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Introduction:Ovarian cancer (OC) is the deadliest malignancy in gynecology, but
themechanism of its initiation and progression is poorly elucidated. Disulfidptosis
is a novel discovered type of regulatory cell death. This study aimed to develop a
novel disulfidptosis-related prognostic signature (DRPS) for OC and explore the
effects and potential treatment by disulfidptosis-related risk stratification.

Methods: The disulfidptosis-related genes were first analyzed in bulk RNA-Seq
and a prognostic nomogram was developed and validated by LASSO algorithm
and multivariate cox regression. Then we systematically assessed the
clinicopathological and mutational characteristics, pathway enrichment
analysis, immune cell infiltration, single-cell-level expression, and drug
sensitivity according to DRPS.

Results: The DRPS was established with 6 genes (MYL6, PDLIM1, ACTN4, FLNB,
SLC7A11, and CD2AP) and the corresponding prognostic nomogram was
constructed based on the DRPS, FIGO stage, grade, and residual disease.
Stratified by the risk score derived from DRPS, patients in high-risk group
tended to have worse prognosis, lower level of disulfidptosis, activated
oncogenic pathways, inhibitory tumor immune microenvironment, and higher
sensitivity to specific drugs including epirubicin, stauroporine, navitoclax, and
tamoxifen. Single-cell transcriptomic analysis revealed the expression level of
genes in the DRPS significantly varied in different cell types between tumor and
normal tissues. The protein-level expression of genes in the DRPS was validated
by the immunohistochemical staining analysis.

Conclusion: In this study, the DRPS and corresponding prognostic nomogram for
OC were developed, which was important for OC prognostic assessment, tumor
microenvironment modification, drug sensitivity prediction, and exploration of
potential mechanisms in tumor development.
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1 Introduction

Ovarian cancer (OC) is the fifth leading cause of cancer death in
women worldwide and represents a significant public health
challenge (Siegel et al., 2023). Although most OCs were sensitive
to platinum-based chemotherapy, about 80% cases developed
resistance with a poor survival outcome (Pignata et al., 2019).
Therefore, it is crucial to identify biomarkers for prognosis
prediction and individualized treatment-guidance and reveal the
mechanism underlying the development and metastasis in OC.

Cell death is a natural process that occurs in various
physiological and pathological conditions, which has been proved
to play a role in the elimination of damaged or cancerous cells, and
regulate anti-cancer immunity in the tumor microenvironment
(TME) (Peng et al., 2022). Over ten different types of cell death
have been reported, which can be thoroughly classified as the
regulatory cell death (RCD) and accidental cell death (ACD).
Disulfidptosis is a newly discovered type of RCD, which is
characterized by the actin cytoskeleton collapse caused by
disulfide stress (Liu et al., 2023; Machesky, 2023). Under glucose
starvation, NADPH depletion could induce excessive accumulation
of intracellular disulfide molecules, leading to aberrant disulfide-
bond formation in actin cytoskeleton and F-actin contraction, which
triggered potent cell death. Some cancer cells might be more
susceptible to disulfidptosis compared with normal tissue for its
upregulated SLC7A11 (Li et al., 2022) and NADPH-dependent
metabolism (Ju et al., 2020). In the context of OC, studying
disulfidptosis would provide insights into its involvement in
tumor initiation, progression, metastasis, and the interactions
between cancer cells and the immune system.

In this study, we would like to develop a disulfidptosis-related
prognostic signature (DRPS) for OC, explore the effects of
disulfidptosis-related risk stratification, and discuss the potential
therapeutic target for patients in different risk groups.

2 Materials and methods

2.1 Data sources

The gene expression data in counts format and corresponding
clinical data of TCGA was downloaded from UCSC Xena (https://
xenabrowser.net/datapages/?dataset= TCGA-OV.htseq_counts.tsv
&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%
3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443), which was then
transformed from the raw counts to the count-per- million (cpm)
value for later DRPS construction. The combined data of TCGA and
GTEx in DESeq2 normalized counts format was downloaded from
UCSC Xena (https://xenabrowser.net/datapages/?dataset=TCGA-
GTEx-TARGET-gene-exp-counts.deseq2-normalized.log2&host=https
%3A%2F%2Ftoil.xenahubs.net&removeHub=https%3A%2F%2Fxena.
treehouse.gi.ucsc.edu%3A443) The somatic mutation data of TCGA-
OV was downloaded from GDC Data Portal (https://portal.gdc.cancer.
gov/). TheGSE9891 and E-MTAB-386 datasets used for validationwere
downloaded from https://www.ncbi.nlm.nih.gov/geo/ and https://www.
ebi.ac.uk/biostudies/, separately. Totally, we included 374, 285, and
129 patients with OC from TCGA database, GSE9891, and E-MTAB-
386 datasets.

