibit aerobic glycolysis and promote oxidative
phosphorylation to counteract the Warburg effect) are potential
therapeutic approaches to mitigate the pathological damages of IBD
and SI-NET. We also identified regulatory mechanisms specific to each
IBD subtype that are potential therapeutic targets: in CD and SI-NET,
IL-6 and ciliary-dependent signaling pathways exacerbates fibrosis, and
in UC and SI-NET, macrophages and the NCAM signaling pathway,
though less extensively studied, also promote ECM accumulation.
Finally, we documented 17 central genes, 7 protein complexes, and
12 regulatory molecules that can both serve as candidate markers and
therapeutic targets for both diseases.
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