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Crossbreeding is a widely adopted practice in the livestock industry, leveraging
the advantages of heterosis and breed complementarity. The prediction of
Crossbred Performance (CP) often relies on Purebred Performance (PB) due
to limited crossbred data availability. However, the effective selection of purebred
parents for enhancing CP depends on non-additive genetic effects and
environmental factors. These factors are encapsulated in the genetic
correlation between crossbred and purebred populations (rpc). In this study, a
two-way crossbreeding simulation was employed to investigate various
strategies for integrating data from purebred and crossbred populations. The
goal was to identify optimal models that maximize CP across different levels of
rpc. Different scenarios involving the selection of genotyped individuals from
purebred and crossbred populations were explored using ssGBLUP (single-step
Genomic Best Linear Unbiased Prediction) and ssGBLUP-MF (ssGBLUP with
metafounders) models. The findings revealed an increase in prediction
accuracy across all scenarios as rpc values increased. Notably, in the scenario
incorporating genotypes from both purebred parent breeds and their crossbreds,
both ssGBLUP and ssGBLUP-MF models exhibited nearly identical predictive
accuracy. This scenario achieved maximum accuracy when rpc was less than 0.5.
However, at rpc = 0.8, ssGBLUP, which exclusively included sire breed genotypes
in the training set, achieved the highest overall prediction accuracy at 73.2%. In
comparison, the BLUP-UPG (BLUP with unknown parent group) model
demonstrated lower accuracy than ssGBLUP and ssGBLUP-MF across all rpc
levels. Although ssGBLUP and ssGBLUP-MF did not demonstrate a definitive
trend in their respective scenarios, the prediction ability for CP increased when
incorporating both crossbred and purebred population genotypes at lower levels
of rpc. Furthermore, when rpc was high, utilizing paternal genotype for CP
predictions emerged as the most effective strategy. Predicted dispersion
remained relatively similar in all scenarios, indicating a slight underestimation
of breeding values. Overall, the rpc value emerged as a critical factor in predicting
CP based on purebred data. However, the optimal model to maximize CP
depends on the factors influencing rpc. Consequently, ongoing research aims
to develop models that optimize purebred selection, further enhancing CP.
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1 Introduction

Crossbreeding in livestock and poultry breeding is used to
maximize crossbred performance (CP) through benefiting from
heterosis and breed complementarity. Genetic evaluation in the
crossbreeding system is usually based on phenotypes and genotypes
of purebred parents, which in fact leads to the selection of the best
purebred parents in the pure populations. However, the best pure
parents will not necessarily produce the optimal crossbred
progenies, which means the performance of purebred parents is
not the best predictor for CP (Esfandyari et al., 2015). Ideally,
crossbred data should be used rather than purebred data which
can lead to a more significant improvement in CP; nevertheless,
gathering data from commercial populations can be challenging and
expensive (Wei and van derWerf, 1994). Therefore, animal breeders
inevitably utilize the performance of purebred parents to
predict the CP.

The genetic correlation (rpc) between purebred and crossbred
populations is a pivotal factor influencing the accuracy of predicting
CP based on purebred data (Legarra et al., 2009). The value of rpc is
shaped by various factors, including, (i) Genotype by genotype
interaction (G × G); Arising from differing allelic frequencies of
causal variants in purebred and crossbred populations (Christensen
and Lund, 2010). (ii) Genotype by environment interaction (G × E);
Resulting from environmental disparities between the two
populations. (iii) Incompatibility of measured traits; Present in
purebred and crossbred populations (Christensen, 2012). These
factors, coupled with non-additive genetic effects, particularly
dominance effects, can lead to deviations in rpc from 1. When
rpc deviates from 1, utilizing purebred performance (PB) to assess
crossbreds may hinder the rate of improvement in CP. Research
suggests that if this deviation is attributable to dominance effects,
implementing a dominance model can enhance the prediction
accuracy of CP when the reference comprises purebred
populations (Legarra et al., 2015). However, in practice,
deviations in rpc from 1 stem from multiple factors
mentioned earlier.

