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Solanum pinnatisectum exhibits strong resistance to late blight caused by
Phytophthora infestans but only an incomplete genome assembly based on
short Illumina reads has been published. In this study, we generated the first
chromosome-level draft genome for the wild-type potato species S.
pinnatisectum in China using Oxford Nanopore technology sequencing and
Hi-C technology. The high-quality assembled genome size is 664 Mb with a
scaffold N50 value of 49.17 Mb, of which 65.87% was occupied by repetitive
sequences, and predominant long terminal repeats (42.51% of the entire
genome). The genome of S. pinnatisectum was predicted to contain
34,245 genes, of which 99.34% were functionally annotated. Moreover,
303 NBS-coding disease resistance (R) genes were predicted in the S.
pinnatisectum genome to investigate the potential mechanisms of resistance
to late blight disease. The high-quality chromosome-level reference genome of
S. pinnatisectum is expected to provide potential valuable resources for
intensively and effectively investigating molecular breeding and genetic
research in the future.
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Introduction

Potatoes (Solanaceae family, Solanum genus, Potatoes (G. Don) D’Arcy subgenus,
Petota Dumortier section) originated in the Andean mountains of South America and are
now cultivated across more than 160 countries and territories worldwide. As of 2018, the
global potato production was an impressive 368 million tons, positioning it as the world’s
fourth most significant food crop after maize, rice, and wheat (Epstein, 2014). Potatoes hold
both substantial nutritional and economic value, as they not only contain starch, protein,
crude fiber, and other essential nutrients but also boast carotenoids and ascorbic acid that
are components not typically found in many cereal grains (Nayak et al., 2014). Potatoes can
be further processed into whole flour and modified starch, which can be used as raw
materials in various fields, including food industries, chemical industries, and medical
treatments. China is currently the world’s largest potato producer, with the highest total
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annual cultivated area and overall output compared to other nations
and regions (http://www.fao.org/statistics/en/). Simultaneously,
advancements in potato breeding and cultivation technologies
have led to a continuous rise in the yield per unit area of
potatoes in China.

The late blight disease in potatoes, which is caused by the
facultative parasite Phytophthora infestans (Nowicki et al., 2012),
is a globally significant agricultural threat given its high infectivity.
In the middle of the 19th century, a devastating epidemic swept
through Ireland, resulting in the tragic loss of millions of lives and
prompting mass emigration owing to the pervasive famine (Fry
et al., 2015). Even now, potato late blight persists as one of the
world’s most pernicious plant pathogens, inflicting an annual
economic toll estimated at nearly 10 billion US dollars (Majeed
et al., 2017). Presently, the control of potato late blight disease relies
heavily upon chemical intervention. However, the inherent toxicities
of these fungicides pose risks to public health and exacerbate
environmental pollution even as the significant financial burden
associated frequent fungicide applications constitute a pressing
concern (Majeed et al., 2017). Furthermore, the imposition of
stricter fungicide regulations underscores the limitations of
depending solely on chemical pesticides for managing diseases
such as the late blight of potato (Qin et al., 2016; Karki et al.,
2020; Lal et al., 2021). The constant evolution of physiological
virulence in P. infestans presents a persistent challenge to potato
resistance breeding efforts.

It is of vital significance to develop potato resistance to late blight
disease through the exploration of new resistant germplasms,
research on new resistance genes, and expansion of the resource
bank for resistance breeding. Resistance to the causative agent of the
Irish Potato Famine, i.e., the pathogen P. infestans, has largely been
identified within the genetic material of various wild Solanum
species (Gao et al., 2020). The discovery of fresh disease-resistant
genes and development of novel technologies, such as quantitative
trait locus (QTL) mapping, have significantly enriched the material
foundation for developing late-blight-resistant potato varieties
(Danan et al., 2011; Albert et al., 2015). Petra Oberhagemann
found quantitative resistance to late blight in potatoes using QTL
mapping (Oberhagemann et al., 1999). A novel broad-spectrum
disease resistance gene from the wild potato species S.
bulbocastanum has been found using dRenSeq (Li et al., 2023). S.
pinnatisectum (2n = 2x = 24), a diploid wild potato species native to
Mexico, exhibits high resistance to late blight disease (Chen et al.,
2003); despite this characteristic, S. pinnatisectum has received less
attention compared to other wild relatives like S. demissum and S.
bulbocastanum primarily because of the high degree of
incompatibility it shares with other wild and cultivated potato
types, which has historically limited its germplasm resource
utilization potential.

Traditional breeding techniques still demonstrate limitations to
fully exploiting available germplasm resources. Moreover, there exist
varying degrees of reproductive isolation between cultivated- and
wild-type potatoes largely due to disparities in the ploidy levels and
endosperm balance numbers, among other factors. This inherent
isolation hinders the transfer of some disease-resistance genes from
wild potatoes to cultivated varieties via conventional breeding
methods. However, as modern breeding technologies have
overcome the reproductive isolation between the wild and

cultivated varieties as well as further expanded the scope of the
usable wild varieties, the disease-resistance genes of S. pinnatisectum
can be effectively applied in disease-resistance breeding. It is indeed
feasible to leverage advanced sequencing technologies at the
molecular level to uncover the disease resistance traits of S.
pinnatisectum and potentially other novel resistance genes. To
date, only one reference genome has been published for S.
pinnatisectum based on the short paired-end reads assembly of
the next-generation sequencing (NGS) technology (Gao et al., 2020;
Li et al., 2023), and the gaps in the genome sequence may
subsequently hamper the discovery of potential disease-
resistance genes.

