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Introduction: Chemotherapy resistance remains a significant challenge in the
treatment of pancreatic adenocarcinoma (PDAC), particularly in relation to
gemcitabine (Gem), a commonly used chemotherapeutic agent. MicroRNAs
(miRNAs) are known to influence cancer progression and chemoresistance.
This study investigates the association between miRNA expression profiles and
gemcitabine resistance in PDAC.

Methods: The miRNA expression profiles of a gemcitabine-sensitive (GS) PDAC
cell line, MIA PaCa-2, and its gemcitabine-resistant (GR) progeny, MIA PaCa-2GR,
were analyzed. miRNA sequencing (miRNA-seq) was employed to identify
miRNAs expressed in these cell lines. Differential expression analysis was
performed, and Ingenuity Pathway Analysis (IPA) was utilized to elucidate the
biological functions of the differentially expressed miRNAs.

Results: A total of 1867 miRNAs were detected across both cell lines. Among
these, 97 (5.2%) miRNAs showed significant differential expression between the
GR and GS cell lines, with 65 (3.5%) miRNAs upregulated and 32 (1.7%) miRNAs
downregulated in the GR line. The most notably altered miRNAs were implicated
in key biological processes such as cell proliferation, migration, invasion,
chemosensitization, alternative splicing, apoptosis, and angiogenesis. A subset
of these miRNAs was further analyzed in patient samples to identify potential
markers for recurrent tumors.

Discussion: The differential miRNA expression profiles identified in this study
highlight the complex regulatory roles of miRNAs in gemcitabine resistance in
PDAC. These findings suggest potential targets for improving prognosis and
tailoring treatment strategies in PDAC patients, particularly those showing
resistance to gemcitabine. Future research should focus on validating these
miRNAs as biomarkers for resistance and exploring their therapeutic potential
in overcoming chemoresistance.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
lethal forms of cancer in both men and women. PDAC is currently
ranked the third leading cause of cancer death in the United States
for men and fourth for women. Nearly 64,000 patients are expected
to be diagnosed with PDAC in 2023, with nearly 50,500 patients
dying of PDAC this year alone (American Cancer Society and I,
2023). PDAC is ranked second for the lowest 5-year survival rates of
any cancer (11%), with most patients passing away within 1 year of
diagnosis. PDAC is becoming more common and is projected to be
the second leading cause of cancer death in the US by the year 2030
(Rahib et al., 2014), with chemoresistance playing a primary role in
this poor prognosis.

Over the past decade, PDAC survival has improved only
marginally, with few novel clinical interventions to significantly
improve patient life. With the advent of gemcitabine (Gem)
treatment, the median overall survival rate for PDAC improved
over 5-FU monotherapy from 4.41 to 5.65 months, and the 1-year
survival rate improved from 2% to 18% (Burris et al., 1997).
FOLFIRINOX, a combination of folinic acid (leucovorin) 5-
fluorouracil (5-FU), irinotecan, and oxaliplatin, is a novel
therapeutic regimen for metastatic pancreatic cancer that has
shown superiority to Gem by improving median survival rates
from 6.8 months to 11.1 months (Conroy et al., 2011). Although
FOLFIRINOX improves the patient survival rate by 5 months, it has
not reduced the rate at which this cancer kills. This study was
conducted to address this concern and provide a new framework to
attack pathways pertinent to the onset of PDAC chemoresistance.

Next-generation sequencing (NGS) is a powerful tool for
identifying biological responses to therapy. Informatic software
and data availability have significantly improved the ability to
identify key pathways for resistance and to propose novel
therapeutic interventions in the form of regulatory genetic
sequences. The most well-studied form of regulatory genetic
sequences in our body is miRNA. This classification of small
non-coding RNAs regulates translation by inhibiting mRNA
from binding to the ribosome through binding to mRNA 3′UTR
regions. miRNAs are ~18–22 nts in length and contain AGO2-
binding regions and a seed region, which guides the AGO2 catalytic
activity to specific homologous sequences on mRNA 3′UTRs. These
seed sequences range from 6 nts to 8 nts in length and may have
multiple binding sites on the same 3′UTR region. Advanced
software allows for the prediction of regulatory efficiency of
miRNAs based on well-documented and conserved 3′UTR
regions of mRNAs. An ever-increasing body of literature
supports the use of miRNAs as biomarkers for disease presence,
initiators of drug resistance, and even as therapeutic agents
themselves (Hossen et al., 2022; Lahoz et al., 2022).

To this end, we generated a Gem-resistant cell line, MIA PaCa-2
GR, and performed miRNA-seq utilizing Illumina NextSeq 550, a
next-generation sequencing platform, on Gem-resistant MIA-PaCa-
2 cells (MP2 GR) and Gem-sensitive MIA-PaCa-2 cells (MP2 GS).
We have characterized a novel miRNA profile between sensitive and
highly resistant MIA-PaCa-2 cell lines to identify regulatory
miRNAs that play a role in chemoresistance-promoting
pathways. We have further utilized analytical software to predict
the miRNA interactions with key proteins responsible for Gem

resistance. In the end, we identified 97 differentially expressed
miRNAs in this profile and found several miRNAs that are
involved in chemoresistance through the regulation of survivin, a
potent inhibitor of apoptosis.

Materials and methods

Cell culture

The PDAC cell line MIA PaCa-2 was acquired from ATCC and
maintained in DMEM (Mediatech, Manassas, VA) supplemented with
2.5% horse serum, 100 units of penicillin, 100 μg/mL of streptomycin,
300 µ/mL of L-glutamine, and 10% USDA-sourced heat-inactivated
fetal bovine serum (Mediatech, Manassas, VA). MIA PaCa-2 GR was
generated as previously described (Fuller et al., 2022) andmaintained in
the same media used to culture MIA PaCa-2 and further supplemented
with 500 nM of gemcitabine hydrochloride (Sigma-Aldrich, St Louis,
MO). In all the experiments, cells were cultured at 37°C in a humidified
atmosphere containing 5% CO2 to 70%–80% confluency prior to use.

RNA isolation

Total RNA was isolated using the TRIzol reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer’s instructions. Briefly,
harvested cells were lysed in 500 µL TRIzol reagent with the pellet
frozen at −80°C. Samples were thawed at room temperature, after
which 100 µL of chloroform was added, and cells were incubated at
room temperature. Samples were shaken vigorously for 15 s and
then allowed to stand for 15 min at room temperature prior to
centrifuging for 15 min at 12,000 x g at 4°C. The aqueous phase was
transferred to a fresh tube, and 250 μL of 2-propanol was added,
followed by an additional 10-min centrifugation. RNA pellets were
washed in cold ethanol, and the concentration was determined by
measuring the absorbance at 260/280 nm on a NanoDrop
spectrophotometer (Thermo Scientific, Waltham, MA).

miRNA-seq library construction and
sequencing

miRNA-seq libraries were constructed using the QIAseq
miRNA library kit (QIAGEN, Germantown, MD) following the
manufacturer’s instructions. miRNAs were processed as previously
recorded (Liu et al., 2023). Briefly, 3′ and 5′ adapters, along with
unique molecular identifiers, were added to small RNAs. Reverse
transcription was performed to convert the miRNAs into cDNAs,
followed by a 22-cycle PCR amplification. An assigned index was
given to each sample for the multiplexing. The amplified fragments
were double size selected by using QIAseq magnetic beads for
fragments of DNA with 150–200 bp. Libraries were quantified by
the Qubit 3.0 HS dsDNA assay (Thermal Fisher Scientific, Waltham,
MA). Library size and quality were examined using the TapeStation
2200 (Agilent, Santa Clara, CA). miRNA-seq libraries were
sequenced at 76-bp single-end on an Illumina NextSeq 550 at the
Center for Genomics, LLU, with a final loading concentration
of 2.1 p.m.
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TABLE 1 Complete list of DEmiRs from NGS.

