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Cancer, a significant global public health issue, resulted in about 10million deaths
in 2022. Anticancer peptides (ACPs), as a category of bioactive peptides, have
emerged as a focal point in clinical cancer research due to their potential to inhibit
tumor cell proliferation with minimal side effects. However, the recognition of
ACPs through wet-lab experiments still faces challenges of low efficiency and
high cost. Our work proposes a recognition method for ACPs named ACP-DRL
based on deep representation learning, to address the challenges associated with
the recognition of ACPs in wet-lab experiments. ACP-DRL marks initial
exploration of integrating protein language models into ACPs recognition,
employing in-domain further pre-training to enhance the development of
deep representation learning. Simultaneously, it employs bidirectional long
short-term memory networks to extract amino acid features from sequences.
Consequently, ACP-DRL eliminates constraints on sequence length and the
dependence on manual features, showcasing remarkable competitiveness in
comparison with existing methods.
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1 Introduction

Cancer is a major public health problem worldwide and one of the leading cause of
death (Siegel et al., 2023). Typical treatment options to reduce the burden of cancer on
human health involve surgery, radiotherapy, and/or systemic therapy. However, the
toxicities associated with traditional treatment methods, present considerable
challenges for tolerability and adherence, making it difficult for patients to complete
their prescribed treatment regimens (Mun et al., 2018). Therefore, the development of
new anticancer drugs with higher efficacy, low resistance, and fewer adverse effects are
necessary. Anticancer peptides (ACPs) potentially offer new perspectives for achieving
this goal (Gabernet et al., 2016). Considering their intrinsic nature as cationic
amphiphiles, ACPs exhibit unique, receptor-independent mechanisms. These
peptides display an exceptional capacity to selectively target and eliminate cancer
cells via folding-dependent membrane disruption (Aronson et al., 2018). On the one
hand, ACPs therapy has been extensively researched and applied in preclinical and
various stages of clinical trials against tumors (Pelliccia et al., 2019; Liu et al., 2024). On
the other hand, the time-consuming and costly process of identifying ACPs through
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biological experiments, as well as the limited number of available
ACPs, have hindered its development.

Fortunately, with the tremendous progress made in the field of
machine learning over the past decades, the feasibility of employing
computational methods to predict typical peptides has become a
reality. As a result, various recognition methods for ACPs based on
amino acid sequences have emerged, such as iACP (Chen et al.,
2016), PEPred-Suite (Wei et al., 2019), ACPred-Fuse (Rao et al.,
2020), iACP-DRLF (Lv et al., 2021), AntiCP 2.0 (Agrawal et al.,
2021), ACP-check (Zhu et al., 2022) and ACP-BC (Sun et al., 2023).
These recognition methods adopt diverse approaches to convert
amino acid sequences into numerical representations and use
machine learning algorithms to uncover patterns within these
features. Among these methodologies, AntiCP 2.0 relies on
common feature extraction techniques such as dipeptide
composition and an ETree classifier model. In contrast, iACP-
DRLF leverages two deep representation learning techniques
alongside LGBM for refined feature selection. And ACP-check
integrates a bidirectional long short-term memory (Bi-LSTM)
network with a fully connected network, facilitating predictions
based on both raw amino acid sequences and handcrafted features.
ACP-BC is a three-channel end-to-end model, which employs data
augmentation techniques, integrated in various combinations.

Despite the numerous informatics approaches proposed for
ACPs recognition, there is still room for improvement. For
instance, AntiCP 2.0 imposes a requirement on the target peptide
sequence length to be between 4 and 50, while iACP-DRLF
introduces a complex feature extraction strategy. More
importantly, the scarcity of experimentally annotated datasets of
ACPs significantly constrains the utilization and performance of
machine learning. In light of these considerations, this study
proposes ACP-DRL. ACP-DRL incorporates advanced language
models that can efficiently utilize vast unlabelled datasets and
extend sequence length through positional encoding, while Bi-
LSTM operates without imposing restrictions on sequence length.
In ACP-DRL, we have shifted our focus to deep representation
learning, alleviating the scarcity of ACP datasets through the
application of extensive unlabeled data. This allows predictions
on longer sequences and reduces dependence on feature
engineering based on expert knowledge. Simultaneously, in
comparison with existing methods, ACP-DRL demonstrates
exceptional performance.