2.2 Disulfidptosis-related prognostic model
construction and validation

The eighteen disulfidptosis-related genes were obtained from
Liu et al. (2023), including four suppressor hits (SLC7A11,
SLC3A2, RPN1, and NCKAP1) and fourteen core actin-related
proteins (INF2, CD2AP, PDLIM1, ACTN4, MYH9, MYH10,
IQGAP1, FLNA, FLNB, TLN1, MYL6, ACTB, DSTN, and
CAPZB). The disulfidptosis-related prognostic model for OC
was developed by two steps in the TCGA-OV cohort: First, we
conducted least absolute shrinkage and selection operator
(LASSO) method with the “glmnet” package (version 4.1–7) to
select the robust prognosticators among 18 candidate genes using
cpm format data (transformed from the raw counts) (Friedman
et al., 2010). The best lambda value in the LASSO regularization
was chosen by 10-fold cross-validation. Second, Cox model with
forward stepwise regression was performed to build the DRPS and
the corresponding prognostic model with “survival” package
(version 3.5–5) (Therneau and Grambsch, 2000). Patients were
stratified into high- and low-risk groups based on whether their
risk scores were higher than the median of the whole cohort (high
risk and worse prognosis) or less than the median of the whole
cohort (low risk and better prognosis). The model was
subsequently validated in two independent external datasets:
GSE9891 and E-MTAB-386. The significance of the prognosis
between these two groups was evaluated through the application of
Kaplan-Meier survival analysis and the p-value was calculated
using the log-rank test. In order to enhance the accuracy of
prediction, we incorporated the FIGO stage, grade, and residual
disease, along with the disulfidptosis-related risk score, to
construct a nomogram using “survival” package (version 3.5–5)
and “regplot” package (version 1.1) (Therneau and Grambsch,
2000). The efficacy of this nomogram was subsequently validated
through the Receiver-operator characteristic (ROC) curve using
“timeROC” package (version 0.4) (Blanche et al., 2013).

2.3 Mutation, phenotype, and disulfidptosis
characteristics

Mutation signature of high- and low-risk groups was
analyzed by the R package “maftools” (Mayakonda et al.,
2018). Six phenotype characteristics were included in the
comparison, including survival status, FIGO stage, histological
grade, tumor residual size, homologous recombination deficiency
(HRD) status, and germline BRCAmutation status (gBRCAmut).
Since SLC7A11, SLC3A2, RPN1, and NCKAP1 had been verified
as suppressor hits of disulfidptosis, we treated these four genes as
a geneset and calculated the gene set variation analysis (GSVA)
scores per patient for it to show the disulfidptosis level
(Hänzelmann et al., 2013).

2.4 Differential gene expression and
functional pathway enrichment analysis

Differential gene expression analysis between high- and low-risk
groups stratified by DRPS followed the limma-voom pipeline using
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raw counts data (Ritchie et al., 2015). Significant differentially
expressed genes (DEGs) were defined as genes whose FDR were
less than 0.05 and absolute value of log2 fold change greater than 1.
Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) pathways were conducted
separately on the significant DEGs between risk groups stratified
by DRPS and genes included in the DRPS to identify functional
pathways by the “clusterProfiler” package (version 4.8.1) (Wu et al.,
2021). Gene set enrichment analysis (GSEA) in HALLMARK gene
pathways was also performed with the “clusterprofiler” package.
Annotated clusters were ranked according to Group Enrichment
Score and p-value. Pearson correlation coefficients between genes in
DRPS were calculated by “Hmisc” package (version 5.1-0).
Sensitivity analysis of the DRPS was performed using copula-
based methods (Yeh et al., 2023).

We calculated the DEGs between OC and normal ovary using
limma method. OC samples and normal ovary samples were
selected from the combined TCGA and GTEx expression matrix
in DESeq2 normalized counts format for further comparison.
DEGs between OC and normal ovary were identified as absolute
value of log2 fold change >2 and FDR <0.001 from the result
of limma.

2.5 Tumor immune microenvironment
analysis and immunotherapy prediction

The immune cell infiltration in TME was evaluated by TIMER
2.0 (http://timer.cistrome.org/) (Li et al., 2017), CIBERSORT (Chen
et al., 2018), xCell (Aran et al., 2017), EPIC (Racle and Gfeller, 2020),
quanTIseq (Finotello et al., 2019), MCPcounter (Becht et al., 2016).
Since there’s no available OC cohort with immunotherapy response,
the published markers as well as TIDE score were used to predict the
potential immune checkpoint inhibitor (ICI) response (Jiang et al.
, 2018).