Upregulated Downregulated

miRNA log2 FC FDR-adjusted
p-value

miRNA log2 FC FDR-adjusted
p-value

miRNA log2 FC FDR-adjusted
p-value

hsa-miR-
205-5p

6.452906395 1.83E−29 hsa-miR-
30e-5p

2.43295747 2.47E−02 hsa-miR-4271 −3.428385829 1.96E−08

hsa-miR-
34a-5p

5.813896088 1.83E−29 hsa-miR-
454-3p

2.410392865 4.32E−02 hsa-miR-
7849-3p

−3.275769274 3.06E-10

hsa-miR-
6744-5p

5.040554843 9.87E−03 hsa-miR-
23b-3p

2.282158683 3.08E−03 hsa-miR-
6835-3p

−3.168711639 2.15E−05

hsa-miR-
3529-5p

4.798954296 4.22E−04 hsa-miR-
20a-5p

2.238637482 3.97E−02 hsa-miR-663a −2.982471138 1.32E−09

hsa-miR-
10a-5p

4.142987006 4.02E−07 hsa-miR-
3605-3p

2.219331234 1.72E−04 hsa-miR-
6833-5p

−2.773353496 2.53E−05

hsa-miR-
3617-5p

4.100460927 2.79E−04 hsa-miR-
1269a

2.170849703 1.58E−04 hsa-miR-4303 −2.738894303 2.18E−03

hsa-miR-
493-5p

4.084720541 1.82E−02 hsa-miR-
532-5p

2.167276755 9.66E−05 hsa-miR-
1343-5p

−2.708305835 2.08E−05

hsa-miR-
4524a-3p

3.915829109 5.78E−04 hsa-miR-
196a-5p

2.123504892 5.96E−04 hsa-miR-
3150a-3p

−2.706641591 1.01E−03

hsa-miR-
424-5p

3.886841391 1.74E−02 hsa-miR-
3691-3p

2.111900883 2.15E−02 hsa-miR-346 −2.421623531 3.72E−02

hsa-miR-
10a-3p

3.866951212 3.55E−10 hsa-miR-
6716-3p

2.108916616 1.86E−02 hsa-miR-935 −2.384057289 1.26E−06

hsa-miR-
10b-5p

3.652452388 1.61E−02 hsa-miR-
4301

1.980371335 2.49E−04 hsa-miR-7974 −2.308632389 2.49E−04

hsa-miR-
487a-5p

3.526923868 1.49E−02 hsa-miR-23c 1.970670515 4.80E−02 hsa-miR-4692 −2.28091657 3.64E−02

hsa-miR-
19a-3p

3.492479139 4.35E−02 hsa-miR-
424-3p

1.905917892 1.73E−03 hsa-miR-558 −2.258266932 4.92E−03

hsa-miR-
6826-5p

3.433654095 3.67E−02 hsa-miR-
6823-5p

1.88539802 1.02E−02 hsa-miR-
4713-3p

−2.205438564 6.96E−04

hsa-miR-
542-3p

3.37805884 2.25E−02 hsa-miR-
27b-3p

1.86130327 3.72E−02 hsa-miR-
4668-5p

−2.192894276 1.51E−04

hsa-miR-
660-5p

3.252069193 2.17E−03 hsa-miR-
3974

1.852045508 2.17E−03 hsa-miR-
548bb-3p

−2.17527534 1.71E−02

hsa-miR-
548an

3.240904108 1.44E−02 hsa-miR-
188-5p

1.834484985 1.24E−02 hsa-miR-
6504-3p

−2.13638109 1.59E−02

hsa-miR-1179 3.221333845 4.80E−02 hsa-miR-
500a-3p

1.768875286 4.07E−02 hsa-miR-
214-5p

−2.129236273 8.33E−03

hsa-miR-449a 3.208429903 1.86E−02 hsa-miR-
362-5p

1.754063378 3.69E−02 hsa-miR-
6507-3p

−1.978088994 1.23E−02

hsa-miR-450a-
2-3p

3.169177772 1.16E−02 hsa-miR-
22-3p

1.753743048 1.35E−02 hsa-miR-8087 −1.911079912 2.56E−02

hsa-miR-4469 3.144768651 2.15E−05 hsa-miR-
501-3p

1.70841929 2.18E−03 hsa-miR-611 −1.903992446 4.32E−02

hsa-miR-
6795-5p

3.137450672 8.02E−03 hsa-miR-
500a-5p

1.708298323 1.24E−02 hsa-miR-
3144-5p

−1.88508858 2.25E−02

hsa-miR-
580-5p

3.137427436 4.32E−02 hsa-miR-
542-5p

1.702633782 1.02E−02 hsa-miR-
1250-5p

−1.851497419 2.29E−02

hsa-miR-
3617-3p

2.986847336 3.24E−02 hsa-miR-
4454

1.690411106 4.32E−02 hsa-miR-586 −1.833196701 2.13E−02

(Continued on following page)
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miRNA identification and differential miRNA
expression analysis

miRNA data were processed as previously recorded (Liu et al.,
2023). All sequencing data were demultiplexed and converted to
fastq files using bcl2fastq (Illumina Inc., San Diego, CA). After
quality control with the FastQC tool, fastq files were processed

using the QIAseq miRNA quantification feature provided by
QIAGEN’s GeneGlobe Data Analysis Center (Qiagen,
Germantown, MD). Adapters from read sequences were
trimmed, and low-quality bps were removed by Cutadapt
(Martin, 2011). Reads with fewer than 16 bps and 10 assigned
index counts were excluded from the analysis. Reads were aligned
to miRbase (v21) using Bowtie with no more than two

FIGURE 1
Hierarchical cluster of differentially expressed miRNAs in MIA PaCa-2 parental (MP-2) and MIA PaCa-2 GR (MP-2GR) cell lines. The heatmap shows
differentially expressed miRNAs within a hierarchical cluster from miRNAs in Table 1. Vertical columns represent different miRNAs, and horizontal rows
represent different samples. The color scale illustrates the relative expression levels of miRNAs. Red indicates high relative expression levels of miRNAs,
and blue indicates low relative expression levels of miRNAs (miR) between GR and GS cells.

TABLE 1 (Continued) Complete list of DEmiRs from NGS.

Upregulated Downregulated

miRNA log2 FC FDR-adjusted
p-value

miRNA log2 FC FDR-adjusted
p-value

miRNA log2 FC FDR-adjusted
p-value

hsa-miR-
192-5p

2.844225121 1.02E−02 hsa-miR-
497-5p

1.683713826 3.86E−02 hsa-miR-4461 −1.832783235 9.90E−03

hsa-miR-
548as-3p

2.626273501 4.07E−02 hsa-miR-
331-3p

1.62175797 9.81E−03 hsa-miR-
499b-3p

−1.829204548 4.12E−03

hsa-miR-
6510-3p

2.612605323 1.96E−06 hsa-miR-
500b-5p

1.482412496 1.50E−02 hsa-miR-
6747-5p

−1.802985512 4.01E−02

hsa-miR-
15a-5p

2.596530688 1.23E−02 hsa-miR-
328-3p

1.466445165 2.25E−02 hsa-miR-4270 −1.790135215 1.24E−02

hsa-miR-
29b-3p

2.581217379 1.57E−02 hsa-miR-
532-3p

1.439545205 2.13E−03 hsa-miR-4472 −1.625164285 1.44E−02

hsa-miR-
6729-3p

2.57873501 1.44E−02 hsa-miR-
769-5p

1.312120797 2.02E−02 hsa-miR-7706 −1.61261424 1.76E−02

hsa-miR-
1269b

2.534821602 4.50E−09 hsa-miR-
503-5p

1.299242426 1.44E−02 hsa-miR-
6785-5p

−1.490229486 3.11E−02

hsa-miR-
19b-3p

2.471155028 4.07E−02 hsa-miR-
361-3p

1.053585418 3.72E−02 hsa-miR-
365a-5p

−1.473978483 4.84E−02

hsa-miR-
194-5p

2.443167865 3.30E-02

miRNA are sorted by log2 (fold change) and are separated by upregulated (left) and downregulated (right). The FDR-adjusted p-value represents the p-value adjusted by the B-H false discovery