2 Materials and methods

2.1 Datasets

To ensure a fair comparison, the main and alternate datasets
supplied by AntiCP 2.0 (Agrawal et al., 2021) were employed in this
research. These consolidated datasets incorporate data harvested
from numerous databases including DADP (Novković et al., 2012),
CAMP (Waghu et al., 2014), APD (Wang and Wang, 2004), APD2
(Wang et al., 2009), CancerPPD (Tyagi et al., 2015), Uniprot
(Consortium, 2015), and SwissProt (Gasteiger et al., 2001)
databases. The positive dataset, enriched with experimentally
validated ACPs, was derived from a conjoined compilation of the
antimicrobial peptide (AMP) database and the CancerPPD

database. In contrast, the main negative dataset consisted of
AMPs lacking anticancer activity, sourced solely from the AMP
database, while the alternative negative dataset encompassed
random peptides extracted from protein within the SwissProt
database (Gasteiger et al., 2001). The main dataset includes
861 ACPs and equal number of non-ACPs while the alternate
dataset holds a count of 970 for both ACPs and non-ACPs.

We additionally created an imbalanced dataset (comprising
845 ACPs and 3,800 non-ACPs) for five-fold cross-validation,
which encompasses all data from both the main and alternate
datasets. Additional sequence data was obtained from Rao et al.
(2020), and we used the CD-HIT algorithm to construct
nonredundant sequences.

Furthermore, we collected approximately 1.5 million peptide
sequences from PeptideAtlas (Omenn et al., 2022) as an unlabeled
dataset for in-domain further pre-training of protein
language model.

We assessed the amino acid composition (AAC) of peptides and
generated six sample sequence logos (Supplementary Figure S1) in
the in-domain further pre-training daset (IFPT), main, and alternate
datasets. This was done to gain insights into the residue preferences
at the N-terminus and C-terminus in these three datasets.

The result indicates that both the main and alternate datasets
showed a high predominance of ‘K’, ‘L’, and ‘A’ residues at the
N-terminus, and ‘K’ and ‘L’ at the C-terminus (Supplementary
Figure S1A), consistent with previous studies (Agrawal et al.,
2021). However, no particular amino acid type dominated at the
N-terminus (Supplementary Figure S1A) in the IFPT dataset,
suggesting little to no conservation. As for the C-terminus
(Supplementary Figure S1B), it often concluded with either ‘K’ or
‘R’, most likely influenced by specific enzyme cleavage sites, as the
C-terminus is the end part to form during protein synthesis. The
presence of amino acids such as lysine or arginine could have a
significant impact on this cleavage process, with enzymes like
trypsin specifically cleaving these, thereby affecting their
prevalence at the C-termini. It can be discerned that the dataset
used for in-domain further pre-training does not exhibit substantial
similarity with the dataset utilized for anticancer peptide
recognition.

2.2 Framework of ACP-DRL

As depicted in Figure 1, the framework of ACP-DRL consists of
three main modules. Firstly, the initial section delineates the
representation of peptide sequences. Secondly, the following
section elucidates the further pre-training of the protein language
model. Thirdly, the section explains the process of extracting peptide
sequence features using a Bi-LSTM, and subsequently classifying
these peptides based on the extracted features.

2.2.1 Tokenized peptides representation
The initial section of Figure 1 illustrates a process in which

peptide sequences are tokenized, which means that each amino acid
is converted into its corresponding numerical IDs. These IDs are
subsequently used as inputs for our peptide language model. Within
the vocabulary of our language model, a total of 26 tokens have been
utilized. This includes five special tokens ([PAD] [UNK] [CLS]
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[SEP] [MASK]), 20 tokens representing the standard amino acids in
their abbreviated forms. Additionally, the token “X” has been
specifically designated to denote non-generic or unresolved
amino acids. This allocation of “X” facilitates the accommodation
of non-standard amino acids, ultimately enhancing the model’s
adaptability and flexibility.

2.2.2 Language model with in-domain further
pre-training

There is a perspective within the community that proteins can be
represented by amino acids, and thus, they can be approximated as a
unique form of natural language (Ofer et al., 2021). Recent academic
research has further emphasized this perspective, with the release of
numerous protein language models. Elnaggar et al. (2021) put
forward the BERT-BFD model which was trained on the BFD
(Steinegger et al., 2019) dataset composed of an impressive count
of 2,122 million protein sequences. Concurrently, OntoProtein was

put forth by Zhang et al. (2022), employing the robust techniques of
knowledge graphs and gene ontology. The aforementioned efforts
have yielded excellent protein language models. Upon
consideration, we selected OntoProtein as the foundational model
and further conducted training based on our work.

Pre-training broadly involves the initial training of a model on a
large dataset which enables it to acquire universal features. In-domain
further pre-training signifies an added layer of refinement to the pre-
trained model using task-relevant data within a specific field or
operation. This additional step aims to bolster model performance
within its designated tasks (Grambow et al., 2022).