Another challenge in predicting CP is the low genetic relatedness
between parental breeds, despite their shared common ancestors
several generations ago. Addressing these complexities is crucial for
refining predictive models and advancing the accuracy of CP
evaluations based on purebred data.

In recent years, single-step genomic BLUP (ssGBLUP) has
significantly increased the accuracy of breeding value estimation
by blending marker and pedigree information of both genotyped
and ungenotyped animals (Legarra et al., 2009; Christensen and
Lund, 2010). However, the main remaining challenge is how to
combine pedigree-based and genomic relationships, given the base
population does not have pedigree or genotype information. In the
same vein, Christensen constructed the marker-based relationship
matrix by assuming that all allele frequencies equal to 0.5 and base
animals are related and inbred (Christensen, 2012). Subsequently,
Legarra et al. (2015) proposed a comprehensive theoretical
framework for incorporating relatedness within and across
founders into a base relationship matrix, using the concept of
metafounders (MFs). The base animals assumed to be related, so
in ssGBLUP with metafounders (ssGBLUP-MF), matrix G is
constructed with all allele frequencies equal to 0.5. Consequently,

the founders of the breeds are related to a common ancestor,
represented by the matrix Γ which describes the relationship of
the founders (Legarra et al., 2015).

Motivated by the challenges inherent in predicting CP, this
paper strives to pinpoint the optimal strategy for integrating data
and selecting the most suitable model to maximize CP at various
levels of rpc. This objective remains irrespective of the factors
causing deviations in rpc from 1.

2 Materials and methods

2.1 Simulation

The simulation was conducted in two parts. The first part was
focused on generating datasets of purebred and crossbred animals
for a single trait with a heritability of 0.3 using the QMSim software
(Sargolzaei and Schenkel, 2009). In the initial phase of the
simulation, a historical population of 5,000 founders was
simulated for 1,000 generations with a constant population size
of 5,000. This step aimed to establish genetic drift and linkage
disequilibrium (LD) between markers and causal variants.
Subsequently, the population size was gradually reduced from
5,000 to 2000 individuals over an additional 1,500 generations.
After that, the population size was considered steady during the
last 500 generations. To create two breeds (breeds A and B), two
random samples of 50 males and 500 females were taken from the
last generation of the historical population (the first bottleneck),
then the population size was expanded over the next
200 generations. Simulating various population sizes and
dynamics across generations aids in comprehending the impact
of genetic drift, selection, and other evolutionary forces. The initial
step involved simulating linkage disequilibrium between markers
and causal variants. The subsequent step consisted of simulating a
gradual reduction in population size resulting from domestication
and other minor bottleneck events (Brito et al., 2011). The final step
entailed creating two separate breeds. In this step, to simulate the
sheep breeding system, we implemented random mating with
5 descendants per dam considering 1/2 of the twining average
and 4 parturitions per generation. In the next step, the second
bottleneck was simulated by selecting two random samples
(100 males and 1,000 females) from the last generation of the
breeds A and B to generate the recent populations of the breeds
(called expanding A and B). In this step, breeding values were
estimated based on best liner unbiased prediction (BLUP) method.
The next generations were simulated by imposing a replacement rate
of 20% for dams and 50% for sires. The culling and selection designs
were contingent on age and high estimated breeding value,
respectively. The breeding scheme in this step was continued for
10 generations. Then crossbred animals (F1) were produced from
crossing between males from expanding A and females from
expanding B populations. We simulated three crossbred
populations (F1) that were generated from generations 8, 9, and
10 (Figure 1).

