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Background: Colorectal cancer (CRC) poses a significant global health burden,
with high incidence and mortality rates. Despite advances in diagnostic and
therapeutic modalities, early diagnosis remains critical for improved outcomes.
Recent research has realized the important role of gut microbiota in CRC
development, highlighting the need to elucidate potential relationships.

Methods: In this study, we employedMendelian randomization (MR) to establish a
robust potential link between gut microbial genera and CRC. Data from the
MiBioGen database provided curated genome-wide association study (GWAS)
summary datasets for microbial genera, while the Finngen database provided
CRC outcome data. Instrumental variables (IVs) were identified based on genetic
variants associated with gut microbiota. Various MR methods, including Inverse
Variance Weighted (IVW), Weighted Median, Weighted Mode, Simple Mode, and
MR-Egger, were employed to estimate potential effects. Functional analysis of
genes near single nucleotide polymorphisms (SNPs) was performed to unravel
potential pathways.

Results: Analysis of microbial genera identified five potentially associated with
CRC: Eubacterium fissicatena group, Anaerofilum, Defluviitaleaceae UCG011,
Ruminococcus 2, and Sutterella. Notably, Defluviitaleaceae UCG011 emerged as
the only risk factor. Gene analysis revealed hub genes PTPRD and DSCAM near
Defluviitaleaceae UCG011 associated SNPs. Expression analysis showed that
PTPRD decreased in colon cancer and DSCAM decreased in rectal cancer.
The methylation status of the PTPRD gene promoter region indicated
potential regulatory alterations.

Conclusion: This study establishes a potential relationship between five specific
gutmicrobial genera, particularlyDefluviitaleaceae UCG011, and CRC. Hub genes
PTPRD and DSCAM provide insights into potential molecular mechanisms,
suggesting the potential role of Defluviitaleaceae UCG011 in modulating the
initiation and progression of CRC. Further research is essential to validate these
associations and delve deeper into therapeutic implications.
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Introduction

Colorectal cancer (CRC) poses a significant global health
challenge, with 1.8 million new diagnoses and 1 million deaths
annually (Bray et al., 2018). Advances in diagnostic technologies and
treatments, including surgery and chemotherapy, have led to an
improved prognosis for CRC. Despite these advancements, CRC
continues to be a global health issue, exerting a substantial impact on
morbidity and mortality rates worldwide (Sung et al., 2021; Zheng
RS. et al., 2023). The 5-year survival rate for early-stage (stages I and
II) CRC patients can reach 80%, but it declines to less than 20% for
those with advanced-stage disease, particularly stage IV (Biller and
Schrag, 2021). Thus, identifying and understanding the factors and
mechanisms that promote CRC development are crucial for
improving treatment outcomes. CRC development is complex,
involving a combination of genetic, environmental, and dietary
factors (Thanikachalam and Khan, 2019). Recently, gut
microbiota has been identified as playing a significant role in
CRC development (Si et al., 2021).

The gut microbiota, an integral part of the human
microbiome, is increasingly recognized as a key ecological
factor influencing human health (Long et al., 2023). A
substantial body of evidence indicates an association between
gut microbiota and various digestive cancers, including
colorectal, gastric, liver, and esophageal cancers, among others
(Chen et al., 2022; Eun et al., 2014; Gao et al., 2023; Ni et al.,
2022). Previous research suggests that the gut microbiota can
influence CRC development by releasing various metabolites,
proteins, and macromolecules that interact with the host’s
colonic epithelium and immune cells (Avuthu and Guda,
2022). Some clinical evidence also underscores the role of the
gut microbiota in modifying the therapeutic responses of patients
with CRC to chemotherapy and immunotherapy (Wong and Yu,
2023). Moreover, the gut microbiota plays a crucial role in CRC
metastasis, although the underlying mechanisms remain elusive
(Zheng Z. et al., 2023). Studies have documented characteristic
changes in gut microbiota across different CRC stages, with
distinct alterations evident even at the colorectal adenoma
stage (Dai et al., 2018; Liu et al., 2021; Wong and Yu, 2019).
However, it is important to recognize that some observational
studies may yield inconsistent conclusions due to limitations in
assessing gut microbiota dysbiosis.