In the context of our research, we collected and employed the IFPT
dataset (about 1.5 million peptide sequences) to incrementally enhance
OntoProtein to approximate the peptide level feature spacemore closely.
Through this strategy, we proposed the OntoProtein within Peptides
(OPP) model and could continuously obtain and train learnable deep
representations during the training of downstream tasks.

FIGURE 1
Framework of ACP-DRL. (A) Tokenized peptides representation. (B) Language model with in-domain further pre-training. (C) Fine-tuning layer
and classifier.
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The imperative behind this step is to facilitate OntoProtein’s
adaptability to the transition happening from protein sequences to
peptide sequences. It is worth noting that, although OntoProtein
jointly trains knowledge embedding (KE) and masked language
modeling (MLM) tasks, during the In-domain further pre-training
stage, we only trained the MLM task.

As shown in Figure 1, during the in-domain further pre-training
stage, a subset of amino acids is masked, and the language model
needs to predict the masked amino acids based on contextual
information. This prompts the language model to learn the
underlying information of peptide sequences. In our approach,
each token (amino acid) has a 15% probability of being masked,
and we use cross-entropy loss to estimate the predictions for these
masked tokens. This process invokes the preparation of masked
token inputs, conforming to the principles of masked language
modeling. The distribution of these masked tokens adheres to a
specific ratio: 80% are masked, 10% are replaced with random
tokens, and the remaining 10% maintain their original identity.

2.2.3 Fine-tuning layer and classifier
BERT has demonstrated significant potential in the field of text

classification, with researchers commonly acknowledging that the
“[CLS]” token is expected to capture information from the entire
sequence (Sun et al., 2019; Wang and Kuo, 2020). Consequently, in
early classification tasks, researchers often relied solely on the
information from the “[CLS]” token; however, this practice is not
considered optimal (Jiang et al., 2021; Kim et al., 2021). In order to
further extract sequence features from the peptides, we added an
extra fine-tuning layer rather than connecting the “[CLS]” output
directly to a fully connected layer. Bi-LSTM is particularly suitable
for handling sequence data and can simultaneously capture both
preceding and following contextual information.

The LSTM comprises four components: the forgetting gate ft, the
input gate it, the cell state Ct, and the output gate ot. The forgetting
gate ft takes a value between 0 and 1. When an element of ft is 0, it
prevents the passage of the value from the previous cell state Ct−1,
achieving selective forgetfulness. Meanwhile, the input gate it
contributes information to the cell state Ct, thereby updating the
information. This selective interplay of remembering and forgetting
effectively addresses challenges such as gradient explosion, gradient
disappearance, and distance-dependent issues commonly
encountered in traditional RNNs. The whole process is as follows:

ft � σ Wf · ht−1, Xt[ ] + bf( ) (1)
it � σ Wi · ht−1, Xt[ ] + bi( ) (2)

~Ct � tanh WC · ht−1, Xt[ ] + bC( ) (3)
Ct � Ct−1◦ft + it◦~Ct (4)

ot � σ Wo · ht−1, Xt[ ] + bo( ) (5)
ht � ot◦tanh Ct[ ] (6)

In this study, we employed Bi-LSTM to extract contextual
information. As illustrated in the third section of Figure 1, our
OPP model furnishes a high-dimensional encoding for each amino
acid in peptide sequences. We sequentially input this into two
LSTMs (forward and backward) and combined their state vectors
to provide a feature vector for each peptide. After that, we utilize a
fully connected layer and Softmax function for classification, with a

default threshold of 0.5. If the probability of belonging to the positive
class is greater than 0.5, the target peptide sequence is categorized as
an ACP; otherwise, it is designated as a non-ACP.

2.3 Performance evaluation

The evaluation in this study is conducted using four metrics,
namely, accuracy (Acc), sensitivity (Sen), specificity (SP) and
Mathew’s correlation coefficient (MCC), which is in line with
previous studies. The specific evaluation metrics are as follows:

Acc � TP + TN

TP + TN + FP + FN
(7)

Sen � TP

TP + FN
(8)

Spc � TN

TN + FP
(9)

MCC � TP × TN − FP × FN��������������������������������������������
TP + FN( ) × TP + FP( ) × TN + FP( ) × TN + FN( )√

(10)

3 Results and discussion

We ran ACP-DRL on a single node of the GPU cluster in the
National Center for Protein Sciences (Beijing). During the training,
we trained for 20 epochs with a learning rate of 2e-5 on 8 T
V100 GPUs, using adafactor as the optimizer, and adopted the
cosine with restarts learning rate schedule. The batch size could be
set to 32 for each training iteration. In this section, we commence
with the evaluation of the language model, followed by an
assessment of various fine-tuning layers. Finally, we compare
results of ACP-DRL with existing methods.

