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Introduction: Xinjiang Brown cattle constitute the largest breed of cattle in
Xinjiang. Therefore, it is crucial to establish a genomic evaluation system,
especially for those with low levels of breed improvement.

Methods: This study aimed to establish a cross breed joint reference population
by analyzing the genetic structure of 485 Xinjiang Brown cattle and 2,633 Chinese
Holstein cattle (Illumina GeneSeek GGP bovine 150 K chip). The Bayes method
single-step genome-wide best linear unbiased prediction was used to conduct a
genomic evaluation of the joint reference population for themilk traits of Xinjiang
Brown cattle. The reference population of Chinese Holstein cattle was randomly
divided into groups to construct the joint reference population. By comparing the
prediction accuracy, estimation bias, and inflation coefficient of the validation
population, the optimal number of joint reference populations was determined.

Results and Discussion: The results indicated a distinct genetic structure difference
between the twobreeds of adult cows, and both breeds should be consideredwhen
constructing multi-breed joint reference and validation populations. The reliability
range of genome prediction of milk traits in the joint reference population was
0.142–0.465. Initially, it was determined that the inclusion of 600 and 900 Chinese
Holstein cattle in the joint reference population positively impacted the genomic
prediction of Xinjiang Brown cattle to certain extent. It was feasible to incorporate
the Chinese Holstein into Xinjiang Brown cattle population to form a joint reference
population for multi-breed genomic evaluation. However, for different Xinjiang
Brown cattle populations, a fixed number of Chinese Holstein cattle cannot be
directly added duringmulti-breed genomic selection. Pre-evaluation analysis based
on the genetic structure, kinship, and other factors of the current population is
required to ensure the authenticity and reliability of genomic predictions and
improve estimation accuracy.
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1 Introduction

Xinjiang Brown cattle is a major breed supporting the development of the cattle
industry in Xinjiang, it was the first breed of cattle used for milk andmeat purposes after the
founding of the People’s Republic of China. In 2023, the number of Xinjiang Brown cattle in
stock reached 1.16 million; however, the level of breed improvement was low, with a
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performance measurement population of <10,000. Therefore, it is
important to establish an efficient genomic evaluation system for
Xinjiang Brown cattle to improve their genetic level. The application
of genome selection technology has significantly enhanced the
efficiency of genomic evaluation (Hayes et al., 2016). Because of
the implementation of the genome selection for Chinese Holstein
cattle in 2008, early and accurate selection of calves and young cattle
has been achieved (George et al., 2017), leading to higher accuracy in
genomic evaluation and more precise assessment of individual
breeding value (Weigel et al., 2010; Dassonneville et al., 2011). In
addition, due to early selection and higher accuracy, the rate of
genetic progress has doubled (Weller et al., 2017), improving
breeding profitability and significantly reducing breeding costs.
Although genome selection has been successfully applied to
Chinese Holstein cattle population, the low level of production
performance measurement and small population size of Xinjiang
Brown cattle have hindered the application of genome selection
technology. To improve the reliability of genomic predictions,
especially for smaller populations, many feasible methods have
been proposed, including increasing marker density, constructing
linkage disquilibrium (LD) with more markers and causal
mutations, and simulation data analysis (de Roos et al., 2009).
Simulation and real data analyses (BrØndum et al., 2015) have
shown that genomic prediction can play an important role in
different populations.

For genome selection, it is necessary to have a reference
population with sufficient size and an appropriate genetic
structure that simultaneously incorporates genomic and
phenotypic information to accurately predict genome estimated
breeding values (GEBVs) (Metta et al., 2004; Boichard et al.,
2016). Genome selection has recently been widely used in dairy
cattle breeding programs. However, its application is limited to
populations with a small number of breeds. Establishing a
sufficiently large reference population is the most limiting
factor for the accurate estimation of SNP effects (Boichard
et al., 2016). When conducting genome selection for small
populations, the most direct approach to enhancing its
reliability is to expand the reference population. Many countries
have found effective solutions through international cooperation,
leading to joint genomic evaluations (Lund et al., 2011). By
connecting France, Germany, Austria, Italy, Slovenia,
Switzerland, and the United States of America to the
InterGenomics consortium operated by the Interbull Center
(Zumbach et al., 2010; Jorjani et al., 2012), genome-wide joint
evaluations have been conducted for Brown Swiss bulls and
Simmental cattle in Germany and Austria (Edel et al., 2011).
Research has shown that by combining different populations of
the same breed or related breeds in the reference population, more
effective information can be obtained for estimating marker
effects. Therefore, more accurate breeding predictions can be
obtained from genomic predictions. Accuracy is improved when
three related dairy cattle populations, Danish Red, Swedish Red,
and Finnish Ayrshire, are combined into a single reference
population (Zhou et al., 2014). When four European Holstein
populations were combined into a reference population, the
reliability increased by 10% (Lund et al., 2011). By combining
six Brown Swiss populations, the reliability increased from 6% to
45% (Jorjani et al., 2012). However, multi-breed genomic

evaluation of Xinjiang Brown cattle has not yet been conducted,
limiting the optimized utilization of genomic selection technology
in their genomic evaluation.