To establish a more robust potential relationship between gut
microbial genera and CRC, we adopted Mendelian randomization
(MR), a method that uses random genetic variants to mimic a
randomized controlled trial (RCT), thereby circumventing
environmental and lifestyle confounders. MR essentially functions
as a natural RCT (Burgess et al., 2015; Larsson et al., 2023). MR is
based on three key assumptions: 1) Genetic variations are associated
with the risk factor of interest (relevance assumption); 2) Genetic
variations are independent of confounders (independence
assumption); and 3) Genetic variations affect the outcome only
through the risk factor (exclusion restriction assumption) (Birney,
2022) (Figure 1A). Two-sample MR estimates potential effects by
leveraging exposure and outcome data from different samples,
thereby addressing the limitations of conventional observational
studies (Davies et al., 2018; Lawlor, 2016).

In this study, we explored the potential relationship between gut
microbial genera and CRC through a two-sample Mendelian
randomization analysis. Additionally, we conducted a functional
analysis of genes near single nucleotide polymorphisms (SNPs)
identified in the study, to better understand the potential
pathways through which these genera may influence CRC
occurrence and development. Our aim was to elucidate the
potential impact of gut bacterial genera on CRC, thereby
providing new insights into the mechanisms underlying the
development of colorectal cancer.

Methods

Data sources and screening of
instrumental variables

We queried the MiBioGen database (https://mibiogen.gcc.rug.
nl/) (Swertz et al., 2010; Swertz and Jansen, 2007; van der Velde et al.,
2019) for curated GWAS summary datasets related to gut
microbiota. Our focus was on GWAS data related to microbial
genera. Using publicly accessible data, we conducted a two-sample
MR study. We used genetic variants associated with gut microbial
genera as instrumental variables (IVs), employing a p-value
threshold of 1 × 10-5 based on previous reports (Bonder et al.,
2016; Sanna et al., 2019). Additionally, we pruned the IVs based on
linkage disequilibrium (LD) criteria (r2 ≥ 0.01, kb > 10,000)
(Pritchard and Przeworski, 2001). Furthermore, we excluded
SNPs that were palindromic with minor allele frequencies
(Hemani et al., 2018a). After evaluating the IVs for exposure, we
computed the F statistic for each individual variant. Each variant
demonstrated an F statistic above 10, indicating a strong IV. It is
generally accepted that an F statistic below 10 indicates a weak IV
(Bowden et al., 2019; Burgess et al., 2011). GWAS data for colorectal
cancer as the outcome was obtained from the most recent Finngen
database (https://www.finngen.fi/) (Kurki et al., 2023). The FinnGen
study is a large-scale genomics initiative that has analyzed over
500,000 Finnish biobank samples, correlating genetic variation with
health data to understand disease mechanisms and predispositions
(Kurki et al., 2022). This project is a collaboration between research
organizations and biobanks in Finland and international industry
partners. The latest release of the Finngen database is R10, updated
in December 2023. The analysis flow of our study is illustrated
in Figure 1B.

Mendelian randomization analysis

This study employed the Inverse Variance Weighted (IVW)
Random Effects as the primary MR method, complemented by four
additional approaches: Weighted Median, Weighted Mode, Simple
Mode, and MR-Egger. These diverse techniques provide a
comprehensive perspective on the potential relationship,
accounting for various assumptions and biases. After conducting
a two-sample MR analysis on the overall microbial genera, those
potentially associated with colorectal cancer were identified using
the IVW method, with a significance threshold of p < 0.05. All
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p-values were adjusted using the Benjamini–Hochberg method to
evaluate false discovery rate (FDR) (Benjamini and Hochberg,
2024). The results were visualized using forest plots and circos

plots. Subsequently, a dedicated MR analysis was performed on the
genera identified as potentially associated with colorectal cancer. All
MR analyses were conducted using RStudio software (Version:

FIGURE 1
MR assumptions and analysis flow of this study. (A). The MR assumptions (a. The exclusion restriction assumption; b. The independence assumption;
c. The relevance assumption). (B). The analysis flow of this study.
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2023.06.0 Build 421) and R software (Version: 4.3.2) (Hemani
et al., 2018b).