3.1 Evaluation of different language models

The development of Artificial Intelligence for Science has
provided scholars with available protein language models. To
assess the feasibility of current typical protein language models in
ACPs recognition, we gathered randomly initialized BERT, BERT-
BFD trained on 2,122 million protein sequences and OntoProtein
which incorporates joint training with KE and GO, for training and
evaluation. We designed a common vocabulary for these three
models, encoding peptide sequences from the main dataset into
each model, and subsequently employing a fully connected layer for
classification on the encoded results. The evaluation results
(Figure 2) suggest that the three language models have similar
performances in terms of sensitivity. Still, regarding specificity,
the initialized BERT performs worse, which might contribute to
its lower accuracy. BERT-BFD and OntoProtein, both of which have
been pre-trained employing a substantial volume of protein
sequences, demonstrate performances that are relatively
equivalent. Overall, OntoProtein is slightly inferior to BERT-BFD
in sensitivity but achieves advantages in accuracy, specificity and
MCC, with the benefit in specificity being more pronounced.
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Furthermore, considering its slightly higher MCC than BERT-BFD,
we propose that OntoProtein has more potential for the task at hand.

3.2 Performance of different fine-
tuning layers

We can obtain the encoding of each amino acid in a peptide
sequence through language models. To further extract sequence

features, we utilized OntoProtein as the base model and
experimented with various fine-tuning layers on the main
dataset. Specifically, the fully connected layer only utilized the
encoding of the “[CLS]” token for classification, while Text-CNN,
forward LSTM, and Bi-LSTM utilized the encoding information of
the entire sequence. Figure 3 illustrates the experimental results
under different fine-tuning layers. It can be observed that the
effectiveness of using only the encoding of the “[CLS]” token for
classification is not satisfactory, corroborating the findings of Kim

FIGURE 2
Evaluation of language models on main dataset.

FIGURE 3
Performance of different fine-tuning layers on main dataset.
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et al. (2021) and Jiang et al. (2021). The performance is somewhat
improved with a simple forward LSTM, but a significant leap is
observed when incorporating a backward LSTM. Text-CNN
demonstrates a certain level of competitiveness in this task but
falls short of Bi-LSTM, reaffirming our confidence in choosing Bi-
LSTM as the fine-tuning layer.

3.3 Evaluation of in-domain further
pre-training

In-domain further pre-training is a primary approach for
enhancing language models using in-domain additional datasets.
We gathered a dataset comprising approximately 1.5 million peptide
sequences to assess performance of OntoProtein in the peptide
domain, ultimately obtaining the OPP model used for actual
training. To better understand the distribution changes of feature
information in language models, we employed t-Distributed
Stochastic Neighbor Embedding (t-SNE) for the visualization of
model features. We discussed three stages of the language model: a)
the unpretrained BERT model, b) the OntoProtein model released

by Zhang et al. (2022), and c) the OPP model obtained through our
additional pre-training. Figures 4A, B present the t-SNE
visualization results of the test sets from the main and alternate
datasets at three stages. It can be observed that the initialized BERT
exhibits a considerable overlap of points on both datasets,
confirming the subpar testing results shown in Figure 2. This
phenomenon may be attributed to the model’s excessive
parameter count compared to the small training dataset.
OntoProtein and our OPP model demonstrate excellent
performance in the t-SNE visualizations, displaying distinct
sample clusters. On the main dataset, the ACPs of our OPP
model are more clustered than those of OntoProtein, while on
the alternate dataset, the OPP model has fewer mixed-in non-ACPs
among its ACPs. Therefore, it is reasonable to conclude that the in-
domain further pre-training strategy—utilizing the IFPT dataset
implemented in this study—augments the model’s performance on
both the main and alternate datasets. This enhancement is
observable notwithstanding the significant differences in amino
acid composition and positional preference between the
unlabeled IFPT dataset and the datasets used for downstream
tasks, as depicted in Supplementary Figure S1.

FIGURE 4
Visualization results of t-SNE for language models at different stages on (A) main dataset and (B) alternate dataset.
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3.4 Comparison with existing methods

3.4.1 Evaluation on the main and alternate dataset
After confirming the superior performance of our OPP model,

we adopted it to construct the ACP-DRL model. To evaluate the
performance of ACP-DRL model, we conduct a comparison with
other machine learning or deep learning models, which include
iACP, PEPred-Suite, ACPred-Fuse, AntiCP 2.0, iACP-DRLF,
ACP-check, and ACP-BC. In this evaluation, we use the
benchmark datasets (main and alternate datasets) as proposed
by AntiCP 2.0.

