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Background: To address the limitations of commonly used cross-validation
methods, the linear regression method (LR) was proposed to estimate
population accuracy of predictions based on the implicit assumption that the
fitted model is correct. This method also provides two statistics to determine the
adequacy of the fitted model. The validity and behavior of the LR method have
been provided and studied for linear predictions but not for nonlinear predictions.
The objectives of this study were to 1) provide a mathematical proof for the
validity of the LR method when predictions are based on conditional means,
regardless of whether the predictions are linear or non-linear 2) investigate the
ability of the LR method to detect whether the fitted model is adequate or
inadequate, and 3) provide guidelines on how to appropriately partition the data
into training and validation such that the LR method can identify an
inadequate model.

Results: We present a mathematical proof for the validity of the LR method to
estimate population accuracy and to determine whether the fitted model is
adequate or inadequate when the predictor is the conditional mean, which may
be a non-linear function of the phenotype. Using three partitioning scenarios of
simulated data, we show that the one of the LR statistics can detect an inadequate
model only when the data are partitioned such that the values of relevant
predictor variables differ between the training and validation sets. In contrast,
we observed that the other LR statistic was able to detect an inadequate model
for all three scenarios.

Conclusion: The LR method has been proposed to address some limitations of
the traditional approach of cross-validation in genetic evaluation. In this paper,
we showed that the LR method is valid when the model is adequate and the
conditional mean is the predictor, even when it is a non-linear function of the
phenotype. We found one of the two LR statistics is superior because it was able
to detect an inadequate model for all three partitioning scenarios (i.e., between
animals, by age within animals, and between animals and by age) that
were studied.
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Introduction

Advances in high-throughput genotyping have enabled the
implementation of genomic prediction, which has facilitated the
genetic improvement of animals and plants based on more accurate
estimated breeding values (EBV) at an early age (e.g., Meuwissen
et al., 2001; Dekkers and Hospital, 2002; Bernardo and Yu, 2007;
Habier et al., 2011; Wolc et al., 2011; Morota et al., 2013). Various
genomic prediction models have been proposed and prediction
performance across or within models is usually evaluated by
cross-validation (CV) methods (Utz et al., 2000; Meuwissen
et al., 2001; Saatchi et al., 2011; Morota and Gianola, 2014). With
CV, the data set is partitioned into training and validation sets, with
the training set used to fit a prediction model and estimate the
breeding values (BV) of individuals in the validation set. Prediction
performance is commonly evaluated with the statistic of predictivity,
which is the correlation coefficient between the EBV and phenotypes
adjusted for fixed effects of individuals in the validation set. Scaling
predictivity by the square root of heritability (h2) provides an
estimator for prediction accuracy of the EBV (Legarra et al.,
2008; Serão et al., 2016), defined as the correlation between true
and estimated breeding values. While accuracy estimated with CV
has been widely used to quantify the performance of genomic
prediction models, pre-correcting phenotypes in the validation
set using estimates of fixed effects obtained using the whole data
set will overestimate the accuracy when multiple levels of fixed
effects are present (Legarra and Reverter, 2018). Additional
limitations include that it cannot be applied to complex models
(e.g., models with random regression, sex limited traits, maternal
effects, additive and non-additive effects), indirect traits (e.g.,
unobserved latent traits), and traits with low h2 (Legarra and
Reverter, 2018).

To address these limitations of the CV methodology, Legarra
and Reverter (2018) proposed a linear regression (LR) method to
estimate the accuracy of genomic prediction implicitly assuming the
fitted model is correct. The LR method quantifies the population
accuracy of predictions based on the correlation between EBV of
individuals in the validation set estimated using the training set and
the EBV of those same individuals estimated using the combined
training and validation sets. In the LRmethod literature, the training
set is referred to as the partial data set (p) and the combined training
and validation data set is referred to as the whole data set (w). The
LR estimator of population accuracy is theoretically justified only
when the fitted model is adequate. Thus the LR method also
provides two statistics that can be used to check if the model
is adequate.