2.6 Single-cell landscape of disulfidptosis-
related risk gene expression and
identification of cell types associated with
disulfidptosis-related risk stratification

Single-cell RNA sequencing data was obtained from EMBL-EBI
(https://www.ebi.ac.uk/biostudies/arrayexpress) (Qian et al., 2020),
including 44532 cells from 5 patients with primary OC (7 OC
samples and 3 normal samples). Data quality control was conducted
with the primary filtering condition of nFeature_RNA >200 &
nFeature_RNA <6000 & percent. mt < 25 & percent. HB <
10 and DoubletFinder (version 2.0.3). Clustering was performed
using the “Seurat” package (version 4.3.0.1) at a revolution of 0.5
(Butler et al., 2018). According to published studies, we used a set of
marker genes to determine cell types: EPCAM, KRT7, KRT8,
KRT17, SPRR3 for epithelial/tumor cells; CD3E, CD3D, TRBC1/
2, TRAC for T cells; LYZ, CD86, CD68, FCGR3A for myeloid cells;
CD79A/B, JCHAIN, IGKC, IGHG3 for B cells and plasma cells;
CLDN5, FLT1, CDH1, RAMP2 for endothelial cells; DCN, C1R,
COL1A1, ACTA2 for fibroblasts; TAGLN, CNN1 for smooth
muscle cells (Dinh et al., 2021).

2.7 Drug sensitivity and prediction

The drug sensitivity was predicted by half-maximal inhibitory
concentration (IC50) according to GDSC data (https://www.
cancerrxgene.org/) using the “oncoPredict” package (version 0.2)
(Maeser et al., 2021). The potential targeted drug for risk groups was
assessed by Drug-Gene Interaction database (DGIdb) (https://www.
dgidb.org/) (Freshour et al., 2021).

2.8 Immunohistochemical staining analysis

We downloaded the immunohistochemical (IHC) staining
images of OC and normal ovaries from the Human Protein Atlas
(HPA) (https://www.proteinatlas.org/). ImageJ (version 1.8.0) was
used to analyze the integrated optical density (IOD) and average
optical density (AOD).

2.9 Statistical analyses

R version 4.2.2 was used for statistical analyses. We utilized
WilcFoxon test to evaluate the statistical significance for continuous
characteristics, and Chi-square test or Fisher’s exact test for
categorical characteristics as appropriate. Two-tail
p-value <0.05 was set as statistically significant. The R script used
in this study was uploaded in Supplementary Materials, R script.

3 Results

3.1 Disulfidptosis-related prognostic
signature and prediction model
construction and validation

The flowchart of this study was shown in Figure 1. The baseline
characteristics of the datasets showed that epithelial (serous) was the
main histologic type and grade 3 was the main pathologic grade in all
the three cohorts, consistent with global real-world reports
(Supplementary Table S1) (Kuroki and Guntupalli, 2020). Six genes
(MYL6, PDLIM1, ACTN4, FLNB, SLC7A11, and CD2AP) were
selected by the LASSO and then used as the input of multivariate
Cox regression analysis to build theDRPS (Figures 2A, B). According to
Figure 2C, FLNB was an independent risk factor for overall survival
(OS), while SLC7A11 and CD2AP were the independent protective
factors. Kaplan-Meier curves for OS illustrated that the prognosis
differed markedly between the high- and low-risk groups stratified
by the DRPS not only in the training set (p-value < 0.0001) but also in
two validation sets (p-value = 0.0059 for GSE9891, p-value = 0.019 for
E-MTAB-386) (Figures 2D–F).

Besides, we calculated the risk score of the DRPS by multivariate
cox regression. The final disulfidptosis-related prognostic model was
developed using the risk score, histological grade, FIGO stage, and
residual disease, which was then generated as a nomogram
(Figure 2G). As Figure 2H showed, the risk score was an
independent risk factor for OS prediction after adjusting those
clinicopathological factors. ROC curves further demonstrated that
the disulfidptosis-related prognostic model achieved satisfactory
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performance in the training dataset and validation datasets
(Figures 2I–K).

3.2 The genomic-level and
clinicopathological differences between
disulfidptosis-related high- and low-
risk groups

Top ten genes with the highest frequency in simple nucleotide
variation (SNV) and copy number variation (CNV) were displayed in
Figure 3A (high-risk group) and Figure 3B (low-risk group). None of
these genes were found to have a significant difference between groups,
which indicated that the difference in tumor aggressiveness between
groups was more associated with the heterogeneity at the
transcriptomic-level rather than the genomic-level. For
clinicopathological factors, high-risk group had a higher mortality
rate compared with low-risk group (Figure 3C); while FIGO stage,
histological grade, residual disease, gBRCAmut, and HRD showed no
significantly different distribution between groups (Figures 3D–H).