rate through the DESeq2 R package. Factors represented were filtered to include only significant miRNAs with a p-value < 0.05 and LFC > 0.5.
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mismatches. Reads with more than 20 assigned index counts were
used for differential expression analysis by the R/Bioconductor
(Gentleman et al., 2004) software package, DESeq2 (Hanahan
and Weinberg, 2011). Differentially expressed miRNAs (DEmiR)

with false discovery rate (FDR)-adjusted p-values (q-values) of
less than 0.01 and logarithmic 2-fold changes of 0.5 were selected.
Sample distance heatmaps were generated using the R package
pheatmap (Kolde R. 2019).

TABLE 2 A refined list of miRNA factors from the total.

Upregulated Downregulated

miRNA log2 FC FDR-adjusted p-value miRNA log2 FC FDR-adjusted p-value

hsa-miR-205-5p 6.452906395 6.47E−25 hsa-miR-4271 −3.428385829 4.58E−06

hsa-miR-34a-5p 5.813896088 1.25E−24 hsa-miR-7849-3p −3.275769274 2.35E−07

hsa-miR-3529-5p 4.798954296 2.92E−03 hsa-miR-6835-3p −3.168711639 8.54E−04

hsa-miR-10a-5p 4.142987006 1.58E−05 hsa-miR-663a −2.982471138 1.44E−06

hsa-miR-3617-5p 4.100460927 2.92E−03 hsa-miR-6833-5p −2.773353496 1.40E−03

hsa-miR-4524a-3p 3.915829109 5.60E−03 hsa-miR-1343-5p −2.708305835 1.24E−03

hsa-miR-10a-3p 3.866951212 1.53E−07 hsa-miR-935 −2.384057289 4.23E−04

hsa-miR-4469 3.144768651 8.54E−04 hsa-miR-4668-5p −2.192894276 9.46E−03

hsa-miR-6510-3p 2.612605323 4.10E−04

hsa-miR-1269b 2.534821602 8.36E−06

hsa-miR-3605-3p 2.219331234 9.51E−03

hsa-miR-1269a 2.170849703 9.51E−03

hsa-miR-532-5p 2.167276755 7.69E−03

This represents the 21 top up- and downregulated miRNAs when filtering the dataset by LFC > 2 and p adj > 0.001.

FIGURE 2
Volcano plot and hierarchical cluster of differentially expressed miRNAs in MIA PaCa-2 parental (MP-2) and MIA PaCa-2 GR (MP-2GR) cell lines. (A)
The volcano plot has the top five upregulated and downregulated factors by log-fold change (LFC) highlighted, as well as the cutoff points used for this
study. Vertical dashed lines represent an LFC cutoff of 0.05, and horizontal dashed lines represent a p-adj cutoff of 0.05. Gray points did not meet either
cutoff, green points met the LFC cutoff but not the significance cutoff, and red points met both criteria. (B) The heatmap shows differentially
expressed miRNA within a hierarchical cluster of miRNAs from Table 2. Rows represent different miRNAs, and columns represent different samples. The
color scale illustrates the relative expression levels of miRNAs. Red indicates high relative expression levels of miRNAs, and blue indicates low relative
expression levels of miRNAs (miR) between GR and GS cells.
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Validation by RT-qPCR on key miRNAs

The top three overexpressed miRNAs in the GR cell line, miR-205-
5p, miR-34a-3p, and miR-3529-5p, as well as an internal control
recommended by ThermoFisher, miR-26a-3p, were used to validate

this dataset. miRNAs were isolated using mirVana™ (Invitrogen,
Carlsbad, CA) and processed using 50 ng of RNA sample along
with a TaqMan™ Advanced miRNA cDNA Synthesis Kit (Applied
Biosciences, Beverly Hills) to produce cDNA templates of keymiRNAs.
TaqMan™ Fast Advanced Master Mix for qPCR was used along with

FIGURE 3
IPA pathway analysis of differentially expressed miRNAs between the MIA PaCa-2 GR and MIA PaCa-2 parental cell line. (A) A higher −log (B–H
p-value) shown on the left Y-axis represents more significant pathways with a cutoff threshold set in the IPA software at ≥ 1.3. (B) A higher −log (B–H
p-value) shown on the bottom X-axis represents more significant pathways with a cutoff threshold set in the IPA software at ≥ 1.3.
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TABLE 4 miEAA miRWalk pathways: Highlighted annotations for pancreatic cancer. Annotations represent pathway names.

Annotation Enrichment p-value Padj-value miRNAs

WP366 TGF beta signaling pathway1 Enriched 8.62E−04 0.0152802 29

hsa04110 Cell cycle Enriched 0.001434 0.0161662 28

hsa04010 MAPK signaling pathway Enriched 0.002242 0.019038 27

P00057 Wnt signaling pathway Enriched 5.98E−04 0.0152802 26

hsa01100 Metabolic pathways Enriched 0.003366 0.0213811 26

hsa04520 Adherens junction Enriched 0.005053 0.0256064 25

WP710 DNA damage response only ATM-dependent Enriched 3.37E−04 0.0152802 23

hsa03040 Spliceosome Enriched 0.001042 0.0152802 23

WP254 apoptosis Enriched 0.011125 0.0407917 23

WP45 G1 to S cell cycle control Enriched 0.011125 0.0407917 23

P00005 Angiogenesis Enriched 6.26E−04 0.0152802 22

WP615 Senescence and autophagy Enriched 5.15E−04 0.0152802 22

WP411 mRNA processing Enriched 0.001482 0.0163021 22

WP707 DNA damage response Enriched 0.003307 0.0213811 22

P00031 Inflammation mediated by chemokine and cytokine signaling
pathway

Enriched 0.015939 0.0457874 22

hsa04630 Jak STAT signaling pathway Enriched 0.015149 0.0457874 21

hsa04910 Insulin signaling pathway Enriched 0.005018 0.0256064 20

hsa04115 p53 signaling pathway Enriched 0.010694 0.0405305 19

P04393 Ras Pathway Enriched 0.001013 0.0152802 17

P00012 Cadherin signaling pathway Enriched 0.005128 0.0256983 16

P00013 Cell cycle Enriched 0.005525 0.0257761 16

WP466 DNA Replication Enriched 0.003778 0.0215702 13

hsa04340 Hedgehog signaling pathway Enriched 0.002849 0.0213811 8

WP391 Mitochondrial gene expression Enriched 0.013185 0.0440176 7

P02775 Salvage pyrimidine ribonucleotides Enriched 0.0156 0.0457874 3

Only enriched pathways were selected. miEAA report generated ~180 pathways from the DEmiRs indexed by theWald statistic. Only enriched pathways represented by > 2miRNA interactions

and a B-H adjusted p-value were selected for analysis. The pathways shown were screened by involvement in cancer hallmarks from the original list (the complete, unfiltered list of miEAA

findings is available in the Supplementary Figures).

TABLE 3 Pathways-specific associated differentially expressed miRNAs in the MIA PaCa-2 PDAC cell lines.