The LR method was mathematically justified by Legarra and
Reverter (2018) based on results from Reverter et al. (1994). Macedo
et al. (2020) investigated the behavior and properties of the LR
method by analyzing simulated data with pedigree-based genetic
models. They studied the LR estimators of population bias and
accuracy of predictions by using wrong values of h2 in the analysis
and by fitting wrong models that ignored the environmental trend
through the simulated generations, and claimed that “the LR
method works reasonably well for detection of bias when the
model used is robust or close to the true model, and that it
works well for estimation of accuracy even when the model is
not good.” Validity and performance of the LR method for a

non-linear model was explored by Bermann et al. (2021). In their
study, they evaluated the performance of the LR method by fitting a
threshold model to simulated data and also applied it to real data to
estimate the increase in accuracy by adding genomic information.
Based on the results from the simulated data, they concluded that the
LR method can be useful to estimate the directions of bias,
dispersion, and accuracy, though the LR estimators had different
magnitudes compared to the true estimators. The original proof of
the LRmethod (Legarra and Reverter, 2018) was based on the setting
where the whole data set had additional phenotype records relative
to the partial data set. Belay et al. (2022) recently showed that the LR
method can also be applied to the setting where the whole data set
has additional genotypes (rather than phenotypes) relative to the
partial data set. They used the LR method to evaluate the bias and
accuracy in single-step genomic predictions.

While the validity and performance of LR method has been
explored using linear and non-linear models in previous studies
(Macedo et al., 2020; Bermann et al., 2021), a mathematical proof of
its validity for non-linear methods of prediction has not yet been
presented. In addition, studies about the performance of the LR
method when a model other than the true model is fitted are still
relatively scarce in the literature. The objectives of this study were to
1) present a mathematical proof of the validity of the LR method
when predictions are based on the conditional mean, regardless of
whether it is a linear or non-linear function of the data 2) investigate
the ability of the LR method to detect whether the fitted model is
adequate or inadequate, and 3) provide guidelines on how to
partition the data set such that the LR method can detect the use
of an inadequate model.

Theory

Notation

In the LR method, Legarra and Reverter (2018) used var(x) to
denote the variance of a random element, x, sampled from a single
realization of the random vector x, and Var(x) to denote the
variance-covariance matrix for the vector x. Similarly, they used
cov(x, y) to denote the covariance between randomly sampled xi and
yi and Cov(x, y) to denote the covariance matrix between the vectors
x and y. Let u denote the vector of BV of the validation animals, and
ûp and ûw denote the vector of EBV of u obtained from partial data
and whole data, respectively.

Proof of the validity of the LR method when
the conditional mean is used for prediction

Legarra and Reverter (2018) developed the LR method for best
linear unbiased prediction (BLUP) by showing that
Cov(ûw, ûp) � Var(ûp), using the results from Reverter et al. (1994)
and the result that Cov(u, ûp) � Var(ûp) and E(ûp) � E(ûw) � E(u)
from Henderson (1982). Using the above results for BLUP, they showed
that E[cov(ûw, ûp)] � E[var(ûp)] � E[cov(u, ûp)], and thus justified
that cov(u, ûp) can be quantified by computing cov(ûw, ûp).

It is well known that whenever ûp is the conditional mean of the
unobservable random variable up given observed phenotype,
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Cov(u, ûp) � Var(ûp) (Rao, 1973). Further, based on the double
expectation theorem (DeGroot and Schervish, 2002), the condition
mean is known to be unbiased in the sense that E(û) � E(u). Thus it
follows that, if the conditional mean is used for prediction,
E(ûp) � E(ûw) � E(u). Below, we show that whenever ûp is
based on conditional means, Cov(ûw, ûp) � Var(ûp). Then, using
the results from Legarra and Reverter (2018), it follows that
E[cov(ûw, ûp)] � E[var(ûp)] � E[cov(u, ûp)] and cov(u, ûp) =
cov(ûw, ûp) for predictions using conditional means, regardless
of whether the conditional mean is a linear or non-linear
function of the data.

Here we show that Cov(ûw, ûp) � Var(ûp) when predictions
are based on conditional means, which may be non-linear. Let

yw � yp
yr

[ ],
where yw, yp, and yr indicate vectors of phenotype records in the
whole, partial, and validation (remaining) data set, respectively. In
the Supplementary Appendix, we show Eyr |yp(ûw|yp) � ûp, which
represents the expectation over the conditional distribution of yr
given yp and will be used in the following proof.