We calculated the GSVA score of disulfidptosis in each sample
using the gene set which included SLC7A11, SLC3A2, RPN1, and
NCKAP1 (Figure 3I). As the result, high-risk group showed a
statistically lower GSVA score of disulfidptosis compared with
low-risk group, suggesting a relatively low level of disulfidptosis
in high-risk group. Among the four genes used in the GSVA score of
disulfidptosis, the expression of SLC7A11 and SLC3A2 were
significantly lower in high-risk group (Figure 3J).

3.3 Gene and pathway expression
characteristics in disulfidptosis-related
high- and low-risk groups

Figures 4A, B showed the top DEGs between high- and low-risk
groups.High expression of IGF2, IGLON5,MEGF8,HSPG2,ALDH1A2,
NCCRP1 was associated with high-risk group, while high expression of
SLC7A11, PLA2G12A, SST,MMP10, KRT14, PAX2 was associated with
low-risk group (Figures 4A, B; Supplementary Table S2). The result of
GSEA showed that multiple pathways related with malignant biological
behavior of tumors were remarkably activated in high-risk group,
including hypoxia, epithelial mesenchymal transition (EMT), TGF-
beta signaling, WNT-beta-catenin signaling, and angiogenesis (Figures
4C, D); while pathways associated with immune response, including
interferon alpha response, interferon gamma response, and oxidative
phosphorylation, were enriched in low-risk group (Figure 4E).

GO enrichment analysis revealed that pathways like integrin
binding, connective tissue development, and sulfur compound
binding were associated with the disulfidptosis-related risk
stratification, which were related to the formation and function
of cytoskeleton as well as the disulfide bond (Figure 4F). KEGG
enrichment analysis indicated that pathways like PI3K-Akt signaling
were enriched in high-risk group, and it is worth noting that these
enriched pathways have been demonstrated to be closely related to
cancer development (Figure 4G).

Furthermore, correlation analysis of the DRPS showed that most
of the genes in the DRPS had a significant correlation between
pairwise (Supplementary Figure S1). GO/KEGG enrichment

FIGURE 1
The flowchart of the study. (RNA-seq, RNA sequencing. LASSO, least absolute shrinkage and selection operator. GSVA, the gene set variation
analysis. DEG, differentially expressed genes. GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. GSEA, Gene set enrichment
analysis. IHC, immunohistochemical. ICI, immune checkpoint inhibitor. scRNA, Single-cell RNA. IC50, half-maximal inhibitory concentration. DGIdb,
Drug-Gene Interaction database.).
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FIGURE 2
Disulfidptosis-related prognostic model construction. (A) Selection of lambda value in the LASSO analysis for OS using ten-fold cross-validation by
theminimum criteria. (B) LASSO coefficient profiles of candidate genes for OS. (C)Hazard ratios of the final included six disulfidptosis-related genes after
multivariate cox regression adjustment for OS. (D–F) The Kaplan-Meier curves of disulfidptosis-related high- and low-risk groups for OS in TCGA-OV (D),
GSE9891 (E), E-MTAB-386 (F). (G) The predictive nomogram based on disulfidptosis-related risk score and clinicopathological factors. (H) Hazard
ratios of the final included variables in the nomogram after multivariate cox regression adjustment for OS. (I–K) Receiver-operating curves (ROC curves)
for 12-, 36-, and 60- month OS of the predictive nomogram in TCGA-OV (I), GSE9891 (J), E-MTAB-386 (K). (LASSO, least absolute shrinkage and
selection operator. OS, overall survival).
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analysis showed that DRPS was mainly associated with the actin
related pathways. In addition, the pathways related to sulfur
transport were also significantly enriched, indicating that genes
included in DRPS might participated in disulfidptosis in OC
(Supplementary Figure S1). Sensitivity analysis of the DRPS
revealed that good separation could be found between high- and
low-risk groups in both the training and validation sets
(Supplementary Table S3).

3.4 Landscape of tumor infiltrating immune
cells and immunotherapy response
prediction

Correlation coefficients between the disulfidptosis-related risk score
and various immune cells were calculated (Figure 5A). Interestingly,
macrophages, neutrophils, and cancer associated fibroblasts (CAFs) were
positively correlated with the disulfidptosis-related risk score of patients