Genome structure was simulated with 26 autosomal
chromosomes and a total length of 3,421 centimorgan (cM)
similar to the sheep genome size estimated by Prieur et al.
(2017). We simulated 50K single nucleotide polymorphisms
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(SNP) and 500 quantitative trait loci (QTLs) randomly scattered
across the whole genome. Minor allele frequencies (MAF) of
markers were assumed to be upper than 0.05 and mutation rates
of the SNPs and QTL was 2.5 × 10−5. The QTL allele effects were
inferred from a Gamma distribution with α � 0.4 (summarized in

Table 1). True breeding values (TBVs) were obtained from the
sum of the additive effect of QTL. The phenotypes were
calculated based on the additive genetic and residual effects.
Subsequently, we measured the fixation index (Fst) and
performed the principal component analysis (PCA) to assess

FIGURE 1
Schematic representation of the simulated population. A (paternal line) and B (maternal line) are purebred populations. AB1, AB2, and AB3 are
crossbred populations that are derived from generations (GEN) 8, 9 and 10 of expanded (EXP) purebred populations A and B.

TABLE 1 The parameters used for simulating trait and genome.

Item Value

Heritability (h2) 0.3

Genome size 3,421 cM

Number of chromosomes 26

Number of markers 50,000

Number of QTL 500

Mutation rate in QTL and markers 2.5 × 10−5

Minor allele frequency in QTL and markers 0.05

Distribution of additive QTL effects Gamma (α = 0.4, 1.66)

Additive genetic correlation between purebred and crossbred populations (rpc) 0.2, 0.5 or 0.8
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the population structure and distinctness of the three
populations. The Fst is a measure of population differentiation
due to genetic structure (Nagylaki, 1998). PCA is a multivariate
analysis that reduces the dimensionality of the data while
preserving their covariance which we applied to find the
eigenvalues and eigenvectors of the covariance matrix of allele
frequencies (Reich et al., 2008).

In the second part of the simulation, to investigate the impact
of rpc on the identification of optimal and cost-efficient
strategies for improving CP, three levels of rpc (low, medium,
and high, corresponding to 0.2, 0.5, and 0.8, respectively) were
simulated using the BGLR and MASS packages in R (Ripley et al.,
2013; Pérez and de Los Campos, 2014). To simulate the rpc
levels, the additive effects of purebreds and crossbreds were
simulated using a multivariate normal distribution with mean
0 and a positive-definite symmetric matrix specifying the
covariance matrix of the variables, according to the desired
levels of rpc and the effects of QTLs. Therefore the rpc is
defined as follows (Falconer, 1996):

rpc � σAPB,CB

σAPBσACB

where σAPB,CB is the additive genetic covariance between PB and CB
performance, and σAPB and σACB are the additive genetic standard
deviation in purebred and crossbred populations, respectively.

We conducted the population simulation 10 times and
subsequently performed a comparative analysis of the predictive
abilities of three methods: BLUP-UPG (BLUP with unknown parent
group), ssGBLUP, and ssGBLUP-MF methods. The breeding values
were estimated based on the same pedigree and data file, considering
four scenarios of genotype selection from purebred and crossbred
populations: SC1: breeds A, B and crossbreds, SC2: breeds A and B,
SC3: breed A and SC4: breed B population.

2.2 Data analysis

Three prediction models were used to calculate breeding values:
BLUP-UPG, ssGBLUP, and ssGBLUP-MF. The generation
0 produced after the second bottleneck was assumed to be the
base population (i.e., only the pedigree information after generation
0 was used to predict breeding values). For the ssGBLUP and
ssGBLUP-MF models, we explored various scenarios for
including genotypes from both purebred and crossbred
populations. The statistical model was as follows:

y � Xb + Zu + e

where y is the vector of phenotypes, b is the vector of fixed effects
(breed, sex, and generation) and u is the vector of additive genetic
effects distributed as u ~ N(0, σ2

u), X and Z are incidence matrices
relating the animals to the fixed effects and the additive effects,
respectively, e is a vector of residuals that were sampled from a
normal distribution, with e ~ N(0, σ2

e ). We used the
BLUPF90 family (Misztal et al., 2014) of programs, which
includes airemlf90 and blupf90test, to estimate variance
components using restricted maximum likelihood (REML).
Moreover, we used predictf90 to adjust the phenotypes.