Heterogeneity and pleiotropy test

We assessed heterogeneity among SNPs using Cochran’s
Q-statistics (Egger et al., 1997) and the I2 statistic (Bowden et al.,
2016; Higgins and Thompson, 2002). We used MR-Egger and
Mendelian Randomization Pleiotropy Residual Sum and Outlier
(MR-PRESSO) to assess horizontal pleiotropy of SNPs(Verbanck
et al., 2018). Additionally, we conducted a ‘Leave-one-out’ analysis
to explore the influence of individual SNPs on the overall association
(Mikshowsky et al., 2017).

Gene functions explore

Based on the MR analysis results, we compiled a list of all SNPs
included in the study. Using R software, we searched for genes
within 50 base pairs of each SNP. We then explored the interactions
among the identified genes using the STRING database (https://
string-db.org/)(Szklarczyk et al., 2019) and Cytoscape software
(Version 3.10.1) (Maere et al., 2005) to identify key functional
genes. We performed functional enrichment analysis of these
genes using Gene Ontology (GO) (Ashburner et al., 2000; Gene
Ontology et al., 2023) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000), and visualized the
results for better interpretation using RStudio software (Version:
2023.06.0 Build 421). Next, we analyzed the expression profiles of
the relevant genes in colorectal cancer using The Cancer Genome
Atlas (TCGA) database. We further analyzed the methylation status
of the PTPRD gene promoter region using the TCGA database. We
then analyzed the relationship between PTPRD gene expression and
colon cancer survival by mapping the Kaplan-Meier (KM)
survival curve.

Results

Research datasets and instrumental variables

We obtained GWAS data summaries for 131 microbial genera
from the MiBioGen database (Kurilshikov et al., 2021). After
filtering with a significance threshold of p < 1 × 10-5, we
identified 14,587 SNPs. Subsequently, we pruned for linkage
disequilibrium and selected strong instrumental variables,
resulting in a final set of 1,531 eligible SNPs for inclusion in the
MR analysis. Details and F statistics for the SNPs included in this
study are provided in Supplementary Table S1. The outcome data

were retrieved from the FinnGen database, focusing on the
colorectal cancer phenotype. The GWAS data included in the
MR analysis consisted of 6,847 cases and 314,193 controls,
encompassing a total of 21,304,131 SNPs. Information on the
GWAS data used in this study is presented in Table 1.

Mendelian randomization results

The results of the MR analysis for all microbial genera are
provided in Supplementary Table S2. Among them, 75 genera in
the IVW method were visually represented in a circos plot, with
those potentially associated with colorectal cancer highlighted in
red (Figure 2). As shown in Figure 2, five genera demonstrated a
potential relationship with colorectal cancer, namely,
Eubacterium fissicatena group [Beta = −0.136, OR (95%CI) =
0.873 (0.779–0.978), p = 0.019], Anaerofilum [Beta = −0.118, OR
(95%CI) = 0.889 (0.795–0.994), p = 0.039], Defluviitaleaceae
UCG011 [Beta = 0.192, OR (95%CI) = 1.212 (1.037–1.416), p =
0.016], Ruminococcus 2 [Beta = −0.162, OR (95%CI) = 0.850
(0.735–0.984), p = 0.029], and Sutterella [Beta = −0.226, OR (95%
CI) = 0.798 (0.669–0.951), p = 0.012]. The MR results for these
five genera were further illustrated using forest plots (Figure 3)
and scatter plots (Figure 4). Additionally, Eubacterium
xylanophilum group [Beta = −0.781, OR (95%CI) = 0.458
(0.247–0.850), p = 0.035]and Barnesiella [Beta = −0.902, OR
(95%CI) = 0.406 (0.179–0.920), p = 0.049] showed a potential
relationship with colorectal cancer in the MR Egger method,
while Defluviitaleaceae UCG011 [Beta = 0.218, OR (95%CI) =
1.243 (1.007–1.535), p = 0.043] and Sutterella [Beta = −0.269, OR
(95%CI) = 0.764 (0.601–0.972), p = 0.028]exhibited a potential
relationship in the Weighted Median method. We adjusted the
p-values of IVW method and found that all FDR were close to 1
(Supplementary Table S3).

