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Aim: The aim of this study is to investigate if Preimplantation Genetic Testing (PGT)
can effectively identify unreported variants according to American College of
Medical Genetics and Genomics (ACMG)to prevent citrullinemia type 1 affection.

Design: This study involves a detailed case analysis of a family with history of
citrullinemia type 1, focusing on the use of PGT for monogenic diseases (PGT-M).
The genetic variants were identified using ACMG guidelines, and PGT was
employed to prevent the inheritance of these variants. The study included
haplotype analysis and Sanger sequencing to confirm the results.

Results: The study identified previously unreported variations in the ASS1 gene
causing citrullinemia type 1. PGT successfully prevented the transmission of these
variants, resulting in the birth of a healthy fetus. However, challenges such as
allele dropout (ADO) and gene recombination were encountered during
haplotype analysis, which could potentially defeat the diagnosis. The study
demonstrated that combining haplotype analysis with Sanger sequencing can
enhance the accuracy of PGT.

Conclusion: Preimplantation Genetic Testing (PGT) targeting likely pathogenic
and pathogenic variants in the ASS1 gene, as rated by ACMG, allows the birth of
healthy infants free from citrullinemia type 1. Additionally, the establishment of
single haplotypes and Sanger sequencing can reduce the misdiagnosis rate
caused by allele dropout (ADO) and genetic recombination.
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Introduction

Inherited metabolic diseases are rare in the general population but can cause significant
harm to affected families and society due to their often untreatable nature (Ferreira and van
Karnebeek, 2019). Citrullinemia type 1, with an incidence rate of about 1/22,000, is characterized
primarily by high blood ammonia levels (Posset et al., 2020). Symptoms range from mild to
severe and can include increased intracranial pressure, heightened neuromuscular tension,
spasticity, seizures, loss of consciousness, and even death due to elevated blood ammonia and
other toxic substances (Kölker et al., 2015). Citrullinemia type 1 can lead to intellectual disability
or death despite the availability of effective therapies (Häberle et al., 2019). Preimplantation
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genetic testing (PGT) offers hope for affected families by preventing
intergenerational inheritance (Cho et al., 2014). High-risk families can
use PGT to prevent genetic diseases in offspring, making gene diagnosis
crucial throughout the process.

Since the American College of Medical Genetics and Genomics
(ACMG) issued standards for classifying unreported gene variants in
2015, a unified standard has been established (Richards et al., 2015).
However, the efficacy of these standards in successfully blocking the
transmission of inherited metabolic diseases requires further clinical
support (Chen, 2023). Mutations in ASS1 can cause citrullinemia type
1 (Xiong and Chen, 2022), and functional tests showed that mutation
in ASS1 affects its expression (Liu et al., 2023). In this research, we
present a family case of citrullinemia type 1 involving previously
unreported mutation sites in ASS1, classified as pathogenic or likely
pathogenic according to ACMG guidelines. Preimplantation genetic
testing for monogenic disease (PGT-M) was performed, followed by
monitoring related conditions until birth.

Materials and methods

Ethical approval

This study involving human participants was reviewed and
approved by Union Hospital, Wuhan, China. The patients/

participants all provided written informed consent to participate
in this study. Written informed consent was obtained from the
authors and participating patients for the publication of any
potentially identifiable images or data included in this article.

Clinical data

The female partner was 32 years old, with a height of 158 cm,
body mass index (BMI) of 19.6, and Anti-müllerian hormone
(AMH) level of 2.6 ng/mL. Both partners denied having a
consanguineous marriage and reported no family history of
congenital diseases. The couple had two natural births, with both
the first and second child diagnosed with citrullinemia type 1.
Probands in this family were dead because of the citrullinemia
type 1, making pedigree analysis impossible for them.

Genetic diagnosis of the proband

Whole exome sequencing was done for the second child of the
family who was affected of citrullinemia type 1. The results revealed
mutations ASS1:c.847G>A (originating from the male partner),
rated as P (pathogenic): Evidence: [PM3_Very strong +
PM1+PM2_Supporting + PP3]; and c.1127 + 1G>T (originating

FIGURE 1
Validation of ASS1: c.847G>A mutation in the family.