Pathway Number of miRNAs Directional change and fold change
(log2FC)

Number of targets

14-3-3-Mediated signaling 15 miRNAs 8 up 2.167 to 6.453 7 down −3.428 to −2.193 23 targets

Cancer drug resistance pathway 6 miRNAs 3 up 2.535 to 4.799 3 down −3.428 to −2.193 5 targets

AMPK signaling 4 miRNAs 2 up 2.167 to 5.814 2 down −3.428 to −2.708 3 targets

Adipogenesis pathway 5 miRNAs 3 up 2.535 to 5.814 2 down −3.428 to −2.982 1 target

3-Phosphoinositide biosynthesis 4 miRNAs 3 up 2.535 to 6.453 1 down −2.773 1 target

Aryl hydrocarbon receptor signaling 1 miRNA 1 up 4.143 1 target

4-1BB signaling in T lymphocytes 1 miRNA 1 up 2.167 1 target

Acute myeloid leukemia signaling 1 miRNA 1 down −2.982 1 target

The IPA pathway highlights the different miRNA associations in the cancer drug resistance pathway. These pathways were chosen to indicate functional interactions within IPA annotations.
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the TaqMan™ Advanced miRNAAssays (Applied Biosciences, Beverly
Hills) formiR-205-5p,miR-34a-3p, andmiR-3529-5p. All samples were
prepared according to manufacturer-recommended protocols. Sample
CT values were normalized by taking the difference of CTs between the
MP2 and MP2GR cells of miR-26a-3p and subtracting the result from
the CTs collected from the sample.

Pathway analysis

MiRNA targets were predicted through the use of QIAGEN
Ingenuity Pathway Analysis (IPA, QIAGEN Inc. https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-analysis).
DEmiRs were imported into the IPA miRNA target filter, and
target interactions with moderate or high confidence and
experimentally observed interactions were selected for analysis.
Gene ontology (GO) enrichment was performed using built-in IPA
tools with DEmiRs.

miEAA analysis

miRNA enrichment analysis and annotation (miEAA) was used to
develop gene ontology for the miRNA profile (Aparicio-Puerta et al.,
2023). Upregulated and downregulated miRNAs were loaded together
into miEAA software and were indexed by the Wald statistic generated
from DESeq2. Significant pathways were determined by miEAA software
through https://ccb-compute2.cs.uni-saarland.de/mieaa/ with an

RNADisease repository, miRWalk V2.0, and GO annotations.
Pathways with p-adjusted values < 0.05 were considered significant.
Upset plots were built using UpSetR (Conway et al., 2017) in R.
Ggvenn (https://github.com/yanlinlin82/ggvenn) was used to generate
Venn diagrams based on miEAA data (GitHub, Inc.). Annotations
from RNADisease v4.0 (Chen et al., 2023) were used to generate sets
of miRNAs related to pancreatic cancer (keywords: “pancreatic
adenocarcinoma,” “pancreatic cancer,” “pancreatic ductal
adenocarcinoma,” and “pancreatic carcinoma”) and risk factors
associated with pancreatic cancer (keywords: “nicotine consumption/
nicotine addiction,” “diabetes,” “obesity,” “pancreatitis,” “acute
pancreatitis,” “chronic pancreatitis,” and “metabolic syndrome”). The
intersection between the DEmiRs generated from GS and GR cells,
miRNAs annotated for risk factors for PDAC, and miRNAs annotated
for PDAC (15miRNAs) were used for further analysis in patient samples.

GeneHancer and UniProt associations

Data from the GeneHancer database (Fishilevich et al., 2017)
utilizing Gene Cards (https://www.genecards.org/) were searched
for birc5 (surviving) promoter and enhancer regions. All proteins
with binding sites on regions scored for birc5 expression interactions
were considered (552 proteins in total). Duplicate proteins were
removed from the dataset before comparison. Member protein
families from the UniProt database were included with tags
matching: “Polypyrimidine track binding” (39), “hnRNP” (131),
“snRNP” (175), or “serine/arginine-rich splicing factor” (60). The

FIGURE 4
miEAA results filtered for hallmark pathways. Pathways generated from the miEAA report were screened for involvement in the 10 hallmarks of
cancer. Only the top 10 enriched pathways represented by > 2miRNA interactions and a B-H adjusted p-valuewere selected for analysis. Bars indicate the
number of miRNAs shared across the connected dots, as seen below. The set size represents the total number of miRNAs from our dataset that are
involved in the noted pathway.
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criteria for selection were 1) human proteins, 2) ability to be
visualized at the protein level, and 3) an annotation score of 5.
All data lists will be made available upon request.

These five protein lists were uploaded to the IPA software to
determine interactions between the DEmiR profile and protein lists.
Interactions were filtered in IPA for only human interactions that
are highly predicted or experimentally observed by the TargetScan
Human (v.7) context scoring system (Agarwal et al., 2015). Data
were compiled and visualized by a circos plot (Krzywinski et al.,
2009) using a plugin from Galaxy (https://usegalaxy.org/). Full lists
of proteins and interactions will be made available upon request.

TCGA analysis

Patient data were analyzed from data generated by The Cancer
Genome Atlas (TCGA) Research Network: https://www.cancer.gov/
tcga, utilizing the PAAD and CPTAC3 datasets that contain miRNA
data on patient tumor samples. Expression data taken from both patient
datasets were analyzed using the available BAM files. Briefly, BAM files
were analyzed through feature counts (Liao et al., 2013) with alignment
to the genome assembly GRCh38. miRNA accessions from this were
converted to precursor miRNAs using the miRbase converter tool (Xu
et al., 2018). For comparison with the differentially expressed miRNAs

FIGURE 5
Circos plot of DEmiR interactions in UniProt and GeneHancer datasets. Proteins within the hnRNP, PPTB, snRNP, and SR families were selected,
along with transcription factors with binding sites on birc5 promoter/enhancer regions. These factors were compiled into lists and loaded into the IPA
target prediction tool. Interactions that were experimentally observed or predicted with high confidence in humans were selected. A circos plot was
created to show all interactions between upregulated and downregulated DEmiRs. Individual sections in upregulated and downregulated DEmiRs
represent individual miRNAs. Protein factors were sorted in alphabetical order and grouped into segments representing portions of the total for increased
clarity of the graph.
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from cell lines, all miRNAs were converted to the precursors for use in
prediction analysis. Logical regression modeling was used in R to
establish the sensitivity and specificity of miRNAs to differentiate
between groups. Data were plotted into a receiver operating
characteristic (ROC) curve for visualization and to find the
c-statistic/area under the curve (AUC) (Grund and Sabin, 2010). For
the TCGA-PAAD dataset, patients were separated into two groups
based on whether they received chemotherapeutic treatment prior to
tumor sampling. The CPTAC3 patient set was separated into two
groups based on recurrence or non-recurrence upon data acquisition.
Groups were established based on available metadata. ROC curves were
used to identify the predictive capacity of these groups in the
respective datasets.

Statistics

Experiments were performed using at least three biological
replicates. The differences between groups were analyzed by

independent Student t-tests, while the differences between
multiple groups were compared using Welch-ANOVA. p-values
*p < 0.05, **p < 0.01, and ***p < 0.005 were considered statistically
significant. ROC curves were illustrated by logical regression
modeling, with the area under the curve representing the overall
predictive capacity/C-statistic threshold.

Results

Expression profile of miRNAs in the GR
cell line

The development and characterization of MIA PaCa-2 GR cells
from their isogenic parental MIA PaCa-2 GS has recently been
described by our group (Fuller et al., 2022). We performed gene
expression profiling in these two cell lines with the goal of
characterizing transcriptional alterations upon the development
of resistance to Gem. Illumina NextSeq 550 was used to sequence

TABLE 5 Summary table of five protein groups assembled and represented in Figure 5.