Heterogeneity and pleiotropy test results

Cochran’s Q test and the I2 statistic were conducted to evaluate
heterogeneity among instrumental variable estimates derived from
individual genetic variants. The results revealed no significant
evidence of heterogeneity, as presented in Table 2. This lack of
heterogeneity suggests that the MR estimates are more reliable. The
‘leave-one-out’ analysis, where each SNP was systematically
removed to assess its impact on the IVW point estimate (Figures
5A–E), indicated that no single SNP significantly influenced the
overall result. The funnel plot exhibited no significant asymmetry,
indicating minimal publication bias (Figure 5F). Furthermore, MR-
Egger regression and the MR-PRESSO global test both indicated no
horizontal pleiotropy, as detailed in Table 2. In summary, the

TABLE 1 Information of GWAS data used in this study.

Data type Phenotype Source Website Sample size Year

Exposure Gut Microbial Genera the MiBioGen consortium https://mibiogen.gcc.rug.nl/ 18,340 (24 cohorts) 2021

Outcome Colorectal Cancer the FinnGen consortium https://www.finngen.fi/ 321,040 (6,847 cases; 314,193 controls) 2023

Abbreviations: GWAS, Genome-wide association study.
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combination of minimal heterogeneity, consistent ‘leave-one-out’
results, and the absence of asymmetry enhances confidence in the
reliability of the MR estimates and mitigates concerns
regarding bias.

Hub gene and gene functions

A total of 57 SNPs associated with the potential relationship
between colorectal cancer and the five microbial genera were
included in the MR analysis. Using the R package, we identified

all genes within 50 base pairs of these SNPs, resulting in a total of
61 unique genes after removing duplicates. The list of genes is
provided in Supplementary Table S4. Pathway analysis through
KEGG and GO revealed enrichment in pathways such as the cAMP
signaling pathway, synaptic membrane adhesion, cell adhesion, and
neuron-to-neuron synapse (Figure 6). Using the STRING online
tool and Cytoscape software, we identified five hub genes: NLGN1,
GRIP1, PTPRD, CADM1, and DSCAM (Figure 7A). Among these
genes, PTPRD and DSCAM are located near the SNP sites
(rs112893842; rs55658617) analyzed in the Defluviitaleaceae
UCG011 genus MR analysis. Analysis of the TCGA database

FIGURE 2
Circos plot of MR results for the associations between all gut microbial genera and the risk of colorectal cancer. From the inner to outer circles, they
represent the estimates of weighted mode, weighted median, simple mode, MR-Egger, and inverse-variance weighted methods, respectively. The
shades of color reflect the magnitude of the value of p-value, and red shades reflect p-value <0.05.
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revealed a significant decrease in PTPRD expression in colon cancer,
while DSCAM showed a significant decrease in rectal cancer
(PTPRD: p = 1.500E-02; DSCAM: p = 4.556E-02) (Figures 7B,C).
Further analysis of the PTPRD gene promoter region’s methylation
status using TCGA data revealed a significant increase in
methylation levels in colon cancer tissues. Moreover, a significant
correlation was observed between the methylation levels of the
PTPRD gene promoter and the staging of colon cancer
(methylation levels of the PTPRD: p = 1.624E-12) (Figures 7D,E).
Survival analysis revealed a significant correlation between PTPRD
gene expression and colon cancer survival time (Figure 7F).

Discussion

Colorectal cancer is one of the most common malignant tumors
of the digestive tract, with incidence and mortality rates rising
annually (Bray et al., 2024; Siegel et al., 2022). Recent studies
have shown that the gut microbiome plays a complex role in the
development and progression of colorectal cancer (Wong and Yu,
2023). Here, we conducted a two-sample Mendelian Randomization
analysis and found a potential association between five gut microbial
genera and CRC: E. fissicatena group, Anaerofilum,Defluviitaleaceae
UCG011, Ruminococcus 2, and Sutterella. This aligns with findings
from previous research (Ni, Li, Zhang, Xu, Wei, Feng, Zhao, Zhang,
Zhang, Shen and Li, 2022; Xiang et al., 2023). However, our study
identified Defluviitaleaceae UCG011 as a unique risk factor for CRC,
underscoring its potential role in promoting the occurrence and
development of colorectal cancer.