FIGURE 3
Genomic and clinicopathological characteristics of high- and low-risk groups. (A,B) Themutation and copy-number variation combined landscape
of high-risk (A) and low-risk (B) groups of patients with epithelial ovarian cancer. (C–H) Distribution of survival status (C), FIGO stage (D), grade (E),
residual disease (F), germline BRCA mutation (G), homologous recombination deficiency (HRD) (H) in high- and low-risk groups, respectively. (I)
Disulfidptosis score of high- and low-risk groups by the gene set variation analysis (GSVA). (J) RNA expression level of SLC7A11, SLC3A2, RPN1, and
NCKAP1 in high- and low-risk groups. (****p-value < 0.0001, **p-value < 0.01).
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FIGURE 4
Differentially expressed genes and functional pathway enrichment analysis. (A)Heatmap of top differentially expressed genes (DEGs) between high-
and low-risk groups. (B) Volcano plots of DEGs related to the disulfidptosis-related risk stratification. (C) Gene set enrichment analysis (GSEA) in
HALLMARK pathways of DEGs between high- and low-risk groups. (D) Top 5 enriched HALLMAEK pathways of ovarian cancer patients in high-risk
groups. (E) Top 5 enriched HALLMAEK pathways of ovarian cancer patients in low-risk group. (F) Enrichment analysis of Gene Ontology (GO)
pathways between high- and low-risk groups. (G) Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between high-
and low-risk groups. (*p-value < 0.05. BP, biological process. CC, cellular component. MF, molecular function).
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with OC in more than one algorithm, indicating that high-risk group
exhibited more infiltration of these immune cells and these cells
promoted the immunosuppressive microenvironment. Conversely,
activated myeloid dendritic cells and CD4 memory T cells were
negatively correlated with the disulfidptosis-related risk score,
indicating that tumors in low-risk group tended to be activated myel
infiltrated by these kinds of immune cells. The relative abundances of
various immune cells were also estimated between high- and low-risk
groups (Figure 5B), which is consistent with the results presented
in Figure 5A.

Moreover, we explored biomarkers which have been widely
accepted for ICI response prediction. CAF score in high-risk group

was significantly higher than in low-risk group (Figure 5C); in contrast,
MSI (microsatellite instability) expression signature was significantly
lower in high-risk group (Figure 5D). Besides, TIDE score was
significantly higher in high-risk group than in low-risk (Figure 5G),
in which TIDE dysfunction scores in high-risk group was significantly
higher (Figure 5E); whereas TIDE exclusion scores were higher in high-
risk group than in low-risk group (Figure 5F) though without
statistically significant differences. In total, these biomarkers
suggested that high-risk group might have a lower response rate for
ICI than low-risk group.

To further elucidate the expression of the genes in DRPS in cell
level, we mapped these six genes on the UMAP plot of a public single-

FIGURE 5
Characteristics of tumor microenvironment in disulfidptosis-related high- and low-risk groups. (A) Correlation between microenvironment cell
proportion/enrichment score and disulfidptosis-related risk score with top significance. The x-axis represented the Spearman correlation coefficient (ce)
between the cell type fraction/enrichment score and disulfidptosis-related risk score. The y-axis represented different cell proportion/enrichment score
in the tumormicroenvironment. The different colors of circles represented different algorithms to estimate the immune infiltration in tumor tissues.
* in circles represented the statistical significance. The larger the ce was, the more positive correlation was found between the corresponding cell
proportion/enrichment score and disulfidptosis-related risk score. (B) The infiltration of immune cell proportion/enrichment score between high- and
low-risk groups which were top significant between groups. The right colored bars represented major cell types (navy for lymphocytes, red for myeloid
cells, green for stroma cells, black for progenitor cells or stem cells, brown for others). (C–G) The expression of immunotherapy predictive markers in
high- and low-risk groups. (****p-value < 0.0001, ***p-value < 0.001, **p-value < 0.01. *p-value < 0.05. CAF, cancer associated fibroblast. MSI. Expr.Sig,
microsatellite instability expression signature. TIDE, tumor immune dysfunction and exclusion score).
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FIGURE 6
Single-cell landscape of disulfidptosis-related risk signature in epithelial ovarian cancer. UMAP visualization of the clustering of cells from tumor and
normal samples from patients with epithelial ovarian cancer, color coded by Seurat cluster (A) or major cell type annotation (B). (C)Overlay of expression
of genes included in disulfidptosis-related risk signature. (D) The violin plots of the expression of genes included in disulfidptosis-related risk signature in
eachmajor cell type across tumor and normal samples. (UMAP, UniformManifold Approximation and Projection. ****p-value < 0.0001, ***p-value <
0.001, **p-value < 0.01, *p-value < 0.05).
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FIGURE 7
Drug sensitivity prediction, key gene selection and immunohistochemical staining analysis. (A–D) IC50 prediction in Epirubicin (A), Stauroporine (B),
Navitoclax (C), Tamoxifen (D). (E) Potential targeted drug predicted with DGIdb database. (F) Two key genes were selected from the intersection of DEGs
of high- and low-risk groups, DEGs of tumor and normal groups, and the disulfidptosis-related risk signature (SLC7A11, ACTN4). (G)Human Protein Atlas
immunohistochemical staining analysis by ImageJ. The integrated optical density of ACTN4 + cells in ovarian cancer and normal ovary was
statistically significant. The integrated optical density of MYL6, PDLIM1, FLNB and CD2AP were not statistically significant. (DEGs, differentially
expressed genes).
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cell RNA dataset of OC after unsupervised clustering and annotation
(Figures 6A, B). The expression bubble plots of marker genes for cell
type clustering were displayed in Supplementary Figure S2. As the plot
presented, the major types of cells showed distinct marker genes
expression signatures (Supplementary Figure S2B), which is
consistent with the previous published researches (Dinh et al., 2021;
Jia et al., 2023).

