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Studies have indicated that the preservation of joint health and the facilitation of
damage recovery are predominantly contingent upon the joint’s
microenvironment, including cell-cell interactions, the extracellular matrix’s
composition, and the existence of local growth factors. Mesenchymal stem
cells (MSCs), which possess the capacity to self-renew and specialize in many
directions, respond to cues from the microenvironment, and aid in the
regeneration of bone and cartilage, are crucial to this process. Changes in the
microenvironment (such as an increase in inflammatory mediators or the
breakdown of the extracellular matrix) in the pathological context of arthritis
might interfere with stem cell activation and reduce their ability to regenerate.
This paper investigates the potential role of joint microenvironmental variables in
promoting or inhibiting the development of arthritis by influencing stem cells’
ability to regenerate. The present status of research on stem cell activity in the
joint microenvironment is also outlined, and potential directions for developing
new treatments for arthritis that make use of these intervention techniques to
boost stem cell regenerative potential through altering the intra-articular
environment are also investigated. This review’s objectives are to investigate
these processes, offer fresh perspectives, and offer a solid scientific foundation
for the creation of arthritic treatment plans in the future.
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Introduction

A degenerative condition of the joints, osteoarthritis (OA) usually results in pain,
stiffness, and decreased joint function (Fingleton et al., 2015; de Rooij et al., 2016; Roos
and Arden, 2016). In recent times, it has emerged as a primary source of pain and
impairment among the elderly (Vos et al., 2012), mainly impairing the knee’s range of
motion and other typical functions (Cao et al., 2020). With osteoarthritis (OA)
affecting up to 20% of the global population, the number of patients with this
condition will rise as the world’s population ages. This will unavoidably lower
patients’ quality of life overall and place a significant financial burden on society’s
healthcare system. In orthopaedic clinical work, cartilage lesions are fairly common.
However, articular cartilage lacks intrinsic healing potential and is unable to mend
itself since it is an avascular, neurogenic tissue (Curl et al., 1997). Osteoarthritis (OA)
and other degenerative joint disorders are caused by increasing cartilage detachment
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and subchondral sclerosis, which are usually the first signs of
tissue degradation (Moskowitz, 2007).

Research has shown that cartilage chondrogenic cells, also
known as mesenchymal stem cells (MSCs), are highly clonal,
multifunctional, and chemotactic cells that live in hyaline tissues
(Pittenger et al., 1999; Prockop, 2009; Hilfiker et al., 2011). When an
organism sustains damage, these stem cells can precisely locate the
site of the lesion while also proliferating and differentiating as
necessary to replace the destroyed tissues and finish the healing
process (Dupuis et al., 2007; Quesenberry et al., 2007).

In recent years, the microenvironment has become a focus of
research, and it is often mentioned more frequently in tumor
diseases. Of course, it also plays an important role in the
occurrence and development of other diseases (Mayani et al.,
1992; Kenny et al., 2007; Arneth, 2019).

Osteoclasts cause the increased subchondral bone resorption
seen in the early stages of osteoarthritis (OA), and the
microenvironment within the joints has a major impact on
osteoclast formation and apoptosis, for example, osteoblasts,
osteocytes, or activated T cells in the microenvironment, who are
capable of producing osteoclast-inducing factors, which are high in
the production of a factor called receptor activator of nuclear factor
κB ligand (RANKL). The receptor for RANKL is RANK, and the two
of them bind, the latter being the receptor expressed by osteoclast
precursors, and lastly, trigger signaling cascades via adaptor proteins
like Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6),
which involve the pathways of nuclear factor-κB (NF-κB) and
mitogen-activated protein kinase (MAPK) (Tsukasaki and
Takayanagi, 2019).The results of many studies have found that
osteoclasts that are highly active, which affects the
histopathological changes in subchondral bone remodeling, play
an important role in the development of OA, and that osteoclasts are
affected by the intra-articular microenvironment, which in turn
affects the microenvironment once again, resulting in a cycle that
contributes to the progression of OA (Pippenger et al., 2015; Hu
et al., 2021; Jiang et al., 2022).