Defluviitaleaceae UCG011 is a genus within the
Defluviitaleaceae family, belonging to the Firmicutes phylum,
Clostridia class, and Lachnospirales order. Kawamoto et al.
observed an increased abundance of Defluviitaleaceae in the
intestines of patients with periodontitis, suggesting its
potential involvement in the body’s inflammatory response
(Kawamoto et al., 2021). Another study by Chen et al. found
that bacteria from the Defluviitaleaceae family, particularly
Defluviitaleaceae UCG011, influenced the immune-mediated
disease Granulomatosis with Polyangiitis through CD11c in

granulocytes, highlighting its role in human immune
responses (Chen and Tang, 2023). Additionally, Wang et al.
revealed a significant positive correlation between
Defluviitaleaceae UCG011 and susceptibility to the immune-
related disease ankylosing spondylitis (Wang et al., 2023). To
the best of our knowledge, there is currently no literature
reporting the role of Defluviitaleaceae UCG011 in CRC. Based
on our research results, we speculate that the Defluviitaleaceae
UCG011 genus may promote the occurrence and development of
colorectal cancer by altering intestinal inflammation and
immune responses. However, the specific mechanisms require
more in-depth investigation.

To gain a deeper understanding of the link between the five
specific microbial genera and colorectal cancer, we conducted a
detailed analysis of genes located in close proximity to each SNP
identified in our study. Our analysis focused on the results obtained
from the MR study. Enrichment analysis revealed that these genes
were significantly enriched in the cell signaling pathway and cAMP
signaling pathway. Subsequent analysis identified five hub genes:
NLGN1, GRIP1, PTPRD, CADM1, and DSCAM. Among them, the
PTPRD and DSCAM genes are located near the SNP sites
(rs112893842, rs55658617) analyzed in the Defluviitaleaceae
UCG011 genus MR analysis. These findings suggest that this
microbial genus may play a significant role in biological
processes related to colorectal cancer.

PTPRD (Protein Tyrosine Phosphatase Receptor Type D) is a
protein-coding gene that encodes a protein belonging to the protein
tyrosine phosphatase (PTP) family. PTPs are known signaling
molecules that regulate various cellular processes, including cell
growth, differentiation, the cell cycle, and oncogenic transformation.
Relevant pathways include protein-protein interactions at synapses
and signal transmission across chemical synapses (Pulido et al.,
1995; Veeriah et al., 2009). Through analysis of the TCGA database,
we found that PTPRD is significantly downregulated in colon cancer
tissues, suggesting that PTPRD may play a role in inhibiting colon
cancer. Further analysis revealed a markedly increased methylation
level of PTPRD in colon cancer samples, leading us to hypothesize
that PTPRD inactivation due to methylation may promote the
progression of colorectal cancer. DSCAM (Down Syndrome Cell
AdhesionMolecule) is another protein-coding gene belonging to the
immunoglobulin superfamily of cell adhesion molecules (Ig-CAM).
It is involved in the development of the human central and
peripheral nervous systems (Agarwala et al., 2000) and mediates
intracellular signal transduction by activating MAPK8 and
P38 MAP kinases (Liu et al., 2009; Ly et al., 2008). We examined
the expression of these two genes in colorectal cancer using the
TCGA database and found that PTPRD expression was significantly
decreased in colon cancer, while DSCAM expression was
significantly decreased in rectal cancer. This may be related to
differences in intestinal bacterial diversity, and further
investigation is needed to understand the precise mechanisms.
Moreover, our analysis of PTPRD gene methylation levels using
TCGA data revealed a substantial increase in methylation within the
PTPRD promoter region of tumor tissues. Notably, this elevated
methylation status was strongly associated with the stage of CRC.
This suggests that Defluviitaleaceae UCG011 may influence the
expression of PTPRD by altering methylation levels in its

FIGURE 3
Forest plots of MR results for five gut microbial genera potentially
associated with colorectal cancer using IVW method (Blue dots
represent protective factors; Red dot represents risk factors).
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promoter region, thereby contributing to the development and
progression of CRC. Survival analysis revealed a significant
correlation between PTPRD gene expression and colon cancer
prognosis, highlighting the potential role of Defluviitaleaceae
UCG011 in modulating the initiation and progression of CRC.