2.2.1 Best Linear Unbiased Prediction (BLUP)
In this study, we utilized various advanced statistical models for

genetic prediction. Each model has its own hypotheses, advantages,
and limitations. One of the models we employed is BLUP-UPG,
which incorporates unknown-parent groups (UPGs) to handle
missing pedigree data. Accurate group assignments and variance
estimation are crucial for this model to ensure robust predictions
(Henderson, 1975). In our study, we encountered unknown parents
only in the first generation, while we knew the parents in all
subsequent generations. The use of UPGs in this model helps
estimate the genetic merit of animals in the pedigree when their
parents are unknown (Graser et al., 1987). Without defining UPGs
for each breed, the genetic merit of animals with unknown parents is
assumed to be equal to that of the base generation, potentially
leading to biased predictions.

2.2.2 Single-Step Genomic Best Linear Unbiased
Prediction (ssGBLUP)

Single-step GBLUP model combines phenotypes, pedigree, and
genotypes into a single evaluation and replaces the pedigree
relationships between genotyped individuals with realized
relationships by incorporating pedigree and genomic
relationships in H matrix, but requires significant computational
resources and high-quality data. The additive (u) and residual (e)
effects are assumed to be independently distributed with
u ~ N(0,Hσ2

u) and e ~ N(0, Iσ2
e ), respectively. The H matrix is

described as:

H � H11 H12

H21 H22
[ ] � A11 + A22A

−1
22 G − G22( )A−1

22A21 G12A
−1
22G

GA−1
22G11 G

[ ]
H−1 � A−1 + 0 0

0 G−1 − A−1
22

[ ]
where the subscript 1 and 2 indicate ungenotyped and genotyped
individuals, respectively. The H matrix can be constructed from the
relationships of genotyped and ungenotyped animals (Aguilar et al.,
2010). However, H−1 can be directly calculated using A−1 and G−1

which contain pedigree and genomic relationships related to
ungenotyped and genotyped individuals, respectively, and A22 is
the pedigree relationship matrix just for genotyped animals.

2.2.3 Single-Step Genomic BLUP with
Metafounders (ssGBLUP-MF-)

A metafounder is a pseudo-individual considered both sire and
dam of all base animals. This approach extends VanRaden`s method
(VanRaden, 1992) for estimating relationships across breeds
(Legarra et al., 2015). To further enhance prediction accuracy in
diverse populations, we incorporated metafounders in the
ssGBLUP-MF model. However, this increased the complexity of
the model and posed challenges in parameter estimation (Legarra
et al., 2015). The significance of the metafounder is particularly
important when considering both racial groups together. The use of
different scenarios also arises from the limitation of measuring
certain traits in crossbred groups, so it is inevitably based on the
parental group. In our simulation, the founders in the base
population of purebred parents were defined based on the
number of pure breeds, so we had two metafounders.
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In ssGBLUP, H−1 with metafounders (H(Γ)−1) can be
represented as (Christensen et al., 2015):

H−1
Γ( ) � A−1

Γ( ) +
0 0
0 τ 0.95G + 0.05A Γ( )22( )−1 − ωA−1

Γ( )22
[ ]

G � ZZ′
2∑m

i�1pi 1 − pi( )
where A−1

(Γ) and G
−1 capture the inverse of the pedigree and genomic

relationships, respectively. G is the genomic relationship matrix
which can be calculated using matrix of allele counts (Z) and allele
frequency (p) of m markers. A−1

(Γ)22 represent the pedigree
relationships among genotyped animals which is subtracted from
genomic relationships to avoid double-counting of pedigree
relationships for genotyped animals. The τ = 1 and ω = 1 are
scaling factors used to combine G and A matrices, respectively
(Alvarenga et al., 2020).