Osteoclasts mediate increased subchondral bone resorption in
early osteoarthritis. The microenvironment has an important
influence on osteoclast formation, and as described in previous
studies, osteoblasts, osteoclasts, and activated T cells in the intra-
articular microenvironment can influence osteoclasts, as well as the
function of MSCs. In addition, it is believed that the effects of the
microenvironment on osteoarthritis (OA) may be mediated by stem
cells, whereby the microenvironment influences stem cells, which in
turn influence the ability of stem cells to repair cartilage tissue in OA.

Studies have demonstrated that the development of specific
drugs can improve the animal model and the pathology of
arthritis, all of which proves that the interactions between
osteoclasts and the microenvironment and stem cells can be a
possible avenue for the treatment of OA (Duarte, 2014). Through
the secretion of immune factors, mesenchymal stem cells (MSCs)
exhibit strong anti-inflammatory effects and possess immunological
features that may facilitate tissue healing (Le Blanc and
Mougiakakos, 2012).

Significant changes in the microenvironment will lead to
changes in stem cell function, further interfering with stem cell
cartilage regeneration efficacy (Berenbaum et al., 2018; Sui et al.,
2019). Inflammatory variables in the joint can affect MSCs

development to regulate tissue remodeling and regeneration as
arthritis progresses (Shang et al., 2021). Furthermore, research
has revealed that tumor necrosis factor α (TNF-ɑ) stimulates
MSCs’ immunosuppressive capacity and mitigates the negative
impacts of inflammatory elements in the surrounding milieu,
hence facilitating tissue regeneration (Ren et al., 2008; Xu et al.,
2022). Several stem/progenitor cells have been detected in bone and
cartilage samples, according to the findings of several research (Zhu
et al., 2010; Zhu et al., 2015; Li et al., 2020; Wang et al., 2020; He
et al., 2021). Potential mechanisms and a delicate link between stem
cells and the milieu were indicated by the biological targets of these
cells, which included osteoclasts, dendritic cells, and macrophages
(Zhu et al., 2015; Li et al., 2020; Li et al., 2021).

The composition of intra-articular
microenvironment and how
microenvironment affects
joint function

Extracellular matrix (ECM), various cell types, metabolic
components, and certain mechanical and physical characteristics
make up the intricately controlled intra-articular
microenvironment. Studying joint function and disease,
particularly the genesis and progression of arthritis, requires an
understanding of the elements that make up the intra-articular
microenvironment and how they interact.

The cells that make up the joint are mostly composed of
chondrocytes, synoviocytes, stem cells, and cells that are
engaged in inflammation, such T cells, neutrophils, and
macrophages. While synoviocytes are in charge of producing
synovial fluid, which lubricates joints, chondrocytes are crucial
for preserving the integrity of cartilage tissue. Mesenchymal
stem cells (MSCs), in particular, are essential for joint
regeneration and repair.

A wide range of growth factors like TGF-β1 (Zhen et al., 2013;
Zhen and Cao, 2014; Zhang et al., 2018a), as well as inflammatory
factors like IL1β, (Fujisawa et al., 1999; Kobayashi et al., 2000; Lam
et al., 2000; Kudo et al., 2003; Cao et al., 2016; Pearson et al., 2017),
VEGF (Plotkin et al., 2015; Cabahug-Zuckerman et al., 2016; Dai
et al., 2020) are biochemical elements in the intra-articular milieu
that have a significant impact on cell activity, these elements are
essential for preserving joint health, encouraging the healing of
injuries, and controlling inflammation.

The mechanical and physical characteristics of the joint
microenvironment—such as the tension and pressure produced
by joint movement and an adequate flow of nutrients and
oxygen—are essential for preserving the health of the ECM and
cells. These elements work together to create a dynamic and well-
balanced system that controls joint function and its capacity to heal
and adapt to illness.