Now, we write the Cov(ûw, ûp) as:
Cov ûw, ûp( ) � Eyw ûw − θw( ) ûp − θp( )′[ ]

� Eyw ûw ûp − θp( )′[ ] − Eyw θw ûp − θp( )′[ ]
� Eyw ûw ûp − θp( )′[ ] − θwEyw ûp − θp( )′[ ]
� Eyw ûw ûp − θp( )′[ ] − θw0′
� Eyw ûw ûp − θp( )′[ ]
� Eyw ûw − ûp + ûp( ) ûp − θp( )′[ ]
� Eyw ûw − ûp( ) ûp − θp( )′ + ûp ûp − θp( )′[ ],

where θp and θw are the expected values of ûp and ûw, respectively.
The first term of this expectation can be shown to be null:

(see the Supplementary Appendix for derivation)

Eyw ûw − ûp( ) ûp − θp( )′[ ] � Eyp Eyr |yp ûw − ûp( ) ûp − θp( )′|yp[ ]{ }
� Eyp Eyr |yp ûw − ûp( )|yp[ ] ûp − θp( )′{ }
� Eyp ûp − ûp( ) ûp − θp( )′[ ] � 0,

because, as shown in the Appendix that Eyr |yp(ûw|yp) � ûp. Thus,
the Cov(ûw, ûp) becomes:

Cov ûw, ûp( ) � Eyw ûp ûp − θp( )′[ ]
� Eyp ûp ûp − θp( )′[ ]
� Var ûp( ).

The proof of Cov(ûw, ûp) � Var(ûp) shows the LR method also
holds for non-linear predictions. This proof is similar in
principle to that provided by Belay et al. (2022), but we
recognize that it is not limited to BLUP, as invoked in that
study, but is applicable to any method of prediction based on the
conditional mean (Fernando and Gianola, 1986), including for
non-linear models.

Data simulation

A longitudinal data set of body weights in pigs was simulated
with 20 replicates to evaluate the behavior of the LRmethod for non-

linear models. Body weights of 1,500 individuals in the same
generation from 70 to 500 days of age were simulated using a
combination of multi-trait QTL effects that were randomly
sampled from a multivariate normal distribution and a Gompertz
growth model. Only 30 bi-allelic independent QTL were simulated
to make the computations manageable. Following Brossard et al.
(2009), the body weight of individual i at age t (BWit) was
simulated as:

BWit � g t; θi( ) + ϵit, (1)
where θi � [Age115i Shapei BW65i ] refers to three underlying
latent variables for pig i of age at 115 kg, a shape parameter, and
body weight at 65 days, and ϵit is the residual. We simulated
heterogeneous residuals to mimic the real growth data for pigs
using three different residuals across days 70–500 (i.e., 70–167 days:
σ2ϵ1 � 3.0, 168–334 days: σ2ϵ2 � 4.0, and 335–500 days: σ2ϵ3 � 8.0)
based on estimates obtained from actual body weight data by Yu
et al. (2022). In Eq. 1, g(.) indicates a reparameterized Gompertz
function, which replaces the initial and mature BWi with BW65i and
Age115i, respectively (Brossard et al., 2009):

g t; θi( ) � 115 ×
115

BW65i
( ) −e −Shapei Age115i−65( )( )−e −Shapei −65+t( )( )

−1+e −Shapei Age115i−65( )( )( )
.

The three underlying latent variables θi for individual i were
considered correlated and modeled with a multivariate QTL
effects model.

θi � μ +∑p
j�1

mijαj + ei,

where μ is a 3 × 1 vector with the intercepts for each latent
variable, mij is the genotype covariate (0, 1, 2) of individual i at
the jth QTL, αj is a vector of random substitution effects for the
three latent variables for the jth QTL, and ei is a vector of
random environmental effects associated with each latent
variable. Based on the results of Yu et al. (2022), the
variance-covariance matrix used for simulation of random
environmental effects (Σe) was equal to

3.65 × 10−3 1.05 × 10−3 5.51 × 10−3

1.05 × 10−3 3.52 × 10−2 −1.44 × 10−2

−5.51 × 10−3 −1.44 × 10−2 3.05 × 10−2
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. The variance-

covariance used to simulate QTL effects for the three latent
variables (Σα) was arbitrarily but without loss of generality
derived by dividing the environmental variance-covariance by
the number of QTL (i.e., 30).

Data analysis models

Using the QTL as markers, without loss of generality, the
simulated data were analyzed to examine the ability of the LR
method to determine whether the fitted model is adequate or
inadequate by fitting two Bayesian hierarchical models: 1) the
Gompertz model that was used for simulation, i.e., the true
model, and 2) a quadratic growth model, i.e., a wrong model.
The prediction performances of these two models were evaluated
using the LR method across 20 replicates. To reduce the required
number of replicates, the variance components that were used to
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simulate the data were fitted into the true and wrong models for
analysis. All analyses were performed in Julia (Bezanson et al., 2017).