2.3 Prediction ability (accuracy and
dispersion) of purebred parents

The predictive ability of sires in breed A for maximizing CP was
evaluated in this study using two metrics, accuracy, and dispersion.
Accuracy was assessed according to Esfandyari et al. (2016), by
calculating the correlation between the (genomic) estimated
breeding value or (G) EBV of sires in breed A and the adjusted
CP mean of their crossbred progeny for the number of progenies.
The correlation is likely to be higher for sires which have more
progeny, as their (G) EBVs are calculated based on performance of
large number of progenies. The average accuracy of mean CP was
calculated as

���
n

n+k
√

, where n is the number of progenies per sire and
k � 4−h2

h2
is a correction factor which depends on the heritability of

the trait. The predicted dispersion of (G)EBV was measured by the
deviation of the slop (b1) from the regression TBVs on (G)EBVs in
the crossbred population (Kluska et al., 2021).

3 Results

3.1 Genetic connectedness between
populations

The PCA scattered plot is shown in Figure 2. The first two
principal components (PCs) explain 8.249% and 7.92% of the total
variance, respectively. The genetic relatedness between populations
before simulation of rpc levels as measured by Fst was 0.032 between
purebred parental breeds, while Fst between purebred and crossbred
populations was 0.023.

3.2 Prediction ability

The prediction accuracy of the three models across scenarios is
detailed in Table 2. In general, a positive correlation between
prediction accuracy and rpc value was observed. However, the
BLUP-UPG model exhibited lower accuracy than the other
models at all levels of rpc. In contrast, ssGBLUP and ssGBLUP-
MF displayed inconsistent trends across their respective scenarios.

Considering the first scenario encompassing genotypes (using
breeds A, B, and crossbreds), ssGBLUP outperformed ssGBLUP-MF
at all levels of rpc. On the other hand, among the scenarios for selecting
genotypes in ssGBLUP, SC3 (using sire genotypes) achieved the highest
prediction accuracy. However, the optimal scenario depended on the
rpc level. For example, at rpc values of 0.2 and 0.8, ssGBLUP-SC1 and
ssGBLUP-SC3 outperformed other scenarios. Interestingly, the scenario
incorporating the genotype of purebred dams (SC4) in ssGBLUP had
the lowest accuracy among the scenarios, nearly the same as BLUP-
UPG. Additionally, at rpc = 0.8, ssGBLUP continued to outperform
both ssGBLUP-MF and BLUP-UPG. Specifically, ssGBLUP-SC3
achieved an impressive prediction accuracy of 73.2%.

In Figure 3, the regression coefficient (b1) of TBVs on (G)EBVs
in different models is shown which can indicate the dispersion of
predicted breeding values. A low regression coefficient (b1 <1.0)
indicates overprediction (inflation), and b1 >1.0 shows
underprediction (deflation) of GEBVs (Tsuruta et al., 2019). The
results of our study showed a slight underprediction of)G)EBVs
across all scenarios and at different levels of rpc, the regression
coefficients ranging from 1.067 to 1.220. A comparison of the
regression coefficients between ssGBLUP and ssGBLUP-MF
revealed that ssGBLUP-MF predictions had lower dispersion.
Furthermore, ssGBLUP-SC2 and ssGBLUP-MFSC1 had
minimum dispersion values at the rpc level of 0.2 compared to
the other scenarios. At the rpc level of 0.5, ssGBLUP-SC2 exhibited a
minor deflation in dispersion, while in contrast, ssBLUP-MFSC1
consistently displayed the lowest dispersion among all the scenarios.
At the rpc level of 0.8, the dispersion was almost similar across all
scenarios, except ssGBLUP-SC1, which exhibited a slight deflation
of the b1 compared to the other scenarios.