Numerous studies have demonstrated that TGF-β1 can inhibit
stem cell activation, promote osteoclast activation that leads to bone
tissue destruction, induce subchondral angiogenesis, induce
hypertrophy and apoptosis of chondrocytes, and induce
migration of endothelial progenitor cells and bone progenitor
cells (Gerber et al., 1999; Zhen et al., 2013; Zhen and Cao, 2014;
Zhang et al., 2018b; Sanchez et al., 2018; Xu et al., 2018).
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Furthermore, a number of research have discovered that
PGE2 and IL-6 both indirectly control chondrocytes and
promote the production of osteoclasts (Liu et al., 2005; Liu et al.,
2006; Ni et al., 2011). Other studies have hypothesized that TNF-α,
IL-1β, and IL-6 either directly or indirectly increase the
differentiation of osteoclasts (Fujisawa et al., 1999; Kobayashi
et al., 2000; Lam et al., 2000; Kudo et al., 2003; Cao et al., 2016;
Pearson et al., 2017).

Furthermore, it has been demonstrated that VEGF encourages
angiogenesis and favorably influences osteoclast recruitment, which
in turn influences chondrocyte activity indirectly (Lee et al., 2002;
Sanchez et al., 2008).The findings of additional research have also
demonstrated that VEGF and TGF-β1 stimulate angiogenesis to
indirectly regulate chondrocytes (Plotkin et al., 2015; Cabahug-
Zuckerman et al., 2016; Dai et al., 2020). The detailed content is
shown in Figure 1.

Influence of the intra-articular
microenvironment on the function and
behavior of stem cells

The maintenance of joint health and the development and
progression of joint disorders are two areas where the intra-
articular milieu has a significant impact on stem cell activity and
behavior. Mesenchymal stem cells (MSCs), in particular, are
intra-articular stem cells that are linked to arthritis
pathogenesis and cartilage regeneration and repair. Stem cell
destiny and activity are influenced by a variety of intra-articular
microenvironmental elements, including as extracellular matrix,

cellular makeup, metabolic variables, and mechanical and
physical circumstances.

Osteoclasts mediate the increased subchondral bone
resorption seen in early OA. The generation of osteoclasts is
largely reliant on the microenvironments in which osteoblasts
produce osteoblasts and osteoclasts as well as activated T cells
that express molecules that induce osteoclast formation, such as
receptor activators of nuclear factor κB ligand (RANKL). Tumor
necrosis factor receptor-associated factor 6 (TRAF6) adapter
protein activates many signaling cascades, including as the
nuclear factor-κB (NF-κB) and mitogen-activated protein
kinase (MAPK) pathways. Osteoclast precursors express the
receptor RANK, which is bound by RANKL (Tsukasaki and
Takayanagi, 2019). The activated osteoclasts will adhere to the
bone and release lytic enzymes and acids that will further
degrade the bone matrix. The combination of these two
mechanisms may eventually lead to arthritis: Stem cell
function suppression and osteoclast activation (Pippenger
et al., 2015; Hu et al., 2021; Jiang et al., 2022).

Through direct cell-to-cell contact or released cytokines, intra-
articular cellular components—such as chondrocytes, synoviocytes,
and inflammation-associated cells—influence the proliferation,
differentiation, and migration of stem cells. For instance,
inflammatory cells’ cytokines may suppress stem cells’ ability to
develop into cartilage while also fostering inflammation and
degenerative tissue alterations.