Family Number of miRNAs Directional change and
fold change (log2FC)

Number of protein/miRNA
interactions

Survivin promotor/enhancer binding
factors

71 miRNAs 46 up 24 down −3.428 to 6.453 393 interactions

Serine-arginine-rich splicing factors 13 miRNAs 8 up 5 down −3.428 to 3.492 14 interactions

snRNPs 48 miRNAs 29 up 19 down −3.428 to 6.453 104 interactions

Polypyrimidine tract binding proteins 14 miRNAs 32 up 19 down −2.982 to 3.887 92 interactions

hnRNPs 51 miRNAs 7 up 7 down −3.428 to 6.453 15 interactions

The GeneHancer database was used to pull transcription factors that bind to survivin promoter or enhancer regions in the genome. The remaining groups make up the spliceosome and were

selected using UniProt searching for the family names. IPAwas used to predict targets in each of the represented proteins. The total number of interactions includemiRNAswithmultiple targets

within the given groups.

TABLE 6 miEAA miRWalk pathways: Highlighted annotations for pancreatic cancer.

Annotation Enrichment p-value p-adj-value miRNAs

WP2256 Integrated pancreatic cancer pathway Enriched 3.83E−04 0.0152802 27

hsa05210 Colorectal cancer Enriched 9.25E−04 0.0152802 25

hsa05212 Pancreatic cancer Enriched 9.25E−04 0.0152802 25

hsa05213 Endometrial cancer Enriched 0.001282 0.0152802 24

hsa05218 Melanoma Enriched 0.001282 0.0152802 24

hsa05219 Bladder cancer Enriched 8.13E−04 0.0152802 21

WP1984 Integrated breast cancer pathway Enriched 0.0022795 0.019038 18

hsa05215 Prostate cancer Enriched 0.003366 0.0213811 26

hsa05220 Chronic myeloid leukemia Enriched 0.0033068 0.0213811 22

hsa05222 Small cell lung cancer Enriched 0.0033068 0.0213811 22

hsa05223 Non-small cell lung cancer Enriched 0.0033068 0.0213811 22

hsa05217 Basal cell carcinoma Enriched 0.0125401 0.0439439 8

hsa05221 Acute myeloid leukemia Enriched 0.0156614 0.0457874 17

The miEAA report generated ~180 pathways from the DEmiRs indexed by the Wald statistic. Only enriched pathways represented by > 2 miRNA interactions and a B-H adjusted p-value were

selected for analysis. The pathways shown were screened by involvement in cancer types. (The complete, unfiltered list of miEAA findings is available upon reasonable request).
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enriched small non-noncoding RNAs. The QIAseq miRNA library
(QIAGEN, Germantown, MD) was used to align small RNA
findings and was able to identify 1867 miRNAs within this
sample set. An miRNA expression profile between the two cell
lines was determined by DESeq2 (Love et al., 2014) with a p-value
cutoff of p ≤ 0.05 between the resistant and isogenic-sensitive cell
lines. A total of 97 (5.2%) miRNAs had significant differential
expression (q < 0.05) between the GR and parental MIA PaCa-2
cells. Of these miRNAs, 65 (3.5%) were upregulated, and 32 (1.7%)
miRNAs were downregulated (Table 1). Hierarchical clustering
based on differentially expressed RNA transcripts revealed a
distinct transcriptomic profile of these differentially expressed
miRNAs, which is shown as a hierarchical clustered heat map
in Figure 1.

Furthermore, stringency in this dataset was enhanced upon
increasing the log fold change (LFC) threshold. Figure 2A shows
a volcano plot of significant miRNAs. The top five upregulated
(miR-205-5p, miR-34a-3p, miR-3529-5p, miR-6744-5p, and miR-
10a-5p) and downregulated miRNAs (miR-4271, miR-7849-3p,
miR-6835-3p, miR-663a, and miR-6833-5p) with the greatest
differential LFC among significant miRNAs are annotated.
Figure 2B represents a hierarchical clustering heat map with
miRNAs that surpass expression LFC > 2.0 (|log2FC| ≥ 2.0) with
a q-value cutoff of ≤ 0.01 between the GS and GR cell lines. These
results indicated 21miRNAs with significant differences between the
GR and GS cells, of which 13 were upregulated, and eight were
downregulated (Table 2). While a less sensitive metric compared to
miRNA-seq, data were validated by RT-qPCR (Supplemental Figure
S1) to indicate expression differentials between GR and GS cells.

Ingenuity pathway analyses of differentially
expressed miRNAs

miRNA targets were predicted using IPA to find miRNA pathway
interactions and infer potential mechanistic impact from this dataset. A
core analysis of the DEmiRs (97 miRNAs differentially expressed with
p-value > 0.05) was conducted, and protein annotations were grouped
to create gene ontology reports. Annotated pathways were considered
significant by Benjamini–Hochberg adjusted p-value < 0.05 (−log (B-H
p-value) ≥ 1.3). Using protein target disease annotations from IPA, the
most significantly represented diseases associated with these miRNAs
were organismal injury and abnormalities, reproductive system disease,
neurological disease, psychological disorders, and cancer. Additionally,
we observed significant DEmiR enrichment in pathways involved in
PDAC progression, including those associated with inflammatory
disease and response, a number of anatomical system pathologies,
development, cellular function and control, and gene expression
(Figure 3A). Furthermore, we performed pathway analysis using
IPA’s cellular functions and pathway annotations. Here, we observed
a significant enrichment in the canonical pathways associated mainly
with cellular development, proliferation, gene expression, small
molecular biochemistry, and most notably, cell death/survival and
cellular response to therapeutics (Figure 3B).

Many interesting pathways where these miRNA target proteins
infer a potential mechanism of the underlying chemoresistance
differences observed between the GR and GS cells were
identified. Among IPA’s preconstructed pathways, the 14-3-3-
mediated pathway, cancer drug resistance pathway, AMPK
signaling pathway, adipogenesis pathway, 3-phosphoinositide

FIGURE 6
miEAA results filtered for cancer annotations. Pathways generated from the miEAA report were screened for involvement in any cancer type. All
cancers found are represented. Bars indicate the number of miRNAs shared across the connected dots, as seen below. The set size represents the total
number of miRNAs from our dataset that are involved in the noted pathway.
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biosynthesis pathway, aryl hydrocarbon receptor signaling pathway,
4-1BB signaling in T lymphocytes, and acute myeloid leukemia
signaling pathway were all found to be significantly different
between the two cell lines and potentially involved in Gem
resistance (Table 3).

Analyzing key pathways by miEAA

While IPA is an accurate and powerful bioinformatics software
for exploring miRNA targets, we sought to validate these findings
through the use of miRNA enrichment analysis and annotation
(miEAA). miEAA adds a more robust set of annotations to miRNAs
from their predicted and experimentally observed targets to find
pathways and diseases where these miRNAs may interact. Using the
latest version of miEAA, we loaded DEmiRs and conducted gene set
enrichment analysis (GSEA) indexing by the Wald statistic
generated in DESeq2 and considered annotations from the
RNADisease repository, miRWalk, and GO for pathway reports.
Pathways with FDR-adjusted p-values < 0.05 were considered
significant. From this annotation report, we highlighted the
pathways related to the 10 hallmarks of cancer (Hanahan and
Weinberg, 2011) (Table 4). In addition to filtering the dataset, we
compared miRNA lists found within these pathways using an upset
plot (Figure 4). The results indicate large overlaps between many key
pathways in pancreatic cancer.