The original ACP-BC paper does not furnish performance
metrics for our benchmark datasets. Hence, using their GitHub
repository (https://github.com/shunmengfan/ACP-BC) where
their source code is available, we conducted experiments on
our benchmark dataset using the best parameters stated in
their paper. The optimal parameters deployed were: data
augmentation factor R) set to 1.0, LSTM hidden layer C) with
256 nodes, number of neurons in the embedding layer D) as 512,
and a learning rate of 1e-3. Both ACP-check and iACP-DRLF
adopted the metric values reported in their respective papers, and
hence there are slight differences in the degree of precision. The
precision of ACP-check is maintained at 1%, while iACP-DRLF
maintains its precision to 0.1%. The performance of the

remaining methods came from the metric values reported by
AntiCP 2.0 after executing evaluations on the main and
alternate datasets.

Table 1 and Table 2 respectively display the performance on
the main and alternate datasets, with the best performance for each
metric highlighted in bold. As shown in Table 1, our model
achieved the highest accuracy, specificity, and MCC on the
main dataset, with a sensitivity close to that of ACP-check. The
advantage is even more pronounced on the alternate dataset
(Table 2), where our model reached an accuracy of 94.43%.
Although our sensitivity was slightly lower than ACP-check,
our specificity exceeded ACP-check by 3.64%. Overall,
compared to existing advanced methods, the ACP-DRL model
proposed in this study is highly competitive.

3.4.2 Five-fold cross-validation on
imbalanced dataset

To further illustrate the effectiveness of our model, we
constructed an imbalanced dataset (comprising 845 ACPs and
3,800 non-ACPs) for a five-fold cross-validation. For this
validation, we chose ACP-BC, the most recent model, and ACP-
check, which offers competitive performance on main and alternate
datasets, for comparisons.

We downloaded the source code for ACP-check from an open-
source project (https://github.com/ystillen/ACP-check) and tailored
a version for our five-fold cross-validation. For ACP-check, we chose
the parameters best suited to the main dataset (lr = 1e-3, batch size =
50, epoch = 30). For ACP-BC, we still referred to the previously
mentioned code and optimal parameters.

In this cross-validation, we included two additional evaluation
metrics—Area Under the ROC Curve (AUC) and Area Under the
Precision-Recall Curve (AUPR)—to further assess the model. While
AUC serves as a common indicator for classifying performance
across different thresholds (with a score close to 1.0 indicating
strong performance), AUPR focuses more on the performance of
classifiers in circumstances with imbalanced positive and
negative samples.

Supplementary Tables S1–S3 demonstrate the performance of
the three models on the imbalanced dataset, while Table 3 presents
the average performance based on five-fold cross-validation, with
the best results highlighted in bold. The results suggest that ACP-
DRL has achieved top-tier performance across five evaluation
metrics—Acc, Spc, MCC, AUC, and AUPR.

Although ACP-BC attained the highest score for sensitivity,
ACP-DRL achieved similar results whilst surpassing ACP-BC in
specificity. This may suggest that ACP-DRL adopts a more
conservative approach when classifying positive instances,
hence avoiding potential misidentifications of true positives.
Perhaps due to the sensitivity of ACP-check to data
distribution, it did not demonstrate competitive performance
in this test.

Paired T-tests were conducted on the results of five-fold cross-
validation (as shown in Supplementary Table S4). The results
indicated statistically significant differences in Spc, AUC, and
AUPR metrics (p < 0.05) and a marginal difference in Acc (p =
0.05) when comparing our ACP-DRL model with ACP-BC.
Meanwhile, when comparing with ACP-check, Acc, Sen, MCC,
AUC, and AUPR all manifested significant differences (p < 0.05).

TABLE 1 Comparison with existing methods on main dataset.

Acc(%) Sen(%) Spc (%) MCC

ACP-DRL (Ours) 78.96 79.53 78.39 0.56

ACP-BC 75.16 72.61 77.71 0.50

ACP-check 78 80 77 0.56

iACP-DRLF 77.5 80.7 74.3 0.55

AntiCP 2.0 75.43 77.46 73.41 0.51

ACPred-Fuse 68.9 69.19 68.6 0.38

PEPred-Suite 53.49 33.14 73.84 0.08

iACP 55.10 77.91 32.16 0.11

The best performance for each metric highlighted in bold.

TABLE 2 Comparison with existing methods on alternate dataset.