Based on the research foundation for domestic and international
multi-breed joint genomic evaluation (Pryce et al., 2011; Lund et al.,
2014; Steyn et al., 2019; Xu et al., 2019; Palombo et al., 2021), we
proposed to integrate Xinjiang Brown cattle and Chinese Holstein
cattle to construct a joint reference population for genome selection.
In order to expand the Xinjiang brown cattle genome selection
reference group, so as to apply multi-breed genome selection in
Xinjiang brown cattle population to improve the prediction
reliability. This study aimed to analyze the genetic structures of
Xinjiang Brown and Chinese Holstein cattle to establish a multi-
breed joint reference population. Using a dual-trait single-step
genome-wide best linear unbiased prediction (ssGBLUP)
approach, we established a genomic evaluation system for the
primary lactation traits of Xinjiang Brown cattle, leveraging the
joint reference population of Xinjiang Brown and Chinese Holstein
cattle. This improves the accuracy of genomic selection for Xinjiang
Brown cattle, creating a core breeding herd of genetically superior
dairy Xinjiang Brown cows. Consequently, the genetic improvement
of Xinjiang Brown cattle population will be expedited, leading to
enhanced genetic levels across the breed.

2 Materials and methods

2.1 Sample collection and DNA extraction

A total of 1,729 blood samples were collected from the tail vein
of Xinjiang Brown cattle and added to 10 mL EDTA anticoagulant
tubes. The samples were then aliquoted into 1.5 mL centrifuge tubes
and stored at −20°C. In addition, 66 frozen semen samples were
collected from Xinjiang Brown and Brown Swiss bulls used for the
artificial insemination of Xinjiang Brown cattle after 1983.

DNA was extracted from the above samples, and the
concentration and purity of the obtained genomic DNA were
measured using a NanoDrop 2000c spectrophotometer. The
OD260/OD280 ratio was 1.7–1.9, indicating good DNA quality.
After assessing DNA concentration, purity, and integrity, the
samples were stored at −20°C (Ma, 2015).

2.2 Sample screening and chip detection

Phenotypically complete Xinjiang Brown cattle were screened
from various Xinjiang Brown cattle farms for chip detection. After
screening, 403 cows and 82 bulls from four core farms in Xinjiang
region were selected. Moreover, we included 174 Xinjiang Brown
cows from Xinjiang Uygur Autonomous Region State-owned
Urumqi breeding farm, 50 Xinjiang Brown cows from Xinjiang
Tianshan Animal Husbandry Bioengineering Co., Ltd. breeding
farm, 130 Xinjiang Brown cows from the Tacheng Agriculture
and Animal Husbandry Technology Co., Ltd., 49 Xinjiang Brown
cows from Yili New Brown breeding farm, 71 bulls and 11 Brown
Swiss bulls from Xinjiang Tianshan Animal Husbandry
Bioengineering Co., Ltd. Bull breeding station. Chip data for
Chinese Holstein cows were obtained from 2,633 animals in
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Beijing, distributed across 18 farms in the region. All of these
animals were detected using the Illumina GeneSeek GGP
bovine 150 K chip.

2.3 Chip imputation and quality control

A total of 139,376 and 138,892 SNPmarkers were detected using
Xinjiang Brown and Chinese Holstein cattle chip assays,
respectively. These data were imputed using Beagle 4.1 software,
which infers haplotypes present in the population based on the
principle of linkage disequilibrium. To ensure the accuracy of
imputation, quality control measures were applied to the chip data.

The quality control criteria were as follows: individuals with a
genotyping call rate of <90% were excluded. Only SNPs on
chromosomes 1–30 were retained, with an individual genotype
missing rate of <10%. SNPs with a minor allele frequency
of >0.01 and a Hardy–Weinberg equilibrium p-value >1 × 10−6

were also included. After quality control using the PLINK software,
the SNP genotypes were converted to a 0, 1, and 2 format. Finally,
118,622 and 123,268 SNP markers on the autosomal chromosomes
of Xinjiang Brown and Chinese Holstein cattle were retained,
respectively. Because the number of SNP markers differed
between the two breeds after quality control, an intersection of
the SNPmarkers was taken, which resulted in 118,021 common SNP
markers for both breeds (Figure 1).