Given the lengthy history of plant–pathogen interactions, plants
have evolved complex defense mechanisms to perceive and counteract
pathogen attacks, with a multitude of genes playing critical roles in
disease resistance. Research has suggested that terpenoids may
contribute significantly to this resistance in various plant species
(Bell et al., 1994; Hall et al., 2011; Schmelz et al., 2014), such as rice
(Yajima and Mori, 2000; Inoue et al., 2013) and cotton (Mace et al.,
1976; Zhang et al., 1993; Pierce et al., 1996).Moreover, the plant cell wall
and innate immunity of each cell also provide disease resistance against
plant–pathogen interactions (Van Der Biezen and Jones, 1998; Dangl
and Jones, 2001; Ausebel, 2005; Chisholm et al., 2006). Resistance (R)
genes constitute a superfamily and famous genes are used to study
disease resistance in plants (Bergelson et al., 2001; Pandolfi et al., 2017;
Zhang et al., 2022) to recognize the pathogen-derived virulence factors.
These R genes can directly or indirectly recognize pathogen-derived
virulence factors, thereby activating a series of disease-resistance
signaling pathways that ultimately lead to plant protection against
diseases (Staskawicz et al., 2001; Abramovitch and Martin, 2004;
Zhou and Chai, 2008). The R genes usually contain several motifs,
namely, the nucleotide-binding site (NBS) and leucine-rich repeat
(LRR) region, which are together referred to as the NBS-LRR genes
(Bezerra-Neto et al., 2020).

TABLE 1 Statistics and quality assessments of the genome and genes.

Species name S. pinnatisectum

Total length (bp) 664,135,451

Contig number 339

Contig N50 (bp) 9,057,158

Scaffold number 140

Scaffold N50 (bp) 49,171,345

Genome BUSCO in embryophyta_odb10 (%) 99.38

TGS mapping ratio (%) 99.63

NGS mapping ratio (%) 99.82

Error rate of homozygous variants (Coverage S1×) (%) 0.004025

Error rate of homozygous variants (Coverage S5×) (%) 0.003049

Accuracy of the genome Q40

Number of annotated protein genes 34,245

Repeat sequence in the genome (length bp/ratio %) 437,472,471/65.87

Gene BUSCO in embryophyta_odb10 (%) 97.96

Frontiers in Genetics frontiersin.org02

Shen et al. 10.3389/fgene.2024.1379784

http://www.fao.org/statistics/en/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1379784


Results

Genome estimation and assembly

Leaves were collected from S. pinnatisectum, and a total of 56 Gb
of the 150-bp paired-end DNA reads was obtained after adapter
trimming and quality filtering (Supplementary Table: Sequence and
Analysis Data). The survey analysis estimated the S. pinnatisectum
genome size to be 664–668 Mb with a heterozygosity of 1.49% (See
Supplementary Table S1; Supplementary Figure S1). Regarding the
genome assembly process, given the relatively high degree of
heterozygosity present within the S. pinnatisectum genome, we
implemented a filtration step to eliminate redundant contigs and
those that aligned with the mitochondrial or chloroplast sequences
from the nucleotide sequence database (NT). This approach ensures
a more accurate and refined representation of the genomic data. The
resulting genome size was 664 Mb, with the contig N50 value being
9 Mb (Table 1). We first evaluated the quality of the assembly using
benchmarking universal single-copy orthologs (BUSCO), whose
results demonstrated that the assembled S. pinnatisectum genome
exhibited a high level of completeness, as evidenced by a gene set
completeness rate of 99.38% (Table 1; Supplementary Table S3). To
further validate the accuracy of our assembly, we mapped the
Illumina paired-end reads back to the S. pinnatisectum genome;
the mapping rate achieved was 99.82%, and the genome coverage

with a read depth of at least 5× reached 98.10% (Table 1;
Supplementary Table S2). Ultimately, employing high-resolution
chromosome conformation capture (Hi-C) technology allowed us to
anchor the genomic contigs onto 12 chromosomes, resulting in a
total length of 600.10 Mb and an impressive loading rate of 90.36%
(Figure 1F; Supplementary Table S4). Notably, two of these
chromosomes (chr02 and chr11) were each composed of a single
contiguous contig (Supplementary Table S4). Given that both NGS
and third-generation sequencing (TGS) data were used, it is
expected that there should not be any homozygous variants
reported from the NGS data because of the inherent
heterozygosity within the S. pinnatisectum genome.
Consequently, any detected homozygous variants were considered
errors rather than genuine biological events. In conclusion, the
quality assessment revealed that the genome accuracy was Q40,
indicating a precision greater than 99.99% (Table 1; Supplementary
Table S4), thereby underscoring the reliability and high fidelity of
the assembled S. pinnatisectum genome.