Acc(%) Sen(%) Spc (%) MCC

ACP-DRL (Ours) 94.43 92.22 96.64 0.89

ACP-BC 91.05 92.14 89.96 0.82

ACP-check 93 93 93 0.86

iACP-DRLF 93.0 89.6 96.4 0.86

AntiCP 2.0 92.01 92.27 91.75 0.84

ACPred-Fuse 78.87 64.43 93.3 0.6

PEPred-Suite 57.47 40.21 74.74 0.16

iACP 77.58 78.35 76.8 0.55

The best performance for each metric highlighted in bold.
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4 Conclusion

In this work, we have proposed a novel ACPs recognition
method called ACP-DRL. ACP-DRL enhances the existing
protein language model using in-domain further pre-training
technology to approximate the peptide level feature space more
closely, continuously obtains and trains learnable deep
representation during training of downstream tasks, and learns
the features at the amino acid level through Bi-LSTM, which
combined with a fully connected layer to complete the
recognition of ACPs. This design introduces the BERT-based
protein large language model and further pre-training techniques
into the ACPs recognition for the first time, eliminates constraints
on sequence length and the dependence on manual features,
showcasing remarkable competitiveness in comparison with
existing methods. In recent years, recognizing various functional
peptides like MFTP (Fan et al., 2023), MLBP(Tang et al., 2022), and
PrMFTP (Yan et al., 2022) has seen significant advancements. These
methods universally use encoders to transition peptide sequences
into vectors. Believing that our OPP model is notably adept at this
encoding task, we plan to apply it to the research in recognizing
multifunctional peptides next.

Data availability statement

Publicly available datasets were analyzed in this study. Code and
datasets can be found here: https://github.com/shallFun4Learning/
ACP-DRL.

Author contributions

XX: Writing–original draft, Writing–review and editing. CL:
Writing–original draft, Writing–review and editing. XY:
Writing–original draft, Writing–review and editing. QZ: Data

curation, Writing–review and editing. YL: Data curation,
Writing–review and editing. YZ: Writing–original draft,
Writing–review and editing. TC: Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Key Research and Development
Program (2021YFA1301603) and the Open Fund of State Key
Laboratory of Medical Proteomics (SKLP-O202207).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1376486/
full#supplementary-material

References

Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., and Raghava, G. P. (2021). Anticp
2.0: an updated model for predicting anticancer peptides. Briefings Bioinforma. 22,
bbaa153. doi:10.1093/bib/bbaa153

Aronson, M. R., Simonson, A. W., Orchard, L. M., Llinás, M., and Medina, S. H.
(2018). Lipopeptisomes: anticancer peptide-assembled particles for fusolytic
oncotherapy. Acta Biomater. 80, 269–277. doi:10.1016/j.actbio.2018.09.025

Chen, W., Ding, H., Feng, P., Lin, H., and Chou, K.-C. (2016). iacp: a sequence-based
tool for identifying anticancer peptides. Oncotarget 7, 16895–16909. doi:10.18632/
oncotarget.7815

Consortium, U. (2015). Uniprot: a hub for protein information. Nucleic acids Res. 43,
D204–D212. doi:10.1093/nar/gku989

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Yu, W., Jones, L., et al. (2021).
Prottrans: towards cracking the language of lifes code through self-supervised deep
learning and high performance computing. IEEE Trans. Pattern Analysis Mach. Intell.
43, 1–16. doi:10.1109/TPAMI.2019.2929146

Fan, H., Yan, W., Wang, L., Liu, J., Bin, Y., and Xia, J. (2023). Deep learning-based
multi-functional therapeutic peptides prediction with a multi-label focal dice loss
function. Bioinformatics 39, btad334. doi:10.1093/bioinformatics/btad334

TABLE 3 Comparison of ACP-BC, ACP-check, and ACP-DRL in five-fold cross validation on an imbalanced dataset.

Acc(%) Sen(%) Spc (%) MCC AUC AUPR

ACP-BC 88.53 64.58 93.87 0.60 0.89 0.71

ACP-check 82.00 49.22 89.21 0.40 0.76 0.44

ACP-DRL (ours) 89.82 62.47 95.89 0.64 0.91 0.78

The best performance for each metric highlighted in bold.

Frontiers in Genetics frontiersin.org08

Xu et al. 10.3389/fgene.2024.1376486

https://github.com/shallFun4Learning/ACP-DRL
https://github.com/shallFun4Learning/ACP-DRL
https://www.frontiersin.org/articles/10.3389/fgene.2024.1376486/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1376486/full#supplementary-material
https://doi.org/10.1093/bib/bbaa153
https://doi.org/10.1016/j.actbio.2018.09.025
https://doi.org/10.18632/oncotarget.7815
https://doi.org/10.18632/oncotarget.7815
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1109/TPAMI.2019.2929146
https://doi.org/10.1093/bioinformatics/btad334
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1376486


Gabernet, G., Müller, A. T., Hiss, J. A., and Schneider, G. (2016). Membranolytic
anticancer peptides. MedChemComm 7, 2232–2245. doi:10.1039/c6md00376a

Gasteiger, E., Jung, E., and Bairoch, A. (2001). Swiss-prot: connecting biomolecular
knowledge via a protein database. Curr. issues Mol. Biol. 3, 47–55. doi:10.21775/cimb.
003.047

Grambow, C., Zhang, L., and Schaaf, T. (2022). In-domain pre-training improves
clinical note generation from doctor-patient conversations. Proc. First Workshop Nat.
Lang. Generation Healthc., 9–22.