The top 10 pathways generated from this report (Figure 4) were
investigated next: WP336 TGF beta signaling pathway 1,
hsa04110 cell cycle, hsa04010 MAPK signaling pathway,
P00057 Wnt signaling pathway, hsa01100 metabolic pathways,
hsa4520 adherens junction, WP710 DNA damage response only
ATM-dependent, hsa03040 spliceosome, WP254 apoptosis, and
WP45 G1 to S cell cycle control. Interestingly, these pathways
shared 11 DEmiRs: hsa-miR-34a-5p, hsa-miR-10a-5p, hsa-miR-
196a-5p, 23b-3p, hsa-miR-331-3p, hsa-miR-192-5p, hsa-miR-15a-
5p, hsa-miR-22-3p, hsa-miR-10b-5p, hsa-miR-20a-5p, and hsa-
miR-19b-3p. These miRNAs represent a total of between 37.9%
and 47.8% of pathway set sizes. Perhaps most interesting is the
representation of both antiapoptotic pathways and alternative
splicing, as these pathways shared 16 DEmiRs (69.6% of their set
sizes), which indicates a substantial overlap between apoptotic
signaling and spliceosome interactions within these DEmiRs. This
coincides with our previous reports on pancreatic cancer
chemoresistance through the alternative splicing of survivin
(Fuller et al., 2022).

Building protein sets by UniProt and
GeneHancer to predict DEmiR functionality

Datasets were constructed of key factors found within
alternative splicing and survivin promotion to specifically explore

FIGURE 7
Venn diagram of miRNA factors differentially expressed in patient data and resistant cells. Risk factor and PDAC annotated miRNAs were taken from
the RNADisease repository v4.0 and compared with DEmiRs between GR and GS cells to refine the 97 DEmiRs into a subset. The red highlighted region
represents the 15 miRNAs used in prediction analysis.
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the interactions with this miRNA profile and survivin alternative
splicing. The GeneHancer database provided through UniProt
indicates several significant promoter and enhancer regions for
survivin. These regions are embedded with transcription factor
binding sites. The factors with binding sites on significant
promoter and enhancer regions were put into a list for target
prediction in IPA. Additionally, UniProt was used to construct
datasets from four families of alternative splicing regulators:
hnRNPS, polypyrimidine tract binding proteins (PPTB family),
snRNPs, and serine-rich splicing factors (SR family). Using IPA
and the integrated Targetscan (v7) tool for target prediction, we
considered miRNA interactions in humans with high confidence or
experimentally observed predictions. Target prediction datasets
were constructed for each splicing family and all the
transcription factors with binding sites on survivin’s promoter
and enhancer regions.

To summarize these findings, we generated a circos plot
(Figure 5). Of the 97 DEmiRs, 82 (84%) were found to interact
with one or more of these families. There were a total of 395 miRNA
interactions with survivin promoter or enhancer binding factors,
14 miRNA interactions in the SR family, 106 miRNA interactions in

snRNPs, 15 miRNA interactions in the PPTB family, and 94 miRNA
interactions in hnRNPs (Table 5). This indicates that most DEmiRs
are anticipated to be involved in modulating the expression of
survivin and altering alternative splicing simultaneously.

Comparing miEAA results with other
cancer types

While PDAC expresses a robust chemoresistance potential, we
applied these findings tomany other cancer types throughmiEAA to
determine overlaps with other cancers and chemoresistance. We
generated a filtered list from the miEAA results that included all
represented annotations for specific cancers, which resulted in
13 significantly represented annotations (Table 6). We compared
these cancers with an upset plot (Figure 6). All cancer types shared
four DEmiRs, but after excluding basal cell carcinoma, there are a
total of 13 shared DEmiRs (between 48.2% and 76.5% of set sizes)
between the 12 other cancers. Interestingly, pancreatic cancer shared
23 DEmiRs (92% of the set size) with colorectal cancer, 24 DEmiRs
with glioma (96%), and 24 DEmiRs with prostate cancer (96% of the

TABLE 7 15 miRNAs found in DEmiRs, PDAC, and risk factors and their associations with survivin and alternative splicing.

miRNA LFC p-adjusted Associations

hsa-miR-192-5p 2.844 0.0102 Survivin TFs//hnRNPs//snRNPs

hsa-miR-15a-5p 2.597 0.0123 NA

hsa-miR-29b-3p 2.581 0.0157 Survivin TFs//snRNPs//SRs

hsa-miR-20a-5p 2.239 0.0397 Survivin TFs//hnRNPs//snRNPs

hsa-miR-532-5p 2.167 9.66E−05 Survivin TFs//SRs

hsa-miR-196a-5p 2.124 0.000596 Survivin TFs//hnRNPs//PPTBs

hsa-miR-424-3p 1.906 0.00173 Survivin TFs//hnRNPs//snRNPs

hsa-miR-27b-3p 1.816 0.0372 Survivin TFs//hnRNPs//snRNPs

hsa-miR-22-3p 1.753 0.0135 Survivin TFs//snRNPs

hsa-miR-501-3p 1.708 0.00218 Survivin TFs//hnRNPs

hsa-miR-4454 1.690 0.0432 NA

hsa-miR-328-3p 1.466 0.0225 Survivin TFs//hnRNPs//snRNPs

hsa-miR-769-5p 1.312 0.0202 Survivin TFs

hsa-miR-361-3p 1.054 0.0372 Survivin TFs//hnRNPs//snRNPs//SRs//PPTBs

hsa-miR-346 2.422 0.0372 Survivin TFs//hnRNPs//snRNPs//SRs//PPTBs

LFC and p-adjusted represent the differential expression between GR and GS cells. Spliceosome and survivin transcription factor groups were used to integrate these 15 key miRNAs to the

apoptosis inhibition and survivin alternative splicing previously seen in GR cells. SR, serine rich; TF, transcription factor; PPTB, polypyrimidine tract binding; hnRNP, heterogenous nuclear

ribonucleoprotein; snRNP, small nuclear ribonucleoprotein.

TABLE 8 Patient numbers and subgroups used for differential miRNA expression in pancreatic adenocarcinoma.

CPTAC3 (recurrent vs. nonrecurrent data) TCGA-PAAD (treatment vs. no treatment)

Nonrecurrent N = 43 No treatment N = 49

Recurrent N = 90 Treatment N = 130

Total patients N = 133 Total patients N = 179
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FIGURE 8
(A) Violin plots of the 15 key differentially expressedmiRNAs from the PAAD andCPTAC3 patient datasets. CPTAC3 represents the recurrent (red) and
nonrecurrent (green) groups, whereas the PAAD dataset represents the prior treatment (blue) and no prior treatment group (purple). Data are grouped
based on available metadata from the CPTAC3 and PAAD datasets. (B) A significant difference was measured between recurrent and nonrecurrent tumor
conditions for hsa-mir-501 and hsa-mir-361, *p-value <0.05.

FIGURE 9
Prediction analysis via the ROC curve on key miRNAs. The total GOI set of 15 miRNAs was used to generate a prediction report via logical regression
and ROC analysis. The red line represents the running threshold “tradeoff” of specificity and sensitivity. The gray line represents a no-benefit prediction
model to give context. The area under the curve (AUC) is the overall accuracy potential for these miRNAs to distinguish between (A) prior treatment and
no prior treatment from the PAAD patient group and (B) recurrent and nonrecurrent tumors from the CPTAC3 patient group.
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set size). This indicates that the chemoresistance profile generated in
PDAC cell lines has differential expression in key miRNAs that are
also shared in these cancer types.