4 Discussions

The genetic merit of a purebred individual can be explained as: (i)
its breeding value within the purebred population, and (ii) its breeding
value as a purebred parent of a crossbred progeny (Esfandyari et al.,

FIGURE 2
Individuals clustered to three distinct groups based PC1 and PC2.
In this figure, the blue, red, and green colors represent the individuals
of breed A, breed B, and their crosses, respectively.
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2018). The breeding value of a purebred parent of a crossbred offspring
depends on a range of non-additive genetic effects, which can be
summarized in rpc. However, it is difficult to consider all factors in
rpc simulation. Consequently, in this study, we focused on the overall
effect of rpc on evaluating CP based on parental and/or crossbred data.

Based on the PCA graph, we observed three distinct populations.
The crossbred population was positioned between the two purebred
populations. This positioning was a result of simulating interbreeding
within each purebred population for 210 generations, leading to
complete differentiation of the two parental lines. The results of the
Fst analysis also support thefindings from the PCAgraph. The crossbred
individuals genetically possess a combination of traits from both
purebred populations, as indicated by the PCA graph. This is
because interbreeding was simulated within each purebred population
for 210 generations. Extended breedingwithin each group has resulted in
significant genetic differentiation, making the two purebred populations
genetically distinct from each other. The Fst analysis results, which
measure genetic differentiation between populations, align with the PCA
graph. HighFst values indicate significant differentiation, supporting the
observation that the purebred populations are distinct while the
crossbred population is intermediate.

The increase in rpc level improved the prediction accuracy in all
simulated scenarios. However, the prediction accuracy was not
significantly different in different scenarios, which could be due
to the method we used to simulate rpc. The BLUP-UPG model

showed the lowest prediction accuracy at all rpc levels which was
expected, because it completely depended on pedigree relationships.
While, genomic evaluation models which uses high-density SNP
genotyping can capture relationships between individuals (with or
without pedigree connection) more accurately. This may lead to
optimal selection of purebred animals in parental lines for improved
crossbred performance (Zhao et al., 2015). Our results showed that
ssGBLUP-SC1 and ssGBLUP-MFSC1 provide the highest prediction
accuracy in all scenarios when the rpc was less than 0.5. Hence,
including crossbred and purebred data in the evaluation model
could improve CP prediction. However, this improvement was
observed only for low rpc value. Which could be useful when
there is no emphasis on purebred performance in breeding goal
(Van Grevenhof and Van der Werf, 2015), the reference population
is large, and the genetic relatedness between crossbred population
and purebred selection candidates is high (Wientjes et al., 2020).
When the genetic relatedness between purebred and crossbred
populations is high, including crossbred data only adds to model
complexity and runtime as well as costs of genotyping. The accuracy
of CP also depends on the heritability of the trait in purebreds and
crossbreds (Wientjes et al., 2020).When the heritability of the trait is
lower in crossbreds than purebreds, the accuracy of selection by
traditional and genomic evaluations will be adversely impacted.

The ssGBLUP-SC3 model performed the best at the rpc = 0.8,
whichmay be due to the high number of crossbred progenies per sire in

TABLE 2 Mean and standard deviation (in parentheses) of accuracy across 10 replicates in each scenario with different genetic correlation between
crossbred and purebred populations (rpc).

rpc Model/Scenario

BLUP-
UPG

ssGBLUP-
MFSC1

ssGBLUP-
MFSC2

ssGBLUP-
SC1

ssGBLUP-
SC2

ssGBLUP-
SC3

ssGBLUP-
SC4

0.2 0.114 (0.028) 0.204 (0.019) 0.171 (0.028) 0.226 (0.026) 0.195 (0.029) 0.213 (0.022) 0.131 (0.024)

0.5 0.343 (0.023) 0.439 (0.021) 0.424 (0.022) 0.447 (0.022) 0.339 (0.023) 0.405 (0.030) 0.358 (0.018)

0.8 0.505 (0.015) 0.603 (0.014) 0.568 (0.022) 0.618 (0.019) 0.631 (0.019) 0.732 (0.016) 0.545 (0.015)

* indicates the model we used, including model BLUP-UPG, Best Linear Unbiased Prediction with Unknown-Parent Groups; ssGBLUP, Single-Step Genomic BLUP, and ssGBLUP-MF,

ssGBLUP, with Metafounders.