Jiang, Z., Tang, R., Xin, J., and Lin, J. (2021). How does bert rerank passages? an
attribution analysis with information bottlenecks. Proc. Fourth BlackboxNLPWorkshop
Anal. Interpreting Neural Netw. NLP, 496–509. doi:10.18653/v1/2021.blackboxnlp-1.39

Kim, T., Yoo, K. M., and Lee, S.-g. (2021). “Self-guided contrastive learning for bert
sentence representations,” in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), August 1-6, 2021, 2528–2540.

Liu, H., Shen, W., Liu, W., Yang, Z., Yin, D., and Xiao, C. (2024). From oncolytic
peptides to oncolytic polymers: a new paradigm for oncotherapy. Bioact. Mater. 31,
206–230. doi:10.1016/j.bioactmat.2023.08.007

Lv, Z., Cui, F., Zou, Q., Zhang, L., and Xu, L. (2021). Anticancer peptides prediction
with deep representation learning features. Briefings Bioinforma. 22, bbab008. doi:10.
1093/bib/bbab008

Mun, E. J., Babiker, H. M., Weinberg, U., Kirson, E. D., and Von Hoff, D. D. (2018).
Tumor-treating fields: a fourth modality in cancer treatment. Clin. Cancer Res. 24,
266–275. doi:10.1158/1078-0432.CCR-17-1117

Novković, M., Simunić, J., Bojović, V., Tossi, A., and Juretić, D. (2012). Dadp: the
database of anuran defense peptides. Bioinformatics 28, 1406–1407. doi:10.1093/
bioinformatics/bts141

Ofer, D., Brandes, N., and Linial, M. (2021). The language of proteins: NLP, machine
learning and protein sequences. Comput. Struct. Biotechnol. J. 19, 1750–1758. doi:10.
1016/j.csbj.2021.03.022

Omenn, G. S., Lane, L., Overall, C. M., Pineau, C., Packer, N. H., Cristea, I. M., et al.
(2022). The 2022 report on the human proteome from the hupo human proteome
project. J. proteome Res. 22, 1024–1042. doi:10.1021/acs.jproteome.2c00498

Pelliccia, S., Amato, J., Capasso, D., Di Gaetano, S., Massarotti, A., Piccolo, M., et al.
(2019). Bio-inspired dual-selective bcl-2/c-myc g-quadruplex binders: design, synthesis,
and anticancer activity of drug-like imidazo [2, 1-i] purine derivatives. J. Med. Chem. 63,
2035–2050. doi:10.1021/acs.jmedchem.9b00262

Rao, B., Zhou, C., Zhang, G., Su, R., and Wei, L. (2020). Acpred-fuse: fusing multi-
view information improves the prediction of anticancer peptides. Briefings Bioinforma.
21, 1846–1855. doi:10.1093/bib/bbz088

Siegel, R. L., Miller, K. D., Wagle, N. S., and Jemal, A. (2023). Cancer statistics, 2023.
Ca Cancer J. Clin. 73, 17–48. doi:10.3322/caac.21763

Steinegger, M., Mirdita, M., and Söding, J. (2019). Protein-level assembly increases
protein sequence recovery from metagenomic samples manyfold. Nat. methods 16,
603–606. doi:10.1038/s41592-019-0437-4

Sun, M., Hu, H., Pang, W., and Zhou, Y. (2023). Acp-bc: a model for accurate
identification of anticancer peptides based on fusion features of bidirectional long short-
term memory and chemically derived information. Int. J. Mol. Sci. 24, 15447. doi:10.
3390/ijms242015447

Sun, S., Cheng, Y., Gan, Z., and Liu, J. (2019). “Patient knowledge distillation for bert
model compression,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing.