While our research provides valuable insights into the
underlying mechanisms involved in the development and
progression of CRC, it does have several limitations. 1) The
GWAS data used in this research are derived exclusively from
European populations, and there is a known disparity in gut

FIGURE 4
Scatter plots and MR effect size plots for five gut microbial genera potentially associated with colorectal cancer. (A) Scatter plots (B)MR effect size
plots (1. Eubacterium fissicatena group onColorectal Cancer. 2. Anaerofilum on Colorectal Cancer. 3.DefluviitaleaceaeUCG011 on Colorectal Cancer. 4.
Ruminococcus 2 on Colorectal Cancer.5. Sutterella on Colorectal Cancer).
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TABLE 2 Results of heterogeneity and pleiotropy test.

Exposures Outcome Heterogeneity test Pleiotropy test

Methods Q df Q-val I2 MR egger regression
intercept

MR egger
standard error

MR egger
directionality p-value

MR-PRESSO
RSSobs

MR-PRESSO
p-value

Eubacterium fissicatena
group

CRC MR Egger 3.854 7 0.796 0.816 0.062 0.039 0.156 8.282 0.619

IVW 6.380 8 0.605 0.254

Anaerofilum MR Egger 6.139 9 0.726 0.466 0.017 0.029 0.577 7.922 0.769

IVW 6.474 10 0.774 0.545

Defluviitaleaceae
UCG011

MR Egger 4.172 8 0.841 0.918 −0.019 0.030 0.557 5.637 0.885

IVW 4.547 9 0.872 0.979

Ruminococcus 2 MR Egger 5.451 13 0.964 1.385 −0.014 0.014 0.356 7.175 0.973

IVW 6.366 14 0.956 1.199

Sutterella MR Egger 11.523 10 0.318 0.132 0.0004 0.027 0.988 13.741 0.421

IVW 11.523 11 0.401 0.045

Abbreviations: IVW, inverse variance weighted; MR, mendelian randomization; CRC, colorectal cancer; RSSobs, the observed residual sum of squares.
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microbiota diversity across different populations. Therefore, the
generalizability of our findings to other regional population may
require further validation. 2)With the rapid evolution of technology,
the functionality of genetic variations may change, and the SNPs
included in our study may not be suitable for future research. 3) The

information provided by the gut microbiota GWAS at the species or
strain level is limited, reducing the precision of two-sample MR
analyses in accurately inferring potential associations. 4) Despite
preliminary MR results suggesting potential connections between
gut microbial genera, genes, and CRC, this relationship loses

FIGURE 5
Forest plots of MR Leave-one-out sensitivity analysis and the funnel plot. (A). MR Leave-one-out sensitivity analysis for Eubacterium fissicatena
group on Colorectal Cancer. (B). MR Leave-one-out sensitivity analysis for Anaerofilum on Colorectal Cancer. (C). MR Leave-one-out sensitivity analysis
forDefluviitaleaceae UCG011 on Colorectal Cancer. (D). MR Leave-one-out sensitivity analysis for Ruminococcus 2 on Colorectal Cancer. (E). MR Leave-
one-out sensitivity analysis for Sutterella on Colorectal Cancer. (F). The funnel plot of Defluviitaleaceae UCG011 on Colorectal Cancer.).
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significance after p-value correction, possibly due to limited sample
size or a small effect size. The associated microbial genera and genes
identified in this study require further in-depth research and clinical
validation due to existing limitations in this study.

In conclusion, our study identified five gut microbial genera
potentially linked to CRC, with only one genus, Defluviitaleaceae
UCG011, identified as a risk factor for CRC. Through SNP
annotation, we pinpointed two hub genes associated with

Defluviitaleaceae UCG011: PTPRD and DSCAM. Our analysis
suggests that these genes may play a role in developing CRC, and
Defluviitaleaceae UCG011 may potentially influence the
development and progression of CRC. Our study offers new
insights on researching the mechanisms involved in the onset
and progression of CRC. Therefore, we recommend that in-depth
investigations be conducted into the role of gut microbial
genera in CRC.

FIGURE 6
Bubble plots of GO and KEGG pathway enrichment analysis for genes annotated with SNPs.
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