Stem cells receive their biochemical cues and physical
scaffolding from the extracellular matrix. In addition to
providing structural support, extracellular matrix (ECM)
constituents like collagen and proteoglycans can affect stem

FIGURE 1
The development of arthritis is ultimately influenced bymicroenvironmental TNF-α and IL-1 and inflammatory factors that affect stem cells and then
interfere with osteoclasts or osteoblasts. Note: Several examples of inflammatory cytokines that may be produced by inflammation include interleukin-1
(IL-1) and tumor necrosis factor- α (TNF)- α). These cytokines have the ability to activate stem cells and increase or decrease osteoclast activity, ultimately
disrupting bone formation. Osteogenic growth factor (BMP) can promote the differentiation of stem cells into bone cells. The behavior of cells in
joints may also be influenced by oxygen levels. Low oxygen environment can promote the development of stem cells into chondrocytes, while low
oxygen environment can help activate bone cells.
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cell development and function by interacting with their
surface receptors.

The capacity of stem cells to self-renew and differentiate is
significantly impacted by inflammatory factors like IL1β and TNF-α
as well as growth factors and cytokines like TGF-β and BMPs in the
joint milieu. The differentiation of stem cells into certain cell lines, such
chondrocytes or osteoblasts, can be encouraged or inhibited by these
variables, which might impact pathological processes and joint healing.

Through our analysis of the influence of the microenvironment,
which includes numerous factors, on stem cell regeneration and thus
further interferes with the development of arthritis, we have shown
as clearly as possible the process by which this mechanism occurs, as
shown in Figure 2.

Stem cells in the intra-articular milieu have been shown to progress
through the early, middle, and late phases of the development of
arthritis. Researchers discovered signs of anabolic and catabolic
metabolism in clusters of cells located in and around the articular
cartilage fissures in cases of early arthritis (Lotz et al., 2010; Brack and
Rando, 2012). Themajority of the cells displayedNotch-1, STRO-1, and
other, which are positive stem cell markers. These three stem cell
markers are likewise positively stained in the central area of the arthritic
cartilage (Grogan et al., 2009; Lotz et al., 2010).

The interference of the inflammatory
environment within the joint on stem cell
regeneration affects arthritis

Numerous investigations have shown that the local production
and release of pro-inflammatory cytokines, such as interleukin-1β

(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α),
is a crucial component in the pathophysiology of osteoarthritis (OA)
(Todhunter et al., 1996; Héraud et al., 2000; Aigner and Kim, 2002).
It has been shown that nuclear factor-κB (NF-κB) is activated by
TNF-α and IL-1β production. NF-κB subsequently translocates to
the nucleus of the cell, where it induces inflammation, apoptosis, and
the release of enzymes that degrade extracellular matrix (ECM). The
expression of these factors also accelerates the extracellular matrix’s
degradation and causes pain, which influences the development and
progression of arthritis (Ding et al., 1998). In the intra-articular
microenvironment, NF-κB promotes pro-inflammatory catabolic
cytokines that in turn cause apoptosis by splitting the DNA
repair enzyme poly (ADP-ribose) polymerase (PARP) and
activating the pro-apoptotic enzyme caspase-3 (Shakibaei
et al., 2007).

Envisioning the future of stem cell
therapy for bone and joint by interfering
with stem cell regeneration in the intra-
articular microenvironment

A comprehensive analysis was conducted in a study that
examined the influence of the intra-articular milieu, including
aged chondrocytes, on the behavior and potential for regenerative
capacity of stem cells. The study underlined how crucial it is to
enhance this milieu in order to raise stem cell therapy’s efficacy (Cao
et al., 2019). Table 1 shows some influencing factors.

The use of stem cells and microenvironment regulation in the
treatment of osteoarthritis, as well as the application of