Frontiers in Genetics frontiersin.org02

Wu et al. 10.3389/fgene.2024.1389461

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1389461


from the female partner), rated as LP (likely pathogenic) with
Evidence: PVS1+PM2_Supporting. This variation was not
reported in citrullinemia type 1 patients according to American
College of Medical Genetics and Genomics (ACMG).

Pre-testing and pedigree analysis

A total of 5 mL of peripheral blood was collected from both male
and female partners and their respective parents (six individuals in
total) for genomic DNA (gDNA) extraction. Oral mucosal cells were
also collected from these six individuals for single-cell whole genome
sequencing using multiple annealing and looping-based
amplification cycles (MALBAC). Sanger sequencing was
conducted to verify the ASS1 gene mutation sites c.1127 + 1G>T
and c.847G>A. It confirmed that the male partner carried the
c.847G>A, p. E283K missense mutation, inherited from his
father, and the female partner carried c.1127 + 1G>T, an RNA
splicing mutation inherited from her father. Additionally, single
nucleotide polymorphism (SNP) genotyping was conducted on the
gDNA samples from the family within a 2-Mb range upstream and
downstream of the ASS1 gene using the Illumina iScan Reader and
the Infinium Asian Screening Array-24 v1.0 BeadChip to identify
haplotypes associated with the disease-causing mutations and to

establish a foundation for subsequent embryonic SNP
linkage analysis.

PGT-M treatment

PGT-M treatment was initiated after successful pre-testing using
the PPOS protocol to ovarian stimulation, 7 oocytes were retrieved,
Intracytoplasmic sperm injection (ICSI) was utilized for
fertilization,2 blastocyst were biopsied and vitrified, the second
cycle was initiated with GnRH antagonist protocol because of
there is no embryos can be used from the PGT results. A total of
16 oocytes were retrieved, which included 13MII oocytes. (ICSI) was
utilized for fertilization, and the embryos were cultured up to day 5.
Trophectoderm biopsy and genetic testing were performed on six
morphologically useable blastocysts, which were then vitrified.

Single-cell whole genome amplification and
sequencing

Trophectoderm biopsies were carried out, and whole genome
amplification (WGA) was performed using a universal sample
processing kit, ChromSwiftTM (XK-028, Yikon Genomics) for

FIGURE 2
Validation of ASS1: c.1127 + 1G>T mutation in the family.
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gene sequencing according to themanufacturer’s instructions.WGA
products were fragmented for library construction and sequenced
on the Illumina Nextseq 550 platform to analyze the ploidy of each
embryo. SNP haplotype analysis of the WGA products and first-
generation sequencing of mutation loci were also conducted to
determine the genotype of the embryos. Finally, based on the
results of SNP linkage analysis of the mutated gene of the
embryo, verifications of the point mutations, and the aneuploidy
testing results, embryos that did not carry disease-causing mutations
and had normal ploidy were selected for clinical transplantation.

Analysis of copy number variations (CNVs)

After the removal of duplicates from the original reads, they
were mapped to the genome in 1 Mb units (bins) across the entire
genome and standardized by the GC content (the proportion of
guanine and cytosine) and a reference data set. When the copy
number of each bin increased from 2 to 3, the number of reads
increased by 50%, and when it decreased from 2 to 1, the number of
reads decreased by 50%. The circular binary segmentation algorithm
(CBS) was used to report embryonic CNVs of ≥4 Mb, and the R

FIGURE 3
Haplotypes by SNP linkage of the two mutations in this Family.
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program was used to visualize the CNVs of each bin of the
24 chromosomes.

For SNP site analysis, data from high-throughput
sequencing were mapped to the human reference genome
(hg19). Further analysis of the family members was
conducted, along with the detection of whole genome SNP
sites in the test samples. SNP sites within 1–2 Mb upstream
and downstream of the pathogenic gene were selected. Finally, a
report was presented based on thorough evaluation of the SNP

linkage analysis results of the mutated gene in the embryos,
confirmation of the point mutations, and the aneuploidy
testing results.