Gene prediction and annotation

Genomic repeats were analyzed to assess the estimated genome
quality that the S. pinnatisectum genome harbors 437.47 Mb of
repetitive sequences, which account for a substantial proportion of

FIGURE 1
(A) The fruit of S. Pinnatisectum. (B) The flower of S. Pinnatisectum. (C) The tuber of S. Pinnatisectum. (D) The Red five-pointed star is the sampling
site (28°N 115°E). The location is Yichun. (E) The S. Pinnatisectum’s genome information in circos. The scale of 5 Mb in the outermost circos and the
chromosome was cut into 0.5 Mb to stat the density of different type among 2-6 circos. The contents represented by the circles from the outside to the
inside are displayed as follows: 1: The length of chromosome; 2: The density of gene; 3: The density of total repeat sequences; 4: The density of
Gypsy; 5: The density of Copia; 6: The distribution of GC base content; 7: The colinearity of gene block and the number of gene in each block ismore than
40. F: The Hi-C heatmap of S. Pinnatisectum.
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65.87% of the entire genomic content. Furthermore, long terminal
repeats (LTRs) were found to be dominant among these genomic
repeats, constituting 47.52% of the total content (Table 1;
Supplementary Table S5). We proceeded to predict
34,245 protein-coding genes in S. pinnatisectum using a
combined approach involving ab initio, transcriptome-based, and

homology-based predictions. Of these predicted genes, an
impressive 99.34% (equating to 34,019 genes) were successfully
annotated with functional information across five distinct
databases (refer to Table 1; Supplementary Table S6;
Supplementary Figure S2). The BUSCO assessment revealed a
high level of completeness of 97.96% for the protein sequences

FIGURE 2
Results of the gene family. (A) Numbers of gene families and genes among S. tuberosum L. (blue), S. chacoense (orange), and S. pinnatisectum
(purple). The species-specific genes are denoted in yellow words. The spot size represents the number of gene families or genes. (B) Top-20 significant
KEGGpathways in the enrichment analysis. The spot size represents the number of each enriched pathway (see the count bar), and the color is the degree
of enrichment (see p.adj bar). (C) Top-20 significantly enriched GO terms in the enrichment analysis. The spot and color are analyzed in the same
manner as in (B).
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within the S. pinnatisectum genome (also detailed in Table 1;
Supplementary Table S3). Additionally, our examination
identified a comprehensive set of non-coding RNAs within the S.
pinnatisectum genome, including 880 microRNAs, 1,036 transfer
RNAs, 223 ribosomal RNAs, and 24 regulatory RNAs (the specifics
can be found in Supplementary Table S7). The annotated results of
the genes and repeat sequences are shown in Figure 1E. The density
of repeats and genes also indicates that the genome sequence and
annotated result are of high quality.

Gene family evolution

For the gene family analysis, three potato species were
considered. There are 13,765 single-copy families in the genes of
S. tuberosum L., S. chacoense, and S. pinnatisectum. These sets of
single-copy family genes separately constitute 41.90%, 41.75%, and
40.20% of the total genes. A total of 5,416 multiple-copy families
were identified in each of the species, with corresponding counts of
11,466 genes in S. tuberosum L., 12,749 genes in S. chacoense, and
11,651 genes in S. pinnatisectum. For the remaining families, S.
tuberosum L. accounted for 3,875, S. chacoense accounted for 3,888,
and S. pinnatisectum accounted for 2,555 family groups. There were
205, 492, and 427 unique family groups specific to S. tuberosum L., S.
chacoense, and S. pinnatisectum, respectively. Moreover, there were
certain genes that were not affiliated with any recognized gene
families; thus, there were 1,664 non-family genes in S. tuberosum L.,
3,712 genes in S. chacoense, and 1,078 genes in S. pinnatisectum (as
shown in Figure 2A and detailed in Supplementary Table S8).

Focusing on S. pinnatisectum, we selected its unique family
genes (427) and non-family genes (1,078) for functional analysis,
which are highlighted in yellow in Figure 2A and enumerated in
Supplementary Table S8. These genes represent the species-specific
repertoire compared to the two other cultivated species. To gain
deeper insights into their functional significance, we conducted
enrichment analyses using KEGG pathways and GO terms for
these species-specific genes in S. pinnatisectum.

The top 20 significantly enriched KEGG pathways are presented
in Figure 2B; here, aside from the essential cellular processes such as
ribosomes, protein processing in the endoplasmic reticulum, and the
MAPK signaling pathway specific to plants, we observed that the
plant–pathogen interactions and phagosome pathways showed
significant enrichment of species-specific genes in the wild-type
S. pinnatisectum. The most significantly enriched GO terms are
visually depicted in Figure 2C, where the regulation of cellular
respiration, defense responses, and negative regulation of cell
population functions show significant enrichment in species-
specific genes in the wild type S. pinnatisectum. The objective of
this analysis was to examine the specific roles and biological
pathways potentially engaged by these distinct non-family genes
within S. pinnatisectum.