FIGURE 2
Microenvironmental influences on stem cell regeneration that further interfere with the development of arthritis. Note: RANKL (Nuclear Factor-κB
Receptor Activator Ligand) is expressed by osteoblasts, osteoclasts, and activated T cells. It is an inducible factor that stimulates osteoclastogenesis in the
microenvironment by attaching to RANK receptors expressed on osteoclast precursors and starting intracellular signaling pathways. Among these
pathways are nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). When tumor necrosis factor receptor-associated factor 6
(TRAF6) activates the relevant signaling pathways, mature osteoclasts adhere to the bone’s surface, release proteinase K, create lysozyme and acid, and
degrade the bone matrix.
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bioengineering technology to improve the intra-articular stem cells
and microenvironment, are likely to be explored further in this field
of study. Potential treatment approaches that involve altering the
microenvironment of intra-articular stem cells, such as regulating
inflammatory responses, enhancing the extracellular matrix’s
composition, and encouraging targeted differentiation of stem
cells, could be examined. The use of nanotechnology in
managing the microenvironment of stem cells will also include
future studies on augmenting the repair and regeneration of
intra-articular stem cells by delivering growth factors, gene
editing tools, and other bioactive chemicals.

In the future, with the continuous advancement of medical
technology, personalized treatment will become a trend in the
treatment of bone and joint diseases. By analyzing the patient’s
genetic background, gene expression profile, and other information,
targeted stem cell therapy plans can be implemented to maximize
treatment effectiveness and prevent the occurrence of complications.
Although stem cell therapy has shown great potential in the
treatment of bone and joint diseases, it still faces many
challenges, including uncertainty in treatment efficacy, safety
considerations, and treatment costs. In the future, it is necessary
to further strengthen basic research, explore the mechanisms of stem
cells in bone and joint tissue regeneration, continuously improve
treatment techniques and plans, in order to achieve the widespread

promotion and application of stem cell therapy in clinical
applications.

We visualize the keywords appearing in the research field of
microenvironmental interference with intra-articular stem cell
regeneration affecting arthritis and find the top 10 keywords with
the highest frequency of keywords appearing in the research in this
field, as in Table 2, from which we can find the hotspots of the
research in this field and the development focuses of the attention of
the researchers in the recent years, and we can intuitively find out the
cooperation between the keywords appearing in the research field of
microenvironmental interference with intra-articular stem cell
regeneration affecting arthritis in Figure 3, where the larger the
dots indicate the greater frequency of the appearances, and the
number of the lines connecting the dots indicate the degree of the
close relationship between the cooperating relationships.

Discussion

Numerous research have emphasized the impact of the body’s
microenvironment on stem cells, including how it affects MSCs’
paracrine signaling (Kusuma et al., 2017), the impact of the
microenvironment on stem cells’ ability to treat (Tsai et al.,
2020). Stem cells have been shown in a number of studies to

TABLE 1 Effects of various factors in the intra-articular microenvironment that interfere with the function of stem cells or osteoclasts.

ID Name Impact results

1 TGF-β1 Induction of apoptosis, chondrocyte hypertrophy, and migration of endothelium and bone progenitor cells

2 IL-6 Increases the production of osteoclasts and indirectly controls chondrocytes

3 VEGF Influences chondrocytes indirectly while promoting angiogenesis and osteoclast recruitment

4 IL-1β Induction of osteoclast differentiation by direct or indirect means

5 TNF-α Induction of osteoclast differentiation by direct or indirect means

6 RANKL Osteoclast chemotaxis and differentiation induction

7 MMP-9 Influences chondrocytes indirectly while stimulating osteoclast migration and recruitment

TABLE 2 Microenvironmental interference with intra-articular stem cell regeneration affects the top 10 most frequently occurring keywords in the field of
arthritis research.

ID Keyword Occurrences Total link strength

1 Rheumatoid-arthritis 60 87

2 Mesenchymal stem-cells 48 66

3 Stromal cells 27 53

4 In-vitro 25 47

5 Inflammation 23 53

6 Stem-cells 23 31

7 Osteoarthritis 21 38

8 Expression 20 38

9 Arthritis 19 32

10 Collagen-induced arthritis 18 32
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have an impact on arthritis, which can promote repair and
regeneration of articular cartilage (Jiang et al., 2021). It can also
play a role in synovial joint inflammation by itself (Bedoui et al.,
2020). This suggests that the microenvironment can influence the
development of arthritis and even slow down the progression of
arthritic disease through its effect on stem cells.