Embryo transfer and follow-ups

On the second day of the menstrual cycle of the female partner,
preparations for thawing and transfer were made following an

FIGURE 4
The mutations test and CNV test results of the two embryos of the first cycle of PGT. Red arrows show the ADO from the haplotype analysis in
Figure 5. All the two embryos are aneuploid.
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artificial cycle protocol. Endometrial preparation was
performed using progesterone injections, and embryo transfer
was conducted on the fifth day of progesterone administration.

Routine luteal support was maintained through 12 weeks of
gestation, followed by amniocentesis at 18 weeks to verify the
fetal genotype.

FIGURE 5
The haplotype of SNP analysis of the two embryos in the first cycle of PGT. Embryo 1 carried the two mutations and embryo 2 only carried the
maternal mutation.
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FIGURE 6
The CNV test of the 6 embryos of the second cycle of PGT, four embryos are euploid, two embryos are mosaic.
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Results

Results of PGT-M and follow-ups

Owing to the unavailability of a proband sample and DNA,
verification of the genotypes of the family and haplotype
establishment were performed using samples from the parents of
both partners. Figures 1–3 show the Sanger sequencing results and
haplotype results by SNP in the family.

Embryo testing results

After the successful establishment of the haplotypes, the couple’s
first in vitro retrieval yielded two blastocysts, both with chromosome

aneuploidies, and thus no blastocyst was suitable for transfer. Later,
six blastocysts were obtained through another round of in vitro
fertilization. Among these, one blastocyst, free of mutations from
either partner and with a euploid chromosomal constitution,
was thawed and transferred, leading to a successful pregnancy.
Figures 4–9 shows the embryos test results of the two cycles of
PGT including CNV, mutation test and haplotype analysis.

Follow-up results of amniocentesis

Amniocentesis was performed 18 weeks into the successful
pregnancy. Verification of the point mutations and aneuploidy
testing were repeated. After ruling out maternal genomic DNA
contamination, the results confirmed that the fetus did not carry the

FIGURE 7
The ASS1:c.847G>A test results in the 6 embryos of the second cycle of PGT-M.
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genetic mutations of the parents. The child was born healthy and
currently shows no related phenotypes. Figure 10 shows the
haplotype and mutation test results.

Discussion

Citrullinemia type 1 symptoms vary widely, and without
early diagnosis and treatment, the prognosis for children with
severe symptoms is very poor (Häberle et al., 2019). Therefore,
PGT and prenatal diagnosis are critically important. Our data
provide further clinical evidence for preventing citrullinemia
type 1 in a family, including observing allele dropout (ADO)

during testing and gene recombination during generational
transmission.

Current guidelines and consensus recommendations primarily
address medical interventions for variants classified as pathogenic or
likely pathogenic. However, the potential for diagnostic errors in
identifying such variants and the risk of misdiagnosis in PGT remain
(Chen, 2023). In this case, the ASS1.847G>A variant, originating
from the male partner, is a pathogenic missense mutation. Previous
reports suggest that this mutation may affect the folding of specific
protein domains, although no affected patients have been
documented. The evidence for this variant is classified as PM3_
Very strong + PM1+PM2_Supporting + PP3 according to ACMG
guidelines (Gao et al., 2003).

FIGURE 8
The ASS1: c.1127 + 1G>T test results in the 6 embryos of the second cycle of PGT-M.
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The c.1127 + 1G>T variant, originating from the female
partner, is classified as likely pathogenic. It is a previously
unreported alternative splicing variant categorized as
potentially causative. The evidence type for this variant is

PVS1+PM2_Supporting according to ACMG guidelines (Engel,
Höhne, and Häberle 209). This splicing variant occurs at the
donor site with a SpliceAI score of 0.99. Given the ACMG rating
of likely pathogenic and the clinical diagnosis of the related

FIGURE 9
The haplotype of SNP analysis of the six embryos in the second cycle of PGT. Red arrows show the recombination of the gene sequence. Haplotype
of SNP analysis was defeated in embryo 6 because of the mosaic state of 9 chromosome, the ASS1 gene is locate on 9q34.11.
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disease corresponding to this gene variant (PP3), this variant
could be considered pathogenic. As the variant is classified as
pathogenic, we did not further perform functional studies to
assess protein expression abnormalities caused by this splicing
site, such as exon skipping, intron inclusion, or cryptic splice site

usage. However, these functional validations are crucial for
understanding the disease’s pathogenesis.