2.4 Genetic structure analysis

2.4.1 Linkage disequilibrium analysis
The.map and. ped files for both breeds were converted to. vcf

format using PLINK. The PopLDdecay software was then used to
analyze and plot LD decay graphs (https://github.com/BGI-
shenzhen/PopLDdecay) (Zhang et al., 2019). The LD metric, r2,
was calculated for the four populations (Hill, 1974). The mean r2

value was computed at various marker distances of 1 Kb to
demonstrate the degree of LD decay across different populations.

2.4.2 Population structure analysis
To infer ancestral populations based on the allele frequencies of

descendant individuals, an unsupervised algorithm was employed
(Consortium et al., 2009). In this study, genome-wide SNP data were
used to calculate the population structure for ancestral admixture
components with K values of 2–4 using admixture (Alexander et al.,
2009). Visualization of the population structure was performed
using the R package “pophelper”.

Analysis was conducted using the FastTree software (http://
www.microbesonline.org/fasttree/), with the maximum likelihood
method adopted for estimation. The Jukes–Cantor + CAT model
was used as the default model for nucleotide phylogeny. The
credibility of the phylogenetic tree branches was tested using
1,000 bootstrap replicates. Finally, the FigTree software was used
for visualization.

2.4.3 Principal component analysis
The Gmatrix package in R was used to calculate the genomic

kinship matrix (G-matrix) for Xinjiang Brown and Chinese Holstein
cattle. Subsequently, principal component analysis (PCA) was
performed using the G-matrix. The first three eigenvectors
(PCA1, PCA2, and PCA3) were extracted and used as the
horizontal and vertical coordinates for plotting. The contribution
rates of the principal components were calculated on the basis of the
percentage of eigenvalues. Finally, visualization was performed
using the R language.

2.5 Multi-breed genomic evaluation using a
joint reference population

2.5.1 Phenotypic data processing
The data for Xinjiang Brown cattle include production

performance measurement records from 1983 to 2018 and DHI
measurement records from 2010 to 2017. The data for Chinese
Holstein cattle include DHI measurement records from 2001 to
2019. Milk-related traits, including 305-day milk yield (305dMY),
milk fat yield (MFY), milk protein yield (MPY), and somatic cell
score (SCS), were obtained through collation (Table 1). There were
7,516 and 93,717 milk trait measurements recorded for Xinjiang
Brown and Chinese Holstein cattle, respectively.

The pedigree file used to analyze Xinjiang Brown cattle had
16,795 cattle, including 676 breeding bulls. Among these bulls, one
had a maximum of 619 offspring, whereas 221 had only one
offspring. Among the female adult cattle, 583 had only one
offspring, whereas 1,623 had two or more offspring, with a
maximum of 12 offspring per individual.

For the Chinese Holstein cattle, the pedigree file used for the
analysis contained 6,54,390 individuals, including 11,243 breeding
bulls. Among these bulls, one had a maximum of 7,884 offspring,
whereas 4,695 had only one offspring. Among the female adult cattle,
1,63,781 had only one offspring, whereas 1,11,912 had two or more
offspring, with a maximum of 12 offspring per individual (Table 2).

2.5.2 Genotype data
Genotype data for 403 female Xinjiang Brown cattle, 71 male

Xinjiang Brown cattle, and 11 male Brown Swiss cattle was
considered. In addition, 2,100 Chinese Holstein cattle were

FIGURE 1
Venn diagram of GeneSeek GGP Bovine 150 k after quality
control in Xinjiang Brown cattle and Chinese Holstein cattle.
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randomly selected (According to PCA and Admixture results,
PLINK software was used to remove the chip data of Chinese
Holstein cows that was inconsistent with the large population of
Chinese Holstein cows).

2.5.3 Statistical analysis
In this study, the ssGBLUP method was used to construct the

H-matrix based on the pedigree and genomic information from
Xinjiang Brown and Chinese Holstein cattle. The two-trait model
Bayesian approach was used to estimate the variance components
and breeding values for each trait.

To investigate the suitable integral ratio of theChineseHolstein cattle
in the joint reference population, a random gradient grouping approach
was applied. The population was gradually accumulated in increments of
300 individuals to construct the joint reference population. A control
group was established by excluding the phenotypic and genomic
information of the Chinese Holstein cattle (Table 3).