Profile comparison with annotated miRNAs

To refine these findings into a list of the most actionable
miRNAs, we filtered the DEmiRs to look at miRNAs directly
associated with PDAC. The RNADisease repository V4.0 was
used to collate miRNAs that are annotated for involvement in
many diseases. To select for miRNAs previously reported in
PDAC, we accumulated terms for keywords: “pancreatic
adenocarcinoma,” “pancreatic cancer,” “pancreatic ductal
adenocarcinoma,” and “pancreatic carcinoma.” This generated a
list of 1,636 unique miRNAs annotated for involvement in PDAC
(yellow, Figure 7). When compared to the DEmiRs (blue, Figure 7)
from this study, 61/97 DEmiRs were shared between the two groups
(Figure 7). To further refine this dataset, we considered risk factors
(gray, Figure 7) associated with PDAC. This was done to further
focus on the most aggressive factors associated with PDAC, as these
risk factors have been associated with increased cancer
aggressiveness and chemoresistance (Incio et al., 2016; Chen
et al., 2022; Kesh et al., 2022; Vaziri-Gohar et al., 2023). To pair
this with the DEmiR set, we assembled an miRNA list from the
keywords: “nicotine consumption/nicotine addiction,” “diabetes,”
“obesity,” “pancreatitis,” “acute pancreatitis,” “chronic pancreatitis,”
and “metabolic syndrome,” The list provided 372 unique miRNAs
that shared 17 factors with the DEmiR set. In conjunction, the three
groups shared 15miRNA factors (genes of interest (GOIs)), outlined
in red (Figure 7).

After refining the DEmiRs to 15 key miRNAs, we compared
these results to our previous findings. Of the 15 GOIs, 13 had
interactions in survivin transcription factors and 12 had interactions
in alternative splicing groups (Table 7). Most notably, these miRNAs
are represented in the upset plots from Figures 4, 6. In the key
pathways associated with cancer (Figure 4), 11 miRNAs are shared
between these pathways. Four of these miRNAs are also found in the
GOI set (Figure 7). When looking at 16 miRNAs shared between
apoptosis and the spliceosome independently, 10 are found
within the GOIs.

Patient data analysis

To translate these data into a more translational study, we
pursued the ability of these GOIs to predict patient outcomes
based on data from The Cancer Genome Atlas (TCGA). The
PAAD and CPTAC3 datasets from the TCGA contained 183 and
179 PDAC patients, respectively, and were chosen for this study.
Available metadata in these sets were incomplete. As a result,
different strategies were required to link the data to our
chemoresistance cell line model. We were unable to extract
tumor recurrence data from the PAAD dataset; therefore, we
sorted the patients into two groups based on patients who had
received prior treatment versus patients who did not receive
treatment before tumor sampling. This strategy was used to
model the GOIs to distinguish between patients who had been

treated with therapy and those who had not yet been treated. We
sorted the patients in the CPTAC3 patient dataset into two groups,
recurrent and nonrecurrent, and used these patient groups as a
clinical analog to our chemoresistant/recurrent cell line model.
Despite the lack of complete metadata, we were able to identify
promising predictions based on the GOI set.

The expressions of each of these miRNAs in the GOI set between
the patient groups (Table 8) are summarized by a violin plot in
Figure 8A. Only a few of these miRNAs were significantly
differentially expressed between corresponding groups. There
were no significant differences between the mean expression of
prior treatment vs. no treatment from TCGA-PAAD. However, two
were significantly differentially expressed in recurrent vs.
nonrecurrent tumors, hsa-mir-501 and hsa-mir-361 (Figure 8B).
While the mean expression of each group lacked much significance,
individual patients expressed enough variance of one or more of
these factors to provide a suitable specificity and sensitivity for
prediction (Figure 9). When utilizing the total set of 15 GOIs in a
logical regression-modeled ROC analysis, we could distinguish with
a modest threshold the belonging to their respective groups. The
AUC was 0.65 and 0.75 in the TCGA-PAAD and CPTAC3 groups,
respectively (Figures 9A, B). The AUC represents the overall
accuracy of correctly sorting the groups based on these miRNAs.
This predictive model could sort patients into their correct
groupings with reasonable accuracy. We anticipate that
additional refinements of these selected miRNAs in other datasets
will continue to improve the ability to distinguish between tumors
that progress after chemotherapy.

Discussion

Pancreatic ductal adenocarcinoma (PDAC) is in urgent need of
improved treatment strategies. PDAC is particularly lethal because
most patients will experience recurrence within 2–5 years of their
initial diagnosis (Copur et al., 2020). Recurrence is attributed to the
ineffectiveness of both gemcitabine and FOLFIRINOX.
Chemoresistance to these drugs is not only common but rapidly
developed within a pancreatic tumor. In order to develop a more
efficacious and targeted therapy, we sought to identify key miRNA
factors and target proteins that are differentially expressed in
response to therapeutic induction.

In this study, we found novel mechanisms and insights on
chemoresistance development in two variably resistant cell lines.
MIA-PaCa-2 parental cells are sensitive to gemcitabine, as opposed
to the highly resistant MIA-PaCa-2 GR cells developed in this lab.
Previous research found that the MIA-PaCa-2 GR cells were
significantly resistant to the full therapeutic regimen of
FOLFIRINOX and gemcitabine (Fuller et al., 2022). To address
the survival and resistance we observed, we conducted miRNA-seq
and identified key expression changes that promote chemotherapy
resistance in the GR cells. miRNAs were selected because of their
ability to post-transcriptionally regulate gene expression by binding
to the 3’ UTR of a target mRNA, leading to mRNA degradation or
suppression of translation (Guo et al., 2020). In essence, miRNA
expression can be seen in the same light as gain of function
mutations (oncogene) or loss of function mutations (tumor
suppressor genes) and thus serve important roles in apoptosis,
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invasion and metastasis, proliferation, and resistance (Chen, 2005;
Yonemori et al., 2017; Guo et al., 2018).

This study focuses on the comprehensive bioinformatic analysis
of miRNA profiles connecting protein target prediction and
represented pathway predictions in pancreatic cancer to define
mechanisms that promote the transition from chemosensitive to
chemoresistant cells. Using NGS, we evaluated differentially
expressed miRNAs in the Gem-resistant MIA PaCa-2 cell line
compared to its Gem-sensitive parent cell line and discovered
97 significant (q-value < 0.05), differentially expressed miRNAs
out of a library of 1867 total sequenced miRNAs. This dataset was
subsequently used for gene ontology analysis and pathway
prediction.

Among differentially expressed miRNAs, the expressions of
miR-935, miR-4668-5p, and miR-4271 were downregulated, while
the expressions of miR-34a-5p, miR-3529-5p, and miR-205-5p were
upregulated in association with GR. A similar pattern of
downregulation of miR-935 was noted in non-small-cell lung
cancer (NSCLC), which resulted in increased sensitivity to
paclitaxel (Peng et al., 2018). MiR-205-5p has been linked to cell
proliferation and heightened drug responsiveness in basal cell
carcinoma (BCC), squamous cell carcinoma (SCC), and
melanoma. However, unlike in our investigation, where its
influence is anticipated to stem from interactions with the
multidrug resistance-associated protein family, miR-205-5p′s
suppressive impact in skin cancer is attributed to its targeting of
members within the tumor necrosis factor-α family (Ge et al., 2021).