Differential expression gene analysis

Based on the time-series materials, a time-series differential
expression analysis was conducted using data collected at 0 h, 6 h,
9 h, and 12 h. This process resulted in the identification of

330 differentially expressed genes over time (refer to Supplementary
Table: Cluster Analysis). Initially, these genes were categorized into four
distinct groups (Figure 3A); the initial gene expressions in Clusters 1 and
4 were significantly lower than their counterparts in Clusters 2 and 3,
which displayed notably heightened expressions. However, with the
passage of time, an intriguing shift was observed in the expression
dynamics; the transcriptional activities in Clusters 1 and 4 increased
steadily, while there were concurrent reductions in the expression levels
in Clusters 2 and 3. Subsequently, these four categories could be further
divided into two main clusters (Figure 3B). Upon closer examination, it
was observed that genes within Cluster 1 exhibited an ascending
expression pattern, starting from low levels at 0 h and increasing to
higher levels by 12 h. In contrast, genes in Cluster 2 demonstrated a
descending trend, with initial high expression levels that gradually
decreased over the same time period from 0 to 12 h. The KEGG and
GO functional enrichment analyses disclosed that Cluster 1 manifested
substantial overrepresentation in multiple biological pathways. Notably,
these included the KEGG pathways for sesquiterpenoid, triterpenoid,
flavonoid, and phenylpropanoid biosyntheses, as depicted in Figure 3C.
Regarding the GO terms, Cluster 1 exhibited remarkable enrichment in
terpene synthase activity, diterpenoid biosynthesis processes, and
monooxygenase activities, emphasizing its unique biological roles and
molecular functions. Additional details on this gene enrichment may be
found in the Supplementary Table.

Analysis of resistance-related (R) genes

In the genome of S. pinnatisectum, 303 genes containing the
motifs of the NB-ARC (NBS) domain were identified (Supplementary
Table: R gene statistics). These protein sequences were aligned to
construct the gene tree (Figure 4). The gene FPKM of the R genes
based on 12 RNAseq are displayed in the outer ring of the gene tree.
The differential expression ranges from −2 to 2 (see the FPKM label in
Figure 4). The non-expression label (gray color) means that these
genes (39 numbers) are not expressed in the 12 RNAseq (Figure 4).
The target label (pink) means that these genes (68 numbers) show
ascending expression patterns from low to high with time lapse in the
12 RNAseq (Figure 4). Conversely, the non-target label applies to
196 genes (indicated in dark blue), whose expression patterns do not
follow the low-to-high trend in the 12 RNAseq dataset. For the motifs
in the R gene, differentmotifs in the sequences were identified, and the
number ofmotif genes is 10 at most (Supplementary Figure S3). These
genes have different locations in the chromosome; 299 out of the
303 genes are located in the chromosome and the remaining 4 are
located in the dispersed contigs (Supplementary Table: R gene
statistics). Genes located on the chromosome are depicted in the
chromosome diagram, and some genes such as chr4, chr5, and
chr11 together constitute 16.17% (49 genes), 10.23% (31 genes),
and 13.86% (42 genes) of the total number of genes (Figure 5).

To identify the shared and unique genes among the resistance
genes and Cluster 1, gene annotation results were obtained
(Supplementary Figure S4); the genes were exclusively assigned to
a single group of 273 (constituting 90.10% of the total) in the
R-resistance category, 119 (representing 93.70%) in Cluster 1,
and 64 (comprising 62.75%) in Function. Additionally, there may
exist genes that simultaneously belong to more than one
subgroup. Our analysis showed that 30 genes bear functional
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significance and are related to R-resistance. Only eight genes
(StuW01G003151, StuW01G003152, StuW01G003155,
StuW02G002548, StuW04G001654, StuW05G001553,
StuW10G002376, and StuW10G002377) were specifically found
to have significant functionality within Cluster 1, as depicted
graphically. It is worth noting that no genes were found to be
common to both the R-resistance category and Cluster 1.

Discussion

We report a high-quality chromosome-level reference genome
for the wild-type potato S. pinnatisectum based on genome
assessment, and the distribution of the gene and repeat sequences
also prove the quality of the genome. We assembled a 664-Mb
genome and annotated 34,245 protein-coding genes.

FIGURE 3
Clustering of the differential expressions and enrichment of the specific cluster genes. (A)Gene classification into four clusters, where blue indicates
low expression and red indicates high expression. (B) Gene classification into two clusters. (C) Gene belonging to Cluster 1 in (A) with significant
enrichment of the KEGG pathway in the enrichment analysis. (D) Gene belonging to Cluster 1 in (A) with significant enrichment of the GO terms in the
enrichment analysis.
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To unravel the species affinities and evolutionary processes as
well as identify species-specific genes and reconstruct their
evolutionary histories, the Markov clustering (MCL) algorithm
has been widely and effectively employed across numerous
databases (Van Dongen, 2000; Zhang et al., 2019). Previous
research endeavors have successfully applied this methodology to
analyze gene families across various organisms, including humans
(Bac Resource Consortium et al., 2001), Drosophila (Clark et al.,
2007), plants (Guo, 2013; Zhang et al., 2020), vertebrates, and
invertebrates (Prachumwat and Li, 2008). In the present study, a
considerable proportion of the major genes, approximately 40%, are
categorized as single-copy families in both the wild and cultivated
species. However, wild species (S. pinnatisectum) exhibits a
significantly lower frequency of single-copy genes and harbors a
larger number of unique genes. The fewer unique genes observed in
the cultivated species compared to the wild counterparts may be

functionally relevant, suggesting that gene loss in the cultivated
species is not a random process but is rather subject to functional
selection pressures (Kondrrashov et al., 2002; Blanc and
Wolfe, 2004).