Because of the significant differences in milk production traits
between Xinjiang Brown and Chinese Holstein cattle (Zhang et al.,
2021), a dual-trait animal model was constructed. In this model, each
biological trait was treated individually in the two populations,
accounting for potential scale inconsistencies that may arise during
breeding value estimation due to standardization across different
breeds. The milk production traits (305dMY, MFY, MPY, and
SCS) of Xinjiang Brown and Chinese Holstein cattle were
considered to be two separate traits. A dual-trait linear model was
used to estimate the variance components for milk production traits
based on the genomic-pedigree combined relationship matrix,
H-matrix. The model is described as follows:

y1
y2

[ ] � X1 0
0 X2

[ ] β1
β2

[ ] + Z1 0
0 Z2

[ ] a1
a2

[ ] + e1
e2

[ ]
In the formula, y1 represents the observation value vector of a

certain milk trait for each of Xinjiang Brown cattle, and y2

TABLE 1 The standards for data filtering.

Breed Character name (unit)a Screening criteria

Xinjiang Brown Cattle milk 305MY(kg) 2,000–1,3000

MFP(%) 2–7

MPP(%) 2–7

SCC(1,000/mL) 0–25,000

Chinese Holstein Cattle milk 305MY(kg) 4,000–15,000

MFP(%) 2–7

MPP(%) 2–7

SCC(1,000/mL) 0–25,000

a305 dMY: 305 daily milk yield; MFP: milk fat percentage; MPP: milk protein percentage; SCC: somatic cell count.

TABLE 2 Data statistics.

Breed Number Phenotype animals Pedigree animals

Xinjiang Brown Cattle 7,516 2,207 16,795

Chinese Holstein Cattle 93,717 48,464 654,390

Total 1,01,233 50,671 6,71,185

TABLE 3 Gradient grouping of joint reference group.

Joint reference group Xinjiang Brown cattle Chinese holstein cattle

485 485 0

785 485 300

1,085 485 600

1,385 485 900

1,685 485 1,200

1985 485 1,500

2,285 485 1800

2,585 485 2,100
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represents Chinese Holstein cattle. β1 and β2 represent the fixed
effect vectors for the same milk trait of Xinjiang Brown and Chinese
Holstein cattle, respectively, including farm effect, calving year
effect, calving season effect, and parity effect. The farm effect was
divided into 20 levels based on the phenotypic data sources of the
farms where the cattle were raised. The calving years of Xinjiang
Brown cattle were divided into seven levels based on phenotypic
records: 1985–1995, 1996–2000, 2001–2005, 2006–2008,
2009–2011, 2012–2014, and 2015–2018. The calving years of the
Chinese Holstein cattle were divided into six levels: 2001–2005,
2006–2008, 2009–2011, 2012–2014, 2015–2018, and 2019. For the
parity effect, Xinjiang Brown and Chinese Holstein cattle were
classified into six levels: 1, 2, 3, 4, 5, and 6 (including those with
more than six calves). The calving season effect of Xinjiang Brown
cattle was divided based on the unique climatic conditions of
Xinjiang. According to the method of temperature intervals,
April and May were considered spring, June, July, and August
were considered summer, September was considered autumn,
and January, February, March, October, November, and
December were considered winter. Conversely, the calving season
effect of Chinese Holstein cattle was determined based on the
climatic characteristics of Beijing. Following the same method of
temperature intervals, March, April, and May were considered
spring, June, July, and August were considered summer,
September, October, and November were considered autumn,
and December, January, and February were considered winter. a1
and a2 represent the individual additive genetic effect vectors for a
certain milk trait of Xinjiang Brown and Chinese Holstein cattle,
respectively. e1 and e2 represent the random residual effect vectors
for the same milk trait of Xinjiang Brown and Chinese Holstein
cattle, respectively. Xi and Zi represent the incidence matrices for
the fixed effects and individual random additive genetic effects of the
i-th trait, respectively.

Assume
α1
α2

[ ] ~ N 0,H ⊗ σ2
α1

σα1α2

σα2α1 σ2
α2

[ ]( ),
e1
e2

[ ] ~ N 0, I ⊗
σ2
e1 0
0 σ2

e2
[ ]( ), In the aforementioned formula,

H represents the combined genomic-pedigree relationship matrix.
σ2
αi
denotes the additive genetic variance for the i-th breed, while

σα1α2 represents the covariance between breeds. σ2ei stands for the
residual variance of the i-th breed. Given that Xinjiang Brown and
Chinese Holstein cattle are reared in separate populations, there is
no residual covariance between the two groups.