Tang, W., Dai, R., Yan, W., Zhang, W., Bin, Y., Xia, E., et al. (2022). Identifying multi-
functional bioactive peptide functions using multi-label deep learning. Briefings
Bioinforma. 23, bbab414. doi:10.1093/bib/bbab414

Tyagi, A., Tuknait, A., Anand, P., Gupta, S., Sharma, M., Mathur, D., et al. (2015).
Cancerppd: a database of anticancer peptides and proteins. Nucleic acids Res. 43,
D837–D843. doi:10.1093/nar/gku892

Waghu, F. H., Gopi, L., Barai, R. S., Ramteke, P., Nizami, B., and Idicula-
Thomas, S. (2014). Camp: collection of sequences and structures of
antimicrobial peptides. Nucleic acids Res. 42, D1154–D1158. doi:10.1093/nar/
gkt1157

Wang, B., and Kuo, C.-C. J. (2020). Sbert-wk: a sentence embedding method by
dissecting bert-based word models. IEEE/ACM Trans. Audio, Speech, Lang. Process. 28,
2146–2157. doi:10.1109/taslp.2020.3008390

Wang, G., Li, X., and Wang, Z. (2009). Apd2: the updated antimicrobial peptide
database and its application in peptide design.Nucleic acids Res. 37, D933–D937. doi:10.
1093/nar/gkn823

Wang, Z., and Wang, G. (2004). Apd: the antimicrobial peptide database. Nucleic
acids Res. 32, D590–D592. doi:10.1093/nar/gkh025

Wei, L., Zhou, C., Su, R., and Zou, Q. (2019). Pepred-suite: improved and robust
prediction of therapeutic peptides using adaptive feature representation learning.
Bioinformatics 35, 4272–4280. doi:10.1093/bioinformatics/btz246

Yan, W., Tang, W., Wang, L., Bin, Y., and Xia, J. (2022). Prmftp: multi-functional
therapeutic peptides prediction based onmulti-head self-attention mechanism and class
weight optimization. PLoS Comput. Biol. 18, e1010511. doi:10.1371/journal.pcbi.
1010511

Zhang, N., Bi, Z., Liang, X., Cheng, S., Hong, H., Deng, S., et al. (2022). “Ontoprotein:
protein pretraining with gene ontology embedding,” in International Conference on
Learning Representations, May 3-7, 2021.

Zhu, L., Ye, C., Hu, X., Yang, S., and Zhu, C. (2022). Acp-check: an anticancer peptide
prediction model based on bidirectional long short-term memory and multi-features
fusion strategy. Comput. Biol. Med. 148, 105868. doi:10.1016/j.compbiomed.
2022.105868

Frontiers in Genetics frontiersin.org09

Xu et al. 10.3389/fgene.2024.1376486

https://doi.org/10.1039/c6md00376a
https://doi.org/10.21775/cimb.003.047
https://doi.org/10.21775/cimb.003.047
https://doi.org/10.18653/v1/2021.blackboxnlp-1.39
https://doi.org/10.1016/j.bioactmat.2023.08.007
https://doi.org/10.1093/bib/bbab008
https://doi.org/10.1093/bib/bbab008
https://doi.org/10.1158/1078-0432.CCR-17-1117
https://doi.org/10.1093/bioinformatics/bts141
https://doi.org/10.1093/bioinformatics/bts141
https://doi.org/10.1016/j.csbj.2021.03.022
https://doi.org/10.1016/j.csbj.2021.03.022
https://doi.org/10.1021/acs.jproteome.2c00498
https://doi.org/10.1021/acs.jmedchem.9b00262
https://doi.org/10.1093/bib/bbz088
https://doi.org/10.3322/caac.21763
https://doi.org/10.1038/s41592-019-0437-4
https://doi.org/10.3390/ijms242015447
https://doi.org/10.3390/ijms242015447
https://doi.org/10.1093/bib/bbab414
https://doi.org/10.1093/nar/gku892
https://doi.org/10.1093/nar/gkt1157
https://doi.org/10.1093/nar/gkt1157
https://doi.org/10.1109/taslp.2020.3008390
https://doi.org/10.1093/nar/gkn823
https://doi.org/10.1093/nar/gkn823
https://doi.org/10.1093/nar/gkh025
https://doi.org/10.1093/bioinformatics/btz246
https://doi.org/10.1371/journal.pcbi.1010511
https://doi.org/10.1371/journal.pcbi.1010511
https://doi.org/10.1016/j.compbiomed.2022.105868
https://doi.org/10.1016/j.compbiomed.2022.105868
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1376486

	ACP-DRL: an anticancer peptides recognition method based on deep representation learning
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Framework of ACP-DRL
	2.2.1 Tokenized peptides representation
	2.2.2 Language model with in-domain further pre-training
	2.2.3 Fine-tuning layer and classifier

	2.3 Performance evaluation

	3 Results and discussion
	3.1 Evaluation of different language models
	3.2 Performance of different fine-tuning layers
	3.3 Evaluation of in-domain further pre-training
	3.4 Comparison with existing methods
	3.4.1 Evaluation on the main and alternate dataset
	3.4.2 Five-fold cross-validation on imbalanced dataset


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