To reveal the possible mechanisms of resistance of S.
pinnatisectum to late blight disease, we initially compared S.
pinnatisectum with other cultivated species and found that the
plant–pathogen interactions and phagosome pathways were
significantly enriched with species-specific genes. Similarly, within
the KEGG pathways, we detected analogous patterns of enrichment
in both the plant–pathogen interaction and phagosome pathways.
This finding points to a similar upregulation of genes linked to late
blight resistance in the wild species, which corroborates previous
research (Bhatia et al., 2023), underscoring the distinctive biological
responses evident in S. pinnatisectum (Pierce et al., 1996).
Meanwhile, the terms of regulation of cellular respiration, defense

FIGURE 4
Tree and expressive heatmap of the resistance genes. The color light blue indicates low expression, and red shows high expression. The non-
expression label is indicated by the gray genes, which are not expressed in 12 RNAseq. The non-target label shown in dark blue indicates the expression
pattern of the gene, which is not from low to high with time lapse in the 12 RNAseq. The target label shown in pink indicates the expression pattern of the
gene from low to high with time lapse in 12 RNAseq.
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responses, and negative regulation of cell population were also found
among the significant enrichment terms in S. pinnatisectum
(Figure 2C) (Dangl and Jones, 2001; Abramovitch and Martin,
2004; Zhou and Chai, 2008). These pathways and terms are
obviously involved in plant resistance directly or indirectly.

The special 12 RNAseq revealed that some new secondary
metabolite pathways and terms, such as sesquiterpenoid and
triterpenoid biosynthesis, flavonoid biosynthesis, terpene synthase
activity, and diterpenoid biosynthetic. Some studies have indicated
that terpenoids can protect against some diseases or are associated
with resistance to pathogens in plants (Mace et al., 1976; Zhang et al.,
1993; Bell et al., 1994; Yajima and Mori, 2000; Hall et al., 2011;
Schmelz et al., 2014). Furthermore, R genes play an important role in
resistance, so we further identified 303 resistance-related genes in S.
pinnatisectum. Another set of 68 genes, whose the expression
patterns range from low to high with time lapse in the
12 RNAseq (Figure 4), may be involved in resistance to late
blight disease, as verified by the expression profiles of these genes
in the transcriptome data (Van Der Biezen and Jones, 1998; Pandolfi
et al., 2017; Bezerra-Neto et al., 2020; Zhang et al., 2022). The Venn
diagram shows that some of the genes that enhance over time in
Cluster 1 are correlated with functional annotations, with 37.3%
demonstrating a connection to the R genes and Cluster 1. While
there was no overlap between the resistance genes and Cluster 1, the
Venn diagram demonstrated a significant relationship between the
three sets of results.

The current analysis admittedly has several limitations. First, the
modest sample size restricts inference since it encompasses just one
wild species; broadening the scope to multiple plant species would
enhance the robustness of the findings. Second, while sequencing
with the Oxford Nanopore technology (ONT) offers superior
comprehensiveness and longer read lengths than typical NGS,
adopting HIFI data might augment the verification of our
discoveries in future work. Lastly, the absence of experimental

validations for the derived conclusions is a notable weakness.
Integration of the root genome-wide association studies (GWS)
in future investigations is expected to contribute significantly to the
overall persuasiveness and impact of this research.

Summarily, the assembled genome sequence of S. pinnatisectum
is expected to become an important complement to the genome of
potato species and is expected to provide undiscovered information
for further understanding of the fundamental disease-resistance
mechanisms to improve molecular breeding strategies in potato
plants. The genomic resource obtained herein will be potentially
helpful for improving the potato quality and production in
the future.

Methods

Genome and transcriptome sequencing

For genome sequencing, a single tissue culture seedling of S.
pinnatisectum was collected from Jiangxi Key Laboratory of Crop
Growth and Development Regulation (28oN 115oE) (Figures 1A–D).
The total genomic DNA from the young fresh leaves of one plant
was extracted using the CTAB method (Doyle and Doyle, 1987).
Approximately 10 µg of the DNA was sheared into 10–50 kb
fragments, followed by size selection on the BluePippin
instrument. Approximately 5 μg of the recovered DNA was
retrieved for library construction using the Ligation Sequencing
1D kit (SQK-LSK109, ONT, United Kingdom) according to
manufacturer instructions, and the final library was sequenced on
the Oxford Nanopore PromethION platform (ONT,
United Kingdom) (Lu et al., 2016) at the Genome Center of
Grandomics (Wuhan, China). Reads with mean quality scores
higher than 7 were retained. For the Illumina library
construction, the extracted DNA was fragmented and

FIGURE 5
Locations of the R genes in each chromosome. The different colored bars represent different chromosomes, with the name of the chromosome
shown at the top. The black lines in the colored bars show the locations of the R genes. The lengths of the colored bars represent the lengths of the
corresponding chromosomes. The scale of length is shown along the left axis.
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fractionated from the same source and was subjected to paired-end
library construction, which was subsequently sequenced on the
Illumina NovaSeq 6000 platform (Illumina Inc., CA, USA).
Furthermore, leaves were collected from the same S.
pinnatisectum source, and RNAseq reads were generated for
genome annotation using the Illumina platform.

Genome assembly

The Illumina paired-end reads were filtered using fastp (v0.19.6)
(Chen et al., 2018) with default parameters andwere then applied toward
genome size and heterozygosity estimations using Jellyfish (v2.2.3)
(Marcais and Kingsford, 2011). Approximately 62.59 Gb of the pass
reads sequenced from the Nanopore PromethION platform by Guppy
(Sherathiya et al., 2021) were obtained, and the S. pinnatisectum genome
was subsequently assembled using NextDenovo software (https://github.
com/Nextomics/NextDenovo) (read_cutoff = 1k, seed_cutoff = 28k). To
obtain a genome with greater accuracy, error correction was performed
on the assembled contigs using Racon (v1.5.0) (Vaser et al., 2017) with
the Nanopore long reads and NextPolish (v1.2.4) (Hu et al., 2019) with
the Illumina short reads for three and four rounds, respectively. The
genome redundancies were detected and removed by Redundans
(Pryszcz and Gabaldón, 2016) (with --identity 0.88 and --overlap 0.88).

To evaluate the accuracy of the genome assembly, the Illumina
genomic paired-end reads were mapped to the genome contig
sequences using the “mem” submodule of BWA (Jung and Han,
2022; Langarita et al., 2023). The mapping identity and genome
coverage of the genome assembly were calculated from the
mapping results obtained with SAMtools v1.4 (Li et al., 2009) with
the default parameters. Homozygous single-base variations were
subsequently detected using BCFtools v1.8.0 (Narasimhan et al.,
2016; Danecek and Mccarthy, 2017) with the default parameters.
Furthermore, the Illumina RNAseq reads weremapped to the genome
sequence using HISAT2 v2.1 (Kim et al., 2019) with the default
parameters, and the mapping rate of the RNAseq reads was calculated
with SAMtools (Li et al., 2009). The completeness of the conserved
genes and eukaryote core gene assembly were evaluated using BUSCO
v5.1.3 (Simao et al., 2015; Seppey et al., 2019) with the “embryophyta_
odb10” dataset.

To further eliminate contaminated sequences of the genome
that could cause potential problems during downstream analysis,
the error-corrected genome contigs were aligned with the
Nucleotide Sequence Database (NT) (Harger et al., 2000)
using BLASTN v2.9 (Camacho et al., 2009) with the parameter
“E-value 1e-5,” and the sequence alignment results were classified
based on species taxonomy. The contigs aligned to taxonomies
except “Viridiplantae” and “Nohit” were classified as
contamination sequences and filtered out from the
genome assembly.

Hi-C sequencing and chromosome
construction

The Hi-C library was constructed using young fresh leaves from
the same S. pinnatisectum Dunal and sequenced using the Illumina
platform. An improved Hi-C procedure (Lieberman-Aiden et al.,

2009; Louwers et al., 2009; Rao et al., 2014) was adapted. Briefly, the
leaves were fixed with 1% formaldehyde to induce crosslinking
(Sigma) and were subsequently lysed to form the cohesive ends by
restriction endonuclease DPN II (NEB). The digested DNA was
blunt-ended by filling the nucleotides by Klenow enzyme (NEB)
with biotin-14-dATP (Invitrogen), followed by ligation by
T4 DNA ligase (NEB). After overnight incubation to reverse the
crosslinks, the ligated DNA was sheared into 300–600 bp fragments.
The DNA fragments were blunt-end repaired and A-tailed, followed
by purification through biotin-streptavidin-mediated pull down.
Finally, the Hi-C library was sequenced on the Illumina NovaSeq-
6000 platform (Illumina Inc., CA, USA). For chromosome-level
scaffolding, Hi-C paired-end reads were filtered using fastp
(v0.19.4) (Chen et al., 2018) with the default parameters and were
then aligned to the decontaminated genome contigs using bowtie2
(v2.3.2) (Langmead and Salzberg, 2012) with the end-to-end model
(-very-sensitive -L 30). LACHESIS (Burton et al., 2013) (https://
github.com/shendurelab/LACHESIS) was subsequently applied
according to the agglomerative hierarchical clustering algorithm to
cluster the contigs with CLUSTER MIN RE SITES, CLUSTER MAX
LINK DENSITY, CLUSTER NONINFORMATIVE RATIO, ORDER
MINN RES IN TRUNK, andORDERMINN RES IN SHREDS set to
100, 2.5, 1.4, 60, and 60, respectively, to assemble the genome contigs
into groups that were further ordered and oriented into
chromosomes. Finally, the chromosome-level genome was revised
manually based on the heat-map matrix of Hi-C.

Annotation of repetitive elements

Tandem repeats (TRs) across the S. pinnatisectum genome
were annotated using GMATA (v2.2) (Wang and Wang, 2016)
with the default parameters and Tandem Repeats Finder (TRF)
(v4.07b) (Benson, 1999) (2 7 7 80 10 50 500 -f -d -h -r). The plant
transposable elements (TEs) were searched separately using
LTR_finder (v1.0.6) (Xu and Wang, 2007) and LTR_harvest
(v1.6.5) (Ellinghaus et al., 2008) with the default parameters,
and their results were applied to construct an LTR library file
using LTR_retriever (Ou and Jiang, 2018). A MITE transposon
library was generated using MITE-hunter (Han and Wessler,
2010) (-n 20 -P 0.2 -c 3) for plants and animals, and a de novo TE
library was predicted using RepeatModeler (v1.0.11) (Bedell
et al., 2000) (-engine wublast). The LTR, MITE transposon,
and de novo TE libraries as well as Repbase database (Jurka
et al., 2005) were combined to construct the final TE library for S.
pinnatisectum, which was then used as the repeat library for
RepeatMasker (Bedell et al., 2000) (v4.0.6; www.repeatmasker.
org) (nolow -no_is -gff -norna -engine abblast -lib lib) to identify
the TE elements in the S. pinnatisectum genome. The results of
the TRs and TEs were merged and masked from the genome
sequence. Finally, further repetitive sequences in the masked
genome were found using RepeatProteinMask.

Gene prediction

Gene models of the S. pinnatisectum genome were constructed
by ab initio, homology-based, and transcriptome-based
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predictions. The RNAseq paired-end reads were mapped to the S.
pinnatisectum genome using HISAT2 (v2.1.0) (Kim et al., 2019),
and StringTie (v1.3.3) (Pertea et al., 2015; Pertea et al., 2016) with
the default parameters was subsequently applied to assemble the
transcripts that were then used as the inputs to PASA (v2.0.2)
(Haas et al., 2003) (--ALIGNERS gmap, blat) for transcriptome-
based gene prediction. Augustus (v3.3.1) (Stanke et al., 2006) was
used for the ab initio gene prediction with default parameters.
Moreover, the protein sequences of six homologous species
(Nicotiana attenuata, Arabidopsis thaliana, S. aethiopicum, S.
pennellii, Caosicum baccatum, and S. chacoense) were used for
the homology-based prediction through GeMoMa (v1.5.3)
(Keilwagen et al., 2019) with default parameters. The gene
prediction results from the three methods were integrated using
EVidenceModeler (EVM; v1.1.1) (Haas et al., 2008) to obtain the
raw gene set. Finally, the genes whose sequences were composed of
TEs were filtered using TransposonPSI (Urasaki et al., 2017)
(http://transposonpsi.sourceforge.net). The completeness of
the predicted genes was evaluated using BUSCO v5.1.3 (Simao
et al., 2015; Seppey et al., 2019) with the “embryophyta_
odb10” dataset.

Non-coding RNA prediction

The annotation of the non-coding RNA set was performed next,
and the genome of S. pinnatisectum was aligned to the non-coding
database Rfam (v11.0) (Griffiths-Jones et al., 2005) using
INFERNAL (Nawrocki et al., 2009) to annotate the genes of the
small nuclear RNAs (snRNAs) andmicroRNAs (miRNAs). Transfer
RNAs (tRNAs) were predicted using tRNAscan-SE (v1.3.1)
(Griffiths-Jones et al., 2005). Finally, the ribosome RNAs
(rRNAs) were predicted using RNAmmer (v1.2) (Lagesen
et al., 2007).

Gene functional annotation

The biological functions of the predicted genes in the S.
pinnatisectum genome were annotated using two strategies
with protein sequences. First, the predicted protein sequences
were aligned with the Swiss-Prot protein database (Bairoch and
Apweiler, 2000; Boutet et al., 2007), non-redundant protein
sequence database (NR) (Harger et al., 2000), Kyoto
Encyclopedia of Gene and Genomes (KEGG) database
(Kanehisa and Goto, 2000; Kanehisa et al., 2017), and
Eukaryotic Orthologous Groups (KOG) of protein database
(Tatusov et al., 2003) using BLASTP (v2.7.1) (Camacho et al.,
2009) with parameters “-evalue 1e-5, -max_target_seqs 1.” The
Gene Ontology (GO) (Ashburner et al., 2000) analysis was
subsequently performed using InterProScan (Zdobnov and
Apweiler, 2001) v5.32-71.0 with the default parameters and
databases. For the circles, all proteins were aligned against
each other using BLASTP (-e 0.01), and Python package
MCScanX (Wang et al., 2012) was used to find the collinear
segments based on the protein alignment files. Subsequently, the
number of genes in the collinear block was found to be more than
40, which was retained in Figure 1E.

Transcriptome data analysis

The RNAseq data of S. pinnatisectum were obtained from NCBI
with the BioProject accession number PRJNA616420 (S.
pinnatisectum sample accession numbers: SRX8168235,
SRX8168240, SRX8168241, SRX8168242, SRX8168243,
SRX8168244, SRX8168245, SRX8168246, SRX8168247,
SRX8168248, SRX8168249, and SRX8168250) (Gu et al., 2020).
These data were based on histological observations of infected leaf
tissues 0, 6, 9, and 12 hours post inoculation (hpi) as the time points to
investigate the transcriptional dynamics of S. pinnatisectum. Quality
control of the RNAseq reads were performed using fastp (Chen et al.,
2018) with the default parameters andmapped to the S. pinnatisectum
genome sequence using HISAT2 (v2.1.0) (Pertea et al., 2016; Kim
et al., 2019) with the default parameters. Read alignments for the
transcripts in each sample were extracted and counted using StringTie
(v1.3.3) (Pertea et al., 2015; Pertea et al., 2016). The expression level of
each gene was measured in terms of the fragments per kilobase per
million (FPKM) values estimated in StringTie. The read count of each
gene generated by StringTie script was used for differential expression
analysis. DESeq2 (Love et al., 2014) was employed in this analysis with
false discovery rate (FDR) ≤0.05 and fold change ≥2. Because the
sample of RNAseq is time ordered, the genes with significantly
different expressions in the time series were selected to determine
the gene clusters using pheatmap with kmeans. Two and four clusters
(k = 2 or k = 4) were implemented, and two clusters were found to be
more suitable by comparing the two results. Thus, the gene set with
low to high expressions from 0 to 12 hpi was selected for enrichment
analysis through GO and KEGG using the R-package of
clusterProfiler (Yu et al., 2012; Wu et al., 2021). Finally, ggplot2
(Wickham, 2009) was used to draw the bubble diagram.

Gene family analysis

Diploid cultivated potatoes S. tuberosum L. (http://spuddb.uga.
edu/dm_v6_1_download.shtml) and S. chacoense (http://spuddb.
uga.edu/M6_v5_0_download.shtml) were downloaded for the
downstream analyses. In these downloaded and S. pinnatisectum
data, the longest mRNA in each gene was selected from the
annotated file and translated to a protein sequence. Then, all
selected protein sequences were aligned and clustered using
Orthofinder v2.5.4 (Emms and Kelly, 2019) (-S diamond). Next,
the clustered gene family was classified into four groups. The single-
copy family showed that there was only one gene from each species
in this group. Multiple families would indicate that the number of
genes, which could be from any one species, is equal or greater than
one and is not same as the single-copy family in this group. A unique
family indicates that the number of genes is greater than one for any
single species and that the others are zero. The family that does not
belong to the single-copy, multiple, or unique categories is called as
the other family. Meanwhile, there may still be some genes that may
not belong to the above gene families. According to the above
classification method, all genes were categorized into one of these
five groups as four gene families and one non-family. For each
species, the genes of the unique family and non-family are the
species-specific genes. Thus, the species-specific genes in S.
pinnatisectum were collected for gene set enrichment analysis,
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including GO and KEGG, using the R-package of clusterProfiler.
Finally, ggplot2 was used to draw the bubble diagram.

Resistance-related (R) gene identification

The hidden Markov model (HMM) file of the NB-ARC (NBS)
domain (PF00931: http://pfam-legacy.xfam.org/search/keyword?
query=PF00931) (Pandolfi et al., 2017) was download from the
pfam database (http://pfam-legacy.xfam.org/) (Mistry et al., 2021).
Then, the predicted protein sequences from the S. pinnatisectum
genome were first aligned against the HMM of PF00931 using
hmmscan in HMMER v3.3.2 (Potter et al., 2018). Next, from the
raw aligned results, a high-quality protein set (E-value < 1×e−20) was
selected to construct the species-specific HMM file using hmmbuild
in HMMER v3.3.2 (Potter et al., 2018). Then, the predicted protein
sequences from the S. pinnatisectum genome were aligned again
with the species-specific NBS HMMusing hmmscan in HMMER v3.
3.2 (Potter et al., 2018). The genes with E-values less than 0.01 were
obtained for the newly aligned file as the final resistance-related (R)
genes (Lozano et al., 2015).

For NBS encoding proteins, the sequences were aligned using
mafft v7.471 (Katoh et al., 2002) with default parameters, and the
alignment file was subsequently input into Gblock v0.19b (Talavera
and Castresana, 2007) (-t = p -b5 = h) to product the trimmed
alignment file. Then, iqtree v2.2.0 (Nguyen et al., 2015) (-b 1000)
was used to construct the gene tree with the trimmed alignment file.
Based on the transcriptome data analysis, the FPKM of the R genes
was obtained and then modified in the tree using iTOL (https://itol.
embl.de/) (Letunic and Bork, 2007; Letunic and Bork, 2016).
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