** represents the scenarios of genotype selection from purebred and crossbred populations.

FIGURE 3
The regression coefficient (b1) of TBVs on (G) EBVs for crossbred population across different scenarios and genetic correlation between crossbred
and purebred populations (rpc).
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breed A. It is important to note that, if purebred QTLs are not included
in the combined reference population, accuracy will be significantly
reduced. In other words, the SNP effect is primarily determined by
breeds that are more common in the reference population when
considering the gene flow (Karaman et al., 2021). The linkage
disequilibrium between markers and QTLs should also remain high
in purebred and crossbred populations. Therefore, using high marker
density can be effective in developing prediction equations and
preventing loss of accuracy.

Based on the results, ssGBLUP in the first scenario was generally
more accurate than ssGBLUP-MF. Although the accuracy of
ssGBLUP-MF was expected to be slightly higher than that of
ssGBLUP, in our simulated population there were no missing
parents, and the base populations of the two purebreds were far
apart. In real data, due to considerable number of missing parents in
the pedigree, we should not assume the animals with unknown
parents are associated with the same base population. Otherwise, the
additive variance could not be estimated properly (Mrode, 2014).
Therefore, considering pseudo-parents as UPG and metafounders
should generally improve the prediction accuracy.

Our results showed a slight deflation of the predicted dispersion of
(G)EBV in all scenarios. The predicted dispersion in BLUP-UPG was
not significantly different to the other models. This could be due to lack
of simulating missing parents and use of UPG in our BLUP-UPG
model. Nevertheless, ignoring missing pedigree in BLUP model has
been reported to increase the dispersion compared to the genomic
models (Bradford et al., 2019). Although, ssGBLUP-MF displayed the
lowest dispersion among all the scenarios, incorporation of MF in
genomic relationship has only a small impact on the predicted
dispersion compared to alternative models. It should be noted that
the impact of MF depends on the number of animals with genotypes
and phenotypes which are associated with eachMF (Kluska et al., 2021).
A comparison betweenMF and UPG revealed that MF predictions had
similar or lower levels of inflation and bias (Masuda et al., 2019).
Furthermore, ssGBLUP-MF has been reported to be more stable
(Kluska et al., 2021). The main difference between UPGs and MFs
is that in MFs the relationships within and across populations are take
into account to measure the covariance of gametes transmitted from
base animals to their descendants (Legarra et al., 2015). However,
dispersion in ssGBLUP is noticeable when the pedigree is deep and
incomplete, or when inbreeding is ignored in calculation of pedigree
relationships (Kluska et al., 2021). Generally, the inflation in breeding
values is common when the selected candidates have different amounts
of information (Neves et al., 2012). In ssGBLUP, inconsistencies arise
from conflicting genomic and pedigree relationship matrices, leading to
variations in predictive performance. The inclusion of metafounders
(MF) in ssGBLUP-MF aims to address this issue by establishing a
unified base population, thereby improving the alignment of genomic
and pedigree information. However, due to the simulation process, the
performance of the two methods varied across different scenarios, and
neither method demonstrated superior performance in all scenarios.

5 Conclusions

This study demonstrated that at low rpc levels, employing
crossbred and purebred populations in ssGBLUP and ssGBLUP-
MF models resulted in enhanced predictive ability for CP. At high

rpc levels, utilizing paternal data in the ssGBLUP model yielded
optimal CP predictions. The expected slightly higher accuracy of
ssGBLUP-MF compared to ssGBLUP was due to the considerable
genetic divergence between the base populations of the two
simulated purebred populations. Nevertheless, the key factor in
maximizing CP based on purebred selection was the rpc value.
Although the results can be influenced by rpc and other factors,
ultimately, the selection of the most suitable model for enhancing CP
depends on rpc . Further research to develop models based on
purebred selection to improve CP is warranted.
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