While Bayesian hierarchical inference with pedigree
information has been used in previous studies to integrate
growth models into genetic evaluations (Varona et al., 1999; Cai
et al., 2012), we used the Bayesian hierarchical Gompertz growth
model (BHGGM) developed by Yu et al. (2022), which integrates a
Gompertz growth model, i.e., the true model, with a multi-trait
marker effects models. Following Eq. 1, the three underlying latent
variables in the Gompertz growth model were assigned the
following prior:

θi ~ MVN μ +∑p
j�1

mijαj,Σe
⎛⎝ ⎞⎠,

where Σe is the environmental variance-covariance matrix defined
above in the simulation. The prior for ϵit had a null mean and age
specific variances (as described above in Eq. 1) to allow fitting
heterogeneous residuals. Flat priors were assigned to μ and the prior
for αj followed MVN (0,Σα), where Σα is the marker variance-
covariance matrix used for simulation. All parameters followed the
same dimension as defined in the section of data simulation.

For analysis using the Bayesian hierarchical quadratic growth
model (BHQGM), i.e., the wrong model, the following quadratic
growth model was fitted:

BWit � f t; θQi( ) + ϵit,
where f (.) is a quadratic function:

f t; θQi( ) � bi0 + bi1t + bi2t
2.

the parameter θQi � [ bi0 bi1 bi2 ] refers to three underlying latent
variables for individual i and were assigned the same multivariate
normal prior as θi in BHGGM. The other parameters of the
BHQGM also used the same priors as the corresponding
parameters of the BHGGM.

Design of the partial and validation data sets

To investigate the behavior of the LR method, three partitioning
scenarios (Figure 1) were implemented: 1) between animals:
phenotype records for days 70–500 of the first 500 individuals
comprised the partial set and the phenotypes of the remaining
1,000 individuals were assigned to the validation set, 2) by age within
animals: phenotypes for days 70–300 of all 1,500 individuals
comprised the partial set and all 1,500 individuals and their
phenotypes from days 301–500 were considered as the validation
set, and 3) between animals and by age: phenotypes for days
70–300 of the first 500 individuals comprised the partial set and
phenotypes for days 301–500 for the remaining 1,000 individuals
were assigned to the validation set. The EBV of interest were those
for body weight for individuals in the validation set across days,
predicted based on the partial set for each of the three scenarios.

LR method

As described below, following Legarra and Reverter (2018), two
statistics are used to check whether the model is adequate.

1. The first statistic is Δ̂ � ûp − ûw, which is the difference
between the mean EBV of individuals in the validation set
estimated based on the partial and whole data sets, respectively.
This is an estimator of Δ � ûp − �u. A deviation of Δ̂ from
0 indicates the model is not adequate.

2. The second statistic is obtained by regressing ûw on ûp,
b̂wp � cov(ûw,ûp)

var(ûp) , which is an estimator of the regression of u
on ûp: bup � cov(u,ûp)

var(ûp) . A deviation of b̂wp from 1 indicates the
model is not adequate.

This estimator was referred to as an estimator of dispersion by
Legarra and Reverter (2018) and of inflation by Belay et al. (2022),

FIGURE 1
Outline of three data partitioning scenarios to create partial and validation sets for the LR method.
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where 1 indicates no bias. Suppose animals are selected based on
EBV to increase the values of a trait. Then if the true regression
coefficient is less than 1, the BV of selected candidates is expected to
be lower than their EBV, which indicates an upward bias of the EBV
of the selected animals. On the other hand, when b̂wp is larger than 1,
the BV of selected candidates is expected to be higher than their
EBV, which indicates a downward bias of the EBV of the
selected animals.

Provided the model is adequate, in the LR method, population

accuracy is estimated as ρ̂p � cov(ûw,ûp)����������
v̂ar(u) × var(ûp)

√ , where ̂var(u) refers to
an estimate of the genetic variance of individuals in the validation
set. This estimate was obtained by Gibbs sampling as:̂var(u) � 1

ntrn
∑ntrn

j�1u2j − ( 1
ntrn

∑ntrn
j�1uj)2, where uj refers to a sample of

the BV of individual j from its posterior distribution in the training
set and ntrn is the total number of individuals in the training set
(Fernando et al., 2017).

In addition to Δ̂, b̂wp, and ρ̂p, we also calculated the Δ, bwp, and
ρp, which are the “true” values of these quantities by using the
simulated values of u in place of ûw in the formulas. Note that these
“true” values can only be computed in a simulation study, and they
are used here to study the performance of the LR method.