By altering the intra-articular milieu, stem cells’ ability for
regeneration can be markedly increased. For instance, by boosting
certain growth factors or altering the nature of the extracellular
matrix, it is feasible to promote the proliferation and differentiation
of stem cells and speed up the repair of bone and cartilage (Cattaneo and
McKay, 1990; Tarasenko et al., 2004; Danišovič et al., 2012; Eom et al.,
2014; Qian et al., 2017). It has also been demonstrated that guided stem
cell differentiation and tissue regeneration may be facilitated by using
biomaterials to replicate the natural cellular milieu (Singh and Elisseeff,
2010; Griffin et al., 2015; Kuo and Rajesh, 2017).

Specific growth factors can be introduced, or the chemical and
physical circumstances in the microenvironment can be altered, to
encourage stem cell differentiation into chondrocytes or bone cells,
which will aid in tissue regeneration and repair (Hao et al., 2017;
Maisani et al., 2017; Xing et al., 2019; Zhu et al., 2021). Biomaterials,
or biocompatible materials, are scaffolds that mimic the natural
cellular milieu and help stem cell proliferation and differentiation

(Przekora, 2019; Zhao et al., 2021a; Zhao et al., 2021b). Gene editing
technology: To improve stem cells’ capacity for regrowth, the
expression of certain genes is changed using CRISPR/Cas9 and
other gene editing techniques (Zhang et al., 2017; Ben et al., 2018).

Stem cell research has made progress in recent years, but some
obstacles remain. For example, properly regulating the activities of
stem cells, including their migration, differentiation and
proliferation, remains a technical challenge. There is also the fact
that current research focuses on how to ensure the biocompatibility
and biosafety of biomaterials, as well as how to design and prepare
these materials to match the natural microenvironment. Finally,
more investigations and evaluations are needed to determine the
long-term effects and any adverse consequences of stem cell therapy.

Researchers remain convinced that the use of stem cell therapies to
treat bone and joint disorders still holds great promise. Future advances
in bioengineering and materials science, coupled with a deeper
understanding of stem cells and the mechanisms that regulate their
microenvironment, should pave the way for the creation of more
effective therapies that will improve patient outcomes and quality of
life. A major concern for researchers in this field is how to accurately
regulate the activities of stem cells in the body, including their
proliferation, differentiation and localization. The long-term safety
and efficacy of stem cell therapy requires more research, especially

FIGURE 3
Microenvironmental disruption of intra-articular stem cell regeneration affecting arthritis Collaboration between keywords in the field of research
on arthritis.
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the possible risks of immune rejection and tumorigenesis. Many
researchers expect to try to develop standardized and reproducible
stem cell therapy techniques in the near future, as well as to promote
these techniques to fit clinical needs. Stem cell therapies are likely to be
used more often in the future to treat bone and joint disorders. An
interesting future will eventually emerge as research on stem cells and the
intra-articular microenvironment deepens.

Conclusion

In this work, we highlight the pivotal function of the intra-
articular milieu in controlling stem cell renewal and its noteworthy
influence on the onset and course of arthritis. The capacity of stem
cells, especially mesenchymal stem cells (MSCs), to regenerate and
repair injured joint tissues is dependent on how these cells interact
with their surroundings. Stem cell activity can be hindered by
microenvironmental changes brought on by inflammation,
extracellular matrix breakdown, and disruption of cellular
signaling. This can exacerbate the symptoms and course of arthritis.

Furthermore, we think that modifying the intra-articular milieu
promotes stem cell-mediated regeneration, opening up exciting new
therapeutic options for arthritis. Our ability to better understand these
intricate relationships and create focused interventions to maximize the
regenerative potential of intra-articular stem cells will open the door to
novel and more successful treatments for arthritic patients, which will
ultimately improve their prognosis and quality of life.
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