MYL6 was commonly expressed in all the seven major types of
cells, which had a significantly higher expression level in fibroblasts,
endothelial cells, and B cells/plasma cells in tumor compared with
normal tissue (Figure 6D). PDLIM1 and ACTN4 were mainly
expressed in endothelial cells, fibroblasts, smooth muscle cells,
and tumor/epithelial cells (Figure 6C). Besides, these two genes
showed markable higher expression in the cell types mentioned
about in tumor than normal tissue (Figure 6D). FLNB, SLC7A11,
and CD2AP were lowly expressed in almost all major cell types
(Figure 6C), but significant expression difference was also found in
fibroblasts between tumor and normal tissue.

3.5 Drug sensitivity and key genes
exploration

IC50 of 198 drugs in GDSC database in the TCGA-OV cohort was
predicted using the “oncoPredict” package (Supplementary Table S4).
IC50 of epirubicin, stauroporine, navitoclax, and tamoxifen were
significantly lower in high-risk group than in low-risk group
(Figures 7A–D), indicating that these drugs might be the potential
treatment for high-risk patients. According to the prediction of DGIdb,
riluzole (Figure 7E) as the interacted drug of SLC7A11 was the potential
targeted drug for patients in high-risk group.

We took the intersection of the DEGs between high- and low-
risk groups, DEGs between OC and normal ovary (Supplementary
Table S5), as well as the DRPS. Finally, two genes (SLC7A11 and
ACTN4) were selected as key genes for further research (Figure 7F;
Supplementary Table S6).

3.6 Immunohistochemical staining
validation by external database

We quantitated IHC staining images from the HPA database using
ImageJ software. Since no IHC staining images of SLC7A11 could be
found, only other five genes were analyzed for expression at the IHC
level. The results revealed significant differences in expression of
ACTN4 (p-value = 0.0394 for IOD; p-value = 0.3597 for AOD)
according to Figure 7G and S3. CD2AP (p-value = 0.1142 for IOD;
p-value = 0.4096 for AOD), FLNB (p-value = 0.9516 for IOD; p-value =
0.2837 forAOD),MYL6 (p-value = 0.0864 for IOD; p-value = 0.2330 for
AOD), PDLIM1 (p-value = 0.9545 for IOD; p-value = 0.0522 for AOD)
showed no significant differences in protein expression between tumor
and normal tissues (Figure 7G; Supplementary Figure S3).

4 Discussion

OC is the deadliest malignancy in gynecology (Siegel et al.,
2023), but the mechanism of its initiation and progression is still not

clearly elucidated. The discovery of new prognostic biomarkers and
treatments is in the focus of OC research. Disulfidptosis, as a
recently discovered novel mode of RCD (Liu et al., 2023), could
be the potential regulatory mechanism and therapeutic potential for
diseases, which has attracted lots of attention of medical scientists.
However, the impact of disulfidptosis on the OC remains unclear. In
the present study, we developed a DRPS consisting of six genes for
OC and stratified patients with OC into the high- and low-risk
groups according to the disulfidptosis-related risk score to predict
the survival. Our study also revealed that the DRPS could be linked
to initiation and metastasis of OC, correlate with specific patterns of
immune cell infiltration, and indicate potential drugs for patients
with different risk stratifications.