The means of Δ and Δ̂ were calculated for each day of age across
all animals in the validation set. These mean values were averaged
across days within each replicate to test whether their mean was
significantly different from 0 using a t-test. Similarly, true and
estimated regression coefficients were averaged across days within
each replicate to test whether their mean was significantly different
from 1 using a t-test. Additionally, we tested the difference between
cov(ûw, ûp) and cov(u, ûp) by first calculating the mean difference

across age for each of 20 replications and then used a t-test to
determine if these differences were significantly different from zero.

Results

To visualize the prediction performances across the fitted
models and partitioning scenarios, we randomly picked one
individual from the validation set and displayed its simulated
data against its predictions in Figure 2. Both simulated body
weight phenotypes, true BV, and EBV of the selected individual
were displayed. The predicted data included the EBV based on the
partial and the whole data sets for the three partitioning
scenarios (Figure 2).

Evaluating model adequacy

Figure 3 shows the Δ and Δ̂ for EBV of body weight for each day
when the data were partitioned between animals. When the true
model (BHGGM) was used, both the Δ and Δ̂ were symmetrically
distributed around 0 for each day, and their mean was not
significantly different from 0 (p = 0.84 and = 0.37, respectively).
In contrast, when the wrong model (BHQGM) was used, the mean
of the Δ was significantly different from 0 (p < 0.001), but the Δ̂ were
symmetrically distributed around 0 for each day and their mean was
not significantly different from 0 (p = 0.4).

Figure 4 shows the Δ and Δ̂ for EBV of body weights for each day
when the data were partitioned by age within animals. When the
true model was used, both the Δ and Δ̂ were symmetrically

FIGURE 2
An example showing one randomly selected individual’s simulated phenotypes, true breeding values (BV), and estimated breeding values (EBV) for
body weight by age using the true model (TM) and the wrong model (WM) when the data set was partitioned using different scenarios.
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FIGURE 3
Δ � ûp − �u and Δ̂ � ûp − ûw of EBV of body weights for each day of age when the true or wrong model was fitted and when partitioning the data
between animals. Grey lines are results of 20 simulation replicates, the red line is themean of 20 replicates, and the black line indicates bias = 0. P refers to
significance of tests for the difference between Δ or Δ̂ and 0.

FIGURE 4
Δ � ûp − �u and Δ̂ � ûp − ûw of EBV of body weights for each day of age when the true or wrong model was fitted and when partitioning the data by
age within animals. Grey lines are results of 20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates bias = 0. P refers
to significance of tests for the difference between Δ or Δ̂ and 0.
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FIGURE 5
True and LR estimates of regression coefficient of EBV of body weights for each day of age when the true or wrong model was fitted and when
partitioning the data between animals. The true and LR estimates of regression coefficient are defined by regressing u on ûp, and ûw on ûp, respectively.
Grey lines are results of 20 simulation replicates, the red line is themean of 20 replicates, and the black line indicates regression coefficient = 1. P refers to
significance of tests for the difference between true or LR estimate of regression coefficient and 1.

FIGURE 6
True and LR estimates of regression coefficient of EBV of body weights for each day of age when the true or wrong model was fitted and when
partitioning the data by age within animals. The true and LR estimates of regression coefficient are defined by regressing u on ûp, and ûw on ûp,
respectively. Grey lines are results of 20 simulation replicates, the red line is themean of 20 replicates, and the black line indicates regression coefficient =
1. P refers to significance of tests for the difference between true or LR estimate of regression coefficient and 1.
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distributed around 0 for each day, and their mean was not
significantly different from 0 (p = 0.10 and = 0.09, respectively).
When the wrong model was used, the Δ and Δ̂ were significantly
different from 0 (p < 0.001 and = 0.002, respectively). Results for the
partitioning between animals and by age were consistent with those
in Figure 4 and are shown in Supplementary Figure S1.

Figure 5 shows the true and LR estimates of the regression
coefficient of EBV for body weights for each day when the data were
partitioned between animals. When the true model was used, both
the true and estimated regression coefficients were symmetrically
distributed around 1 for each day, and their mean was not
significantly different from 1 (p = 0.75 and = 0.53, respectively).
When the wrong model was used, the true and LR estimates of the
regression coefficient were significantly different from 1 (p < 0.001).
Results for the partitioning by age within animals and between
animals and by age were consistent with those in Figure 5 and are
given in Figure 6; Supplementary Figure S2, respectively.

Population accuracy

In Figure 7, the true and LR estimates of prediction accuracy of
EBV for body weights for each day when the data were partitioned
between animals are presented. The LR estimates of prediction
accuracy had a similar pattern as the true estimates of accuracy
when using the true model but not when the wrong model was used.
When partitioning the data by age within animals, the LR estimates
of accuracy showed a similar pattern as the true estimates of
accuracy, regardless of the model fitted (Figure 8). We also

evaluated the difference between cov(u, ûp) and cov(ûw, ûp)
when fitting the true and wrong models for the three data
partitioning scenarios (Table 1). There was a non-significant
difference (p ≥ 0.74) between cov(u, ûp) and cov(ûw, ûp) when
the true model was fitted, but a significant difference (p ≤ 0.004) was
observed for each scenario when the wrong model was fitted.

Discussion

Based on the initial idea by Reverter et al. (1994), Legarra and
Reverter (2018) proposed the LR method to quantify the population
accuracy of prediction of EBV implicitly assuming the fittedmodel is
correct. They proved the validity of the LR method for EBV from a
linear model using standard BLUP theory and applied the LR
method to a real cattle data set (Legarra and Reverter, 2018).
While the LR method has also been applied to EBV from a
threshold model (Bermann et al., 2021), a mathematical proof of
its validity for a non-linear method of prediction was not previously
available. In this paper we provide the justification of the LRmethod
for non-linear predictions.

The motivation for this paper came from a discussion on the
validity of using the LR method to evaluate the prediction
performance from a non-linear growth model, where marker
effects are linked to body weight through latent variables. In this
case, traditional CV cannot be used to obtain the accuracy of the
latent variables because phenotypes are not available for these
variables. However, in the LR method, cov(ûw, ûp) is used to
quantify cov(u, ûp), assuming the fitted model is correct. So, the

FIGURE 7
True and LR estimates of accuracy when the true or wrong model was fitted and when partitioning the data between animals. The true accuracy is
defined as the correlation between true breeding values u and estimated breeding values of validation set based on partial set ûp. The LR estimates of

accuracy is defined as cov(ûw ,ûp )�����������
v̂ar(u) × var(ûp)

√ , where ̂var(u) refers to an estimate of the genetic variance of individuals in the validation set. Grey lines are results of

20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates accuracy = 1.
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LR method can be applied to compute the accuracy for any random
effect in the model. Predictions are also non-linear for analyses of
threshold traits, survival traits, and whenever, in Bayesian analyses,
parameters such as variance components are treated as unknowns
with appropriate priors. The LR method also provides statistics to
check whether the fitted model is adequate.

Use of the LR method to estimate accuracy
of prediction when the model is adequate

To generalize the LR method for linear or non-linear
predictions, we presented a mathematical proof to justify using
cov(ûw, ûp) to quantify cov(u, ûp) even when the prediction is non-
linear, provided that the fitted model is adequate. In our proof, we
assumed that the partial data contains a subset of the phenotypes of
the whole data. Belay et al. (2022) showed the LR method is also
applicable to BLUP when the partial data contains a subset of the
genotypes of the whole data. The proof presented in the current
paper is similar in principle to that provided by Belay et al. (2022).

Taken together, these two proofs show that the LR method is
applicable to predictions based on the conditional mean,
regardless of whether the data are partitioned by genotypes or
phenotypes and regardless of whether the model is linear or
non-linear.

Use of the LR method to test
model adequacy

We used simulated longitudinal data to investigate the ability of
the LRmethod to determine whether the fitted model is adequate. In
the context of our situation, the non-linear relationship is between
the age of the animal and its weight, which makes how the data are
partitioned into training and validation sets important. To explore
how the strategy for partitioning the data into training and
validation sets affects the ability of the LR method to determine
whether the fitted model is adequate, three data partitioning
strategies were used: between animals, by age within animals, and
between animals and by age. We did not simulate selection in our

FIGURE 8
True and LR estimates of accuracy when the true or wrongmodel was fitted and when partitioning the data by age within animals. The true accuracy
is defined as the correlation between true breeding values u and estimated breeding values of validation set based on partial set ûp . The LR estimates of

accuracy is defined as cov(ûw ,ûp )�����������
v̂ar(u) × var(ûp)

√ , where ̂var(u) refers to an estimate of the genetic variance of individuals in the validation set. Grey lines are results of

20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates accuracy = 1.

TABLE 1 Significance (p-values) of tests1 for the difference between cov(u, ûp) and cov(ûw , ûp) for the three data partitioning scenarios and the twomodels.

Between animals By age within animals Between animals and by age

True model 0.74 0.85 0.79

Wrong model 0.004 0.002 0.002

1H0: cov(u, ûp) � cov(ûw, ûp)
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data because we were comparing two models of growth rather than
two models of inheritance. When the fitted model for growth is not
adequate and the data are partitioned by age within animals,
predictions from the training data would not be accurate even
without selection. Thus, selection was not required to investigate
properties of the LR method in this context. Further, in our analysis
of the simulated data, the QTL were used as markers, for simplicity,
but this does not influence the conclusions of our study either.

Effect of data partitioning strategy on test of
model adequacy

Below, we summarize the implications of the data partitioning
strategies on the performance of the LR method, thereby providing
guidelines for using the Δ̂ and b̂wp to determine whether the fitted
model is adequate. Significant deviations of the LR statistics from
their expectations under the correct model were tested by replication
of the simulations. In real data analyses, repeated k-fold LR can be
used to test significance of model inadequacy using the two LR
statistics. Alternatively, if a Bayesian method is employed for the LR
analysis, the posterior probability of model inadequacy can be
computed from a single partitioning of the data.

When the wrong model (BHQGM) was fitted and the data were
partitioned between animals, the Δ was significant, but the Δ̂ was not
able to detect this inadequatemodel (Figure 3).Macedo et al. (2020) also
observed that for a certainmisspecification of themodel, the LRmethod
was not able to correctly detect and estimate Δ. Figure 5 shows that
when the wrong model was used, the true estimate of regression (the
regression of u on ûp) had a significant deviation from1, and in this case
the estimate of the regression coefficient based on the LR method was
also significantly different from 1, although differing inmagnitude from
the true estimate of the regression coefficient. This is also consistent
with the results observed by Macedo et al. (2020). The effect of fitting
the true or the wrong model on the behavior of EBV against age for the
partial and whole data were presented in Figure 2 (left column) for a
randomly selected validation individual and data partitioning was by
individual rather than age. In this case, when the wrong model was
fitted, the EBV from the partial and whole data sets deviated more from
the true BV than EBV from the true model did. However, even when
the wrong model was used, the EBV from partial and whole data sets
were very similar because the datawere partitioned by individuals rather
than age. This explains why the Δ̂ based on the LR method was not
significant when the wrongmodel was used. This is because of when the
data were partitioned between animals, there is no difference in the
distribution of phenotypic values in training and validation sets, because
we did not simulate selection and partitioning was not by generation.
Thus the mean of ûp was not significantly different from mean of ûw.

Recall that in the LR method, the regression of u on ûp is
estimated by the regression of ûw on ûp. In general, we expect that this
statistic can be used to determine whether the model that is fitted is
inadequate, in any study even when there is no difference in the
distribution of phenotypic values in training and validation sets,
such as when the data are partitioned by generation and there is no
selection. The reason for this is that animals in the validation set will
have a range of values for u, ûp, and ûw, and thus there is information to
estimate the regression of u on ûp. In fact, the variance of u in the
validation set can be even higher without selection compared to with

selection, where for example, the validation animals are all from the last
generation of selection. In the LR method, these values for ûw and ûp
are used to estimate the regression of u on ûp. The variance of this
regression estimator is proportional to 1

Var(ûp), and thus, it is possible
that this regression coefficient can be estimated even more accurately
when there is no selection.

When the data were partitioned by age within animals, the LR
method was able to correctly detect that the model was inadequate
using Δ̂ and b̂wp when the wrong model was used (Figures 4, 6).
Figure 2 (middle column) shows the EBV of a randomly selected
individual when the data were partitioned between animals. When
the wrong model was fitted, the EBV estimated from partial and
whole data sets both deviated from the true BV but the EBV based on
the partial set was quite different from that estimated from the whole
set. This illustrates the significant Δ̂ that was detected by the LR
method for this scenario. Results for the partitioning between animal
and by age (right column in Figure 2) were similar to those when
partitioning by age within animals.

The inconsistency between Δ̂ and b̂wp for different data partitioning
strategies suggests that the LR method captures different aspects of the
model for different data partitions. When the data were partitioned
between animals, both the partial and whole data sets included
phenotypes over the range from 70 to 500 days. Thus the fit of a
phenotyped individual’s growth curve based on the partial and whole
data sets were similar, even for the wrong model, although the fit might
deviate from that using the true model. Using the wrong growth model
only provides an incorrect fit to the relationship between age and body
weight within individual but does not affect the flow of information
between relatives. Thus to appropriately test the predictive ability of the
fitted growth model using the LR method, we had to predict the body
weights of animals that are outside the observed age range for animals in
the training set, as was done when the data are partitioned by age. In this
case, the partial data set has only body weights measured at ages up to
300 days, whereas the validation data set has body weights measured at
ages up to 500 days. Thus when we predict the body weights in the
validation set based on the fit of the growth model from the partial data
set, we are testing the predictive ability of the growth model, rather than
the predictive ability of data from older animals to predict younger
animals. In this case, the LR method was able to correctly detect that the
model was inadequate when the wrong model was used (bottom right
plots in Figures 4, 6).

Guidelines for data partitioning

In general, to properly test the model adequacy using the LR
method, we need to use the model to predict the performance of
individuals that have values for the relevant predictor variables or
combination of predictor variables that were not present in the
training data. In our simulated data, the predictor variables included
the marker genotypes, as well as age. Let’s define the predicted
performance of individual i as ŷi � f(xi; θ̂), where f(.) is the linear
or non-linear function used for prediction, xi is a vector of predictor
variables for individual i, and θ̂ is the vector of estimates of model
parameters. Below we will use genomic prediction by ridge
regression BLUP (RR-BLUP) as an example for illustration. To
evaluate the predictive ability of RR-BLUP, the data are partitioned
into training and validation sets. The training set is used to fit the
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predictive model f(.) and to estimate the model parameters θ
(i.e., marker effects). By plugging the marker effect estimates θ̂
and observed marker genotypes x into f(.), the performance of
individuals in the validation set can be predicted. The predictive
ability of the model is then quantified by comparing the predicted
and observed performances of individuals in the validation set. In
RR-BLUP, the relevant predictor variables are the marker genotypes.
Thus the training and validation sets cannot include the same
individual or individuals with the same genotypes across all loci.
In our study, the LR method was used to determine whether it could
detect an inadequate model when a wrong model was used for the
growth curve, where the predictor is age and the dependent variable
is BW (longitudinal BW). When the data were partitioned between
animals, the training (partial) and validation sets included
phenotypes for animals with age ranging from days 70–500,
i.e., the same age range as used in the training data was used for
the validation data and, therefore, Δ̂ failed to detect the use of an
inadequate model. However, when the data were partitioned by age
within animals, the model was trained using phenotypes with ages
ranging from days 70–300 and it was tested by predicting body
weights for animals with age ranging from days 301–500. In this
case, the LR method was able to detect model inadequacy using Δ̂.
This was even true when the same genotypes were used in both the
training and validation sets, because to check if the model used for
predicting longitudinal BW is correct, the relevant predictor
variable is age.

Conclusion

We provide a mathematical proof for the validity of the LR
method to estimate the accuracy of predictions based on the
conditional mean, regardless of whether predictions are a linear
or non-linear function of data, provided the fitted model is adequate.
In the LR method, two statistics are used to check model adequacy.
We found that the Δ̂ statistic can detect an inadequate model only
when the data are partitioned such that the values of relevant
predictor variables differ between the training and validation sets.
On the other hand, the regression statistic was able to detect an
inadequate model even when relevant predictor variables did not
differ between the training and validation sets.
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SUPPLEMENTARY FIGURE S1
Δ � ûp − �u and Δ̂ � ûp − ûw of EBV of body weights at each day when the true
or wrong model was fitted and when partitioning the data between animals
and by age. Grey lines are results of 20 simulation replicates, the red line is
the mean of 20 replicates, and the black line indicates bias = 0. P refers to
significance of tests for the difference between Δ or Δ̂ and 0.

SUPPLEMENTARY FIGURE S2
True and LR estimates of regression coefficient of EBV of body weights at
each daywhen the true orwrongmodel was fitted andwhen partitioning the
data between animals and by age. The true and LR estimates of regression
coefficient are defined by regressing u on ûp, and ûw on ûp, respectively. Grey
lines are results of 20 simulation replicates, the red line is the mean of
20 replicates, and the black line indicates regression coefficient = 1. P refers
to significance of tests for the difference between true or LR estimate of
regression coefficient and 1.

SUPPLEMENTARY FIGURE S3
True and LR estimates of accuracy of EBV of body weights at each day when
the true or wrong model was fitted and when partitioning the data between
animals and by age. The true accuracy is defined as the correlation between
true breeding values u and estimated breeding values of validation set based
on partial set ûp . The LR estimates of accuracy is defined as

cov(ûw ,ûp )�����������
v̂ar(u) × var(ûp )

√ ,where ̂var(u) refers to an estimate of the genetic variance of

individuals in the validation set. Grey lines are results of 20 simulation
replicates, the red line is the mean of 20 replicates, and the black line
indicates accuracy = 1.
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