Determining the embryonic genotype based on haplotypes is a
commonly used technique in genetic diagnosis of embryos (Harton
et al., 2011). Establishing haplotypes through family members

FIGURE 10
The prenatal testing results of the fetal amniotic fluid by the sanger sequence and haplotype analysis of SNP.
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clarifies the haplotype where the genetic variant is located, effectively
reducing the risk associated with allele dropout during embryonic
genetic testing. However, diagnostic errors due to genetic
recombination remain possible, underscoring the importance of
prenatal diagnosis (Wilton et al., 2009). This case includes a
detailed description of citrullinemia type 1 occurrence, diagnosis,
tracing, prevention, verification, and follow-up in a family. We
observed ADO and recombination, which can complicate
embryonic diagnosis, but haplotype analysis combined with
Sanger sequencing can increase PGT success rates.

ADO is a phenomenon observed during PCR, potentially leading
to genetic diagnostic errors (Blais et al., 2015), ADO occurrence may
be related to high CG content (Wenzel et al., 2009), and the amount of
PCR amplification template and analysis methods (Hedell et al.,
2015), Despite mitigating high-risk factors, ADO cannot be
completely avoided (Blais et al., 2015). This is more likely to occur
in embryonic testing, where linkage analysis can reduce misdiagnosis
rates caused by ADO (Rechitsky et al., 1998). However, genetic
recombination during haplotype determination can affect
diagnosis. In this study, we observed two recombination events in
the tested region over three generations, possibly due to this region
being a recombination hotspot. Our data support varying
recombination regions across different embryos. The necessity of
simultaneous CNV testing during PGT-M is debated (Yang et al.,
2022), but our data indicate that concurrent CNV testing can
effectively reduce embryo aneuploidy rates.

Amniocentesis verification confirmed the fetal genotype,
underscoring the importance of prenatal diagnosis in accurately
assessing fetal genetic risks. Unlike PCR, prenatal diagnosis does not
carry ADO-related risks and involves cells from multiple embryonic
layers, offering more accurate evaluations than trophoblast cell
sampling during the embryonic stage (Kahraman et al., 2020;
Greco et al., 2023).

Although our research suggests that clinical intervention through
PGT methods could prevent the birth of children with citrullinemia
type 1, our study has several limitations. Firstly, expanding the sample
size of citrullinemia type 1 patients is necessary to further validate the
effectiveness of PGT methods in preventing the transmission of
ASS1 gene mutations. Establishing the relationship between genetic
variants and phenotypic outcomes is crucial for PGT. While the
ACMG guidelines offer valuable references, many variants lack clear
causal relationships with phenotypes, emphasizing the necessity for
further research and clinical data. Furthermore, our study did not
include functional studies on the two variants identified, which are
essential for understanding changes in protein function and the
underlying pathogenic mechanisms. Additionally, there is a need
for further research on the accuracy and detection methods of
PGT. Based on the above problems, future research will involve
conducting scientific experiments to verify our findings and
enhance the understanding of PGT’s potential in managing
citrullinemia type 1 Engel et al., 2009.

Conclusion

Preimplantation Genetic Testing (PGT) targeting likely
pathogenic and pathogenic variants in the ASS1 gene, as rated by

ACMG, allows the birth of healthy infants free from citrullinemia
type 1. Additionally, the establishment of single haplotypes and
Sanger sequencing can reduce the misdiagnosis rate caused by allele
dropout (ADO) and genetic recombination.
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