The DRPS included six genes (MYL6, PDLIM1, ACTN4, FLNB,
SLC7A11, and CD2AP). SLC7A11, as a key disulfidptosis regulator,
participates in the uptake of extracellular cystine and the
biosynthesis of glutathione to protect the cells from the damage
caused by oxidative stress (Koppula et al., 2018). However, the exact
role of SLC7A11 in OC remained controversial. Yang et al. (2022)
showed that OC patients with high SLC7A11 expression have a
favorable prognosis, while Wu et al. (2022) found that SLC7A11 was
a risk factor for OS and progression-free survival (PFS) in OC. In
this research, we found SLC7A11 was an independent prognostic
protective factor for OC according to the multivariate cox regression
analysis of OS, which provided new evidence on this controversial
issue. Under conditions of glucose deficiency, SLC7A11high cells
exhibited a decrease in NADPH production, resulting in the
accumulation of cystine and subsequent formation of abnormal
disulfide bonds. These aberrant bonds then targeted the actin
cytoskeleton, leading to its collapse, which eventually resulted in
disulfidptosis (Liu et al., 2023). Cancer cells, which are programmed
to consume large amounts of glucose, frequently lead to glucose
depletion in the tumor microenvironment, therefore the low
expression of SLC7A11 in cancer cells could inhibit
disulfidptosis, then promote tumor growth and progression, and
further contribute to the poor prognosis of patients with cancer
(Figures 2C, 6D) (Liu et al., 2021). SLC7A11 is also a star molecule in
ferroptosis, its overexpression promotes ferroptosis resistance
(Dixon et al., 2012; Jiang et al., 2015), and studies on the
relationship between SLC7A11 and TME mainly focus on
ferroptosis-related pathways (Cheng et al., 2022; Tang et al.,
2023; Zhao et al., 2023). Whether SLC7A11 could independently
influence tumor progression and TME modulation by disulfidptosis
needs to be further investigated.

The other five genes included in the signature belong to actin-
related proteins, which modulate the assembly of conventional actin
and contribute to microtubule-based motility (Schafer and Schroer,
1999). Among them, FLNB and CD2AP were significantly
associated with the prognosis of OC patients. The role of FLNB
in cancer development is still a mysterious challenge. A previous
study suggested that knockdown of FLNB in cancer cells decreased
di-phosphorylation of MRLC and phosphorylation of FAK, then
inhibited cell migration and focal adhesions (Iguchi et al., 2015).
Besides, our results suggested FLNB was mainly high-expressed in
endothelial cell. It has been reported that inhibition of FLNB could
reduce endothelial cell migration and VEGF-induced cell migration,
which could inhibit angiogenesis in vitro and reduce tumor
development (Del Valle-Perez et al., 2010). However, zebrafish
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and mouse model systems showed that silencing FLNB increased
MMP-9 expression in endothelial and cancer cells, which enhanced
tumor angiogenesis and VEGF-A secretion, then promoted tumor
growth and metastasis (Bandaru et al., 2014). In this study, we found
that FLNB was an independent prognostic risk factor for OC,
aligned with previous research in lung adenocarcinoma (Ni et al.,
2023). Still, the mechanism of FLNB in disulfidptosis in cancer
deserves further investigation. CD2AP, another independent
prognostic factor, was regarded as a scaffolding molecule which
regulates cytoskeletal molecules and signal transduction (Lehrer and
Rheinstein, 2020). CD2AP has been reported to inhibit tumor
metastasis by promoting cell adhesion and cytoskeleton assembly
in gastric cancer (Xie et al., 2020). In the present study, CD2AP was
positively correlated with longer OS (Figures 2C, 6C), which was
consistent with the effect in gastric cancer (Xie et al., 2020). A study
found that inactivation of CD2AP promoted the differentiation of
CD4 T cells toward the follicular helper lineage in chronic
lymphocytic choriomeningitis virus infection (Raju et al., 2018).
Taken together, CD2AP could modulate both cancer cells and
immune cells. ACTN4, which was one of the key genes found by
this study (Figure 7F), was known to affect cell cycle, cell motility,
and regulation of nuclear transcription factor activity (Tentler et al.,
2019). Previous studies proved that high expression of ACTN4 not
only promoted cell motility and invasion, but was also correlated
with poor prognosis and chemoresistance of various tumors
including OC (Yamamoto et al., 2007; Barbolina et al., 2008;
Kikuchi et al., 2008; Yamamoto et al., 2009; Yamada et al., 2010;
Wang et al., 2015), which supported our finding that ACTN4 was
associated with poor prognosis. After adjusting for confounders,
MYL6 and PDLIM1 tended to be protective factors for OS in OC,
and the expression of themwere both upregulated in OC tissues. The
role of MYL6 in OC is currently unknown, but it has been shown
that MYL6 expression was upregulated in rhabdomyosarcoma
(Eichenmüller et al., 2007), and was negatively associated with
cell migration in melanoma (Vierthaler et al., 2022). Previous
studies suggested that PDLIM1 was upregulated in OC (Qiu
et al., 2021), which was consistent with our findings (Figure 6D).
PDLIM1 could inhibit tumor metastasis and EMT by interacting
with E-cadherin/β-catenin adhesion complex, inhibiting the Hippo
signaling pathway (Chen et al., 2016; Huang et al., 2020). How genes
in DRPS influence the survival of OC requires further experimental
confirmation.