The genetic variance–covariance structure of the ssGBLUP
additive genetic effect model is represented by a ~ N(0,Hσ2

a),
where σ2

a denotes the additive genetic variance. H, the
pedigree–genome relationship matrix, represents a combination
of the pedigree-based additive genetic relationship matrix (A
matrix) and the genome-based kinship matrix (G-matrix)
(Aguilar et al., 2010; Christensen and Lund, 2010).

The formula used to compute H is as follows:

H � A11 − A12A−1
22A21 + A12A−1

22GA21 A12A−1
22G

GA−1
22A21 G

[ ]
Subscripts 1 and 2 in A represent the non-genotyped and

genotyped animals in the population, respectively. G
represents the genetic relationship matrix. The calculation

formula is as follows: G � MM′
2∑m
k�1

pk(1−pk)
. M represents the

association matrix for SNP effects, where the elements
(0 − 2pj), (1 − 2pj), and (2 − 2pj) represent homozygous 11,

heterozygous 12 or 21, and homozygous 22 genotypes,
respectively. pj represents the minor allele frequency of the jth

SNP, and m represents the number of markers. pk denotes the
allele frequency of the Kth SNP. Therefore, the H−1 formula is

given by H−1 � A−1 + 0 0
0 G−1 + A−1

22
[ ]: where A−1 represents the

inverse matrix of all pedigree relationships, G−1 represents the
inverse matrix of genomic kinship relationships, and A−1

22

represents the inverse matrix of the pedigree relationships for
the sequenced individuals. The Bayes method was calculated
using the GIBBS1F90 module in the BLUPF90 software along
with the Bayes–Gibbs sampling method. In the Bayes method, the
total chain length of the samples was 100,000, the burn-in chain
length was 10,000, and the thinning interval was 50. The Geweke
diagnostic method in POSTGIBBSF90 was used to check the
convergence of the Gibbs chain (Zhang et al., 2022).

2.5.4 Calculation of heritability
The calculation formula of heritability is as follows:

h2 � σ2
a

σ2
a + σ2

e

The formula for the standard error of heritability is
shown below:

SE2 h2( ) � σ2
a

σ2
p

⎡⎣ ⎤⎦ Var σ2
a( )

σ2
a( )2 + Var σ2

p( )
σ2
p( )2 − Cov σ2

a, σ
2
p( )

σ2
aσ

2
p

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
where h2 is heritability, SE2(h2) is the standard error of heritability, σ2

a

is the additive genetic variance, σ2
e is the residual variance. σ2

p is the
overall phenotypic variance, σ2

p � σ2
a + σ2

e .

2.5.5 Verification of the reliability of genomic
breeding values

To verify the accuracy of the estimated genomic breeding values for
the joint reference populations, 50 offspring individuals born in the past
4 years from 485 genotyped Xinjiang Brown cattle served as a validation
group. Genomic predictions were performed in two groups: with and
without excluding the phenotypic data of the validation group. This
resulted in 16 sets of genetic parameters and genomic estimated breeding
values for each milk trait. By comparing the prediction accuracy,
estimation bias, and inflation coefficient of the validation group, the
optimal number of joint reference populations was determined.

To calculate the prediction accuracy of the genomic estimated
breeding values, the correlation coefficient between the genomic
breeding values calculated with the phenotypic data of the validation
group and those calculated without these data was used to measure
the accuracy of estimating genomic breeding values for different
joint reference populations. The formula is as follows:
RGEBV � Cor(TBV*,GEBV), where R2 represents reliability or
the square of accuracy.

Meanwhile, the regression of TBV* onGEBV is calculated using
the formula TBV* � b0 + b1GEBV, where the regression coefficient
b1 is the inflation coefficient, and the intercept b0 is the estimation
bias (Legarra and Reverter, 2019).
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b1 � cov GEBV , y( )
var y( ) � var GEBV( )

var y( ) < 1

b1 � Var GEBV( )
Var y( ) � Var GEBV( )Var a( )

Var a( )Var y( ) � r2GEBVr
2
y ≪ 1

In this context, b1 represents the regression coefficient, which
has the following implications: when b1 < 1, GEBV is inflated,
indicating that Var (GEBV) is too large. This means that in the
genomic breeding values, the good ones are even better, and the
bad ones are even worse. Conversely, when b1 > 1, GEBV is
deflated, suggesting that Var (GEBV) is too small. This
indicates that the genomic breeding values are smaller than
the true values and are contracted toward the middle.

3 Results

3.1 Genetic structure

3.1.1 Linkage disequilibrium analysis
Linkage disequilibrium