In addition, miRNAs miR-663, miR-10a-5p, miR-34a-5p, and
miR-205-5p appear to be indirectly associated with regulating drug
efflux through the breast cancer resistance protein (BCRP/ABCG2),
ABCC10, and multidrug resistance-associated protein 2 (MDR2) as
a result of GR in the MIA PaCa-2 cell line. MiR-663, when
hypomethylated, has been shown to induce chemoresistance in
breast cancer cells by targeting heparin sulfate proteoglycan 2
(HSPG2). Its association with chemoresistance may occur
through its ability to modulate growth factor signaling pathways,
protect cancer cells from apoptosis, and alter the tumor
microenvironment to promote survival (Hu et al., 2013).
Furthermore, miR-663 has also been shown to be overexpressed
in Taxol-resistant ovarian cancer cells and has been characterized as
a significant prognosis marker in chemoresistance patients (Kim
et al., 2014). MiR-10a increases cisplatin resistance in lung
adenocarcinoma circulating tumor cells by targeting the PI3K/
Akt pathway (Huang et al., 2020) and also targets TFAP2C to
promote Gem resistance in PDAC (Xiong et al., 2018). In this
same study, TFAP2C expression decreased the migration and
invasion capability of PDAC cells. In this way, miR-10a acts as
an oncogene to promote metastatic behavior as well as Gem
resistance in PDAC cells. MiR-34a and miR-205-5p have both
attracted extensive interest due to their involvement in many
different cancer types. MiR-34a inhibited the migration, invasion,
and proliferation (Avtanski et al., 2016) and modulated drug
sensitivity (Kastl et al., 2012; Li et al., 2012) in breast cancer cells
by affecting antiapoptotic genes Bcl-2 and CCND1 (Avtanski et al.,
2016) and the Ras family proteins, NOTCH1 and PRKD1 (Li
et al., 2012).

By conducting gene ontology analysis using IPA and miEAA, we
discovered that these miRNAs were significantly represented in

major cancer pathways, as seen in Figures 3A, B, and 4. Several
cancer-promoting pathways are significantly represented in these
figures. Additionally, we observed potential crosstalk between other
cancer diseases, as shown in Figure 6. Interestingly, immunological
and inflammatory pathways were also significantly represented
(Figure 3A). PDAC initiation and inflammation are closely
related, as the risk factors for PDAC, such as smoking, diabetes,
obesity, high-fat diet, and alcoholism, promote inflammatory
signaling through the release of IL-6 and NF-κB. As we are
comparing resistance to sensitivity, the DEmiRs involved in
inflammatory pathways may also suggest that the maladies
promoting inflammation may potentiate the onset of
chemoresistance. This is also evidenced by the abundant overlap
in miRNAs associated with risk factors for PDAC
development (Figure 7).

It is important to note that throughout the gene ontology studies
conducted, there is no indication of whether these effects are positive
or negative to the overall pathway. Further studies are required to
define the exact effect that the DEmiRs play in these pathways.
However, these data highlight the intersection points of DEmiRs in
similar pathways, which gives insights to generate future studies.
Additionally, miRNA annotations from GO and miEAA give a
starting point for a refined list of predictive/prognostic
biomarkers (Figure 9). In all, the future directions for this study
are to refine this predictive dataset to improve its sensitivity and
specificity, gather a more robust patient sample, and translate this
miRNA dataset to target chemoresistance-promoting
pathways in PDAC.

We observed important molecular interactions, particularly with
alternative splicing and apoptosis induction. Previous studies with
these resistant cells indicated that survivin alternative splicing,
especially the overexpression of the survivin 2β isoform,
significantly increased chemoresistance to Gem and
FOLFIRINOX (Fuller et al., 2022). Because miRNAs play a role
in both promoting and participating in alternative splicing, they may
serve as a crucial regulatory mechanism to evade apoptosis. As seen
in the circos plot interactions (Figure 5; Table 5), 84.5% of all
DEmiRs (82/97) are predicted to be involved in survivin gene
transcription, alternative splicing machinery, or both. This much
overlap in the profile provides significant preliminary data to
explore the interactions with alternative splicing as a potential
therapeutic target to combat chemoresistance.

In addition, it is also evident that several of these miRNAs are
expressed among patients with chemoresistant tumors. In both the
PAAD and CPTAC3 datasets, we were able to distinguish between
the groups with reasonable accuracy through ROC analysis. The
AUC in Figure 9 represents the overall accuracy (sensitivity/
specificity tradeoff) in distinguishing and sorting patients into
their respective groups. These 15 miRNAs in the GOI set
between the PAAD and CPTAC3 patients indicate their likely
roles in aggressiveness or response to therapeutics. The lack of
consistent significance between expression averages in each group
suggests that each patient may only differentially express a handful
of these miRNAs in response to therapy or recurrence. Generalized
ROC interpretation estimates that models with an
AUC <0.7 indicate acceptable discrimination between groups
(Mandrekar, 2010). However, general thresholds are not often
correct measures for acceptable sensitivity and specificity
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tradeoffs. It is vital to address cost, risk, and benefit to determine the
acceptable thresholds of false positivity and false negativity. In this
experiment, we determined that this model is an acceptable baseline,
but the model requires refinement before it can be implemented
clinically. Furthermore, the lack of available data in the TCGA to
conduct an miRNA expression analysis on mature miRNA
sequences significantly impacts this study. We plan on further
improving this predictive model in a future study utilizing
PDAC patients.

In line with these observations, miRNAs from this dataset are
overrepresented within the data shown in Figure 5. Table 7
highlights the represented pathways between the GOIs,
spliceosome factors, and survivin transcription factors.
Interestingly, 13/15 GOIs are involved in one or more of these
pathways: 13 interact with survivin transcription factors alone and
12 interact with the splicing factors alone. Seven miRNAs are
common to all groups of the spliceosome, survivin transcription
factors, and GOIs. This evidence indicates consistency between the
miRNA groups and is most probably the major reason for the
predictive capacity seen in the patients. These findings reinforce the
extrapolation of these factors promoting chemoresistance and
provide a starting point for the continuation of this study to look
at these key miRNAs as prognostic biomarkers and potential
contributors to chemoresistance.

In order for this research to attain relevance and be applied to
PDAC generally, several limitations need to be addressed. While
there is great power in taking a sensitive cell line and cultivating
chemoresistance within it to determine epigenetic modifications
responsible, these miRNA modifications might not be well-
conserved between other PDAC cell lines or patients. Given the
limitation of utilizing TCGA data for PDAC, namely, the lack of
available metadata and incomplete, immature miRNA profiles, it is
difficult to draw further relevant findings from this dataset. It is,
therefore, vital that more miRNA-based PDAC studies are built
within additional cell lines and patients to better understand the role
these miRNAs have in conveying chemoresistance.

In conclusion, we have identified a series of differentially
expressed miRNAs induced by long-term Gem exposure leading
to acquired resistance. Further study of this miRNA signature will
need to be conducted in a patient cohort who has already become
resistant to Gem and/or FOLFIRINOX, as well as in a longitudinal
study of newly diagnosed PDAC patients following their disease
etiology. This will enable a biomarker comparison that directly
measures the miRNA changes that occur as patients develop
reduced sensitivity and eventual resistance and allows direct
comparison to those patients who have already become resistant
to Gem and/or FOLFIRINOX.

Scope statement

The manuscript explores the role of microRNAs (miRNAs) in
gemcitabine (Gem) resistance in pancreatic adenocarcinoma
(PDAC), a major clinical challenge. By analyzing miRNA
expression profiles in Gem-sensitive and Gem-resistant PDAC
cell lines, the study identifies 97 differentially expressed miRNAs
associated with chemoresistance. These miRNAs are implicated
in critical biological processes such as cell proliferation,

migration, chemo-sensitization, apoptosis, and angiogenesis.
Notably, the research extends beyond cell lines to analyze
patient samples, offering potential clinical or translational
relevance. The study’s approach aligns with the journal’s
specialty section on “Next-Generation Sequencing (NGS) and
Cancer: New Steps Towards Personalized Medicine” by
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to uncover regulatory miRNAs involved in chemoresistance
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