Currently, there is an emerging trend to develop biomarker
for prognostic prediction or molecular subtyping to guide the
precise management for OC. Such as the Cancer Genome Atlas
Research Network proposed a classic four-classification
subtypes of OC based on transcriptome in 2011, which
described the gene expression content but did not differ in
survival or treatment options (Cancer Genome Atlas Research,
2011). With the rapid development of oncology, molecular
subtyping and prognostic models based on new mechanisms
of tumor development, such as EMT, TME, or ferroptosis, have
gradually been proposed. Here, we sought to construct a new
prognostic signature and risk stratification system of OC based
on disulfidptosis, which might provide assistance in clinical
prognostic assessment, mining immune infiltration
characteristics, and finding potential targeted drugs. This
signature was proven to be an independent predictor of OS

after adjustment for clinicopathological factors (Figure 2H),
and the corresponding nomogram achieved good performance
in training and validation sets (Figures 2I–K), indicating the
clinical practical value of this nomogram. High-risk group had a
relatively lower disulfidptosis level (Figure 3I). Besides, the risk
stratification did not seem to correlate with gene mutations or
clinical-pathological factors (Figures 3A–H), and the difference
between high- and low-risk groups might arise from
transcriptomic level (Figures 4C–G). It is worth noting that
sulfur compound binding was differentially enriched between
two groups (Figure 4F). As we mentioned earlier, intracellular
disulfide stress would induce disulfidptosis of cells. The
difference in the pathway of sulfur compound binding might
indicate the difference in intracellular disulfide stress, which
echoed the mechanism of disulfidptosis.

TME also showed different characteristics in different risk
groups. Increased infiltration of neutrophils and CAFs were
observed in high-risk group, whereas activated myeloid dendritic
cells and CD4 memory T cells had higher abundance in low-risk
group. Preclinical studies have revealed that CAFs can promote
angiogenesis and tumor progression in many tumors including OC
(O’Connell et al., 2011; Bhowmick et al., 2004; Zhang et al., 2011).
The more CAFs were infiltrated in TME, the stronger their impact in
promoting tumor progression, leading to a worse prognosis. It was
confirmed that neutrophils were associated with poor OS and PFS of
patients with OC (Yang et al., 2020), and this correlation had also
been demonstrated in melanoma and hepatocellular carcinoma (Li
et al., 2011; Jensen et al., 2012). While dendritic cells and
CD4 memory T cells had also found to be associated with anti-
tumor immunity in TME and often suggested a better prognosis
(Chen et al., 2020; Liu J. et al., 2021; Duong et al., 2022), which was
also consistent with our findings.

We also found that high-risk group might have a lower response
rate for ICI compared with low-risk group by multiple biomarkers.
High-risk group may be more sensitive to epirubicin, stauroporine,
navitoclax, and tamoxifen with lower IC50 (Figures 7A–D). These
findings suggested that ICI might not be a preferable choice for OC
patients in high-risk group, but the above-mentioned chemotherapy
drugs might deserve consideration. In addition, riluzole might be a
potential targeted drug for high-risk group. Riluzole is a glutamate
release inhibitor, known as a neuroprotective, anticonvulsant, and
sedative drug, that has been approved for the treatment of
amyotrophic lateral sclerosis since 1995 (Doble, 1996). Studies
have shown that riluzole inhibits multiple malignancies including
melanoma, pancreatic cancer, breast cancer, and cisplatin-resistant
lung cancer cells in a dose-dependent manner by inducing cell cycle
arrest and so on (Speyer et al., 2016; Wangpaichitr et al., 2017; Shin
et al., 2018; Sun et al., 2021). However, the role of riluzole in OC has
not been evaluated so far. Whether this drug can affect the
development of OC through disulfidptosis needs to be clarified in
our further study.

This study based on multi-omics data revealed the relationship
between the initiation and progression of OC and disufidptosis. One
limitation of this study was that this study mainly focused on the
transcriptive level analysis, and the exploration on the genomic level
of DRPS was relatively not deep enough. GWAS-based analysis like
Mendelian randomization merits further exploration to further
reveal the correlations between OC development and genetic

Frontiers in Genetics frontiersin.org12

Cong et al. 10.3389/fgene.2024.1378907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1378907


variants of the genes in DRPS. Another limitation was we didn’t
verify the results with cell or animal experiments limited by the
experimental condition and specimen. Still, we believe this study
might be a necessary starting point for research in this direction.
DRPS could predict OS and immunotherapy efficacy for clinical
application; enrichment analysis and immune cell infiltration
analysis could be explored for further researches on disease
mechanisms. In addition, drug sensitivity analysis found some
drugs for high-risk patients, indicating potential clinical value for
individualized treatment. Carefully designed in vitro cell studies and
animal experiments, as well as scientifically rigorous clinical trials
will be needed to validate these findings.

In the present study, we developed a DRPS and
corresponding prognostic nomogram for OC, which was
important for prognostic assessment, TME modification, drug
sensitivity prediction, and exploration of potential mechanisms
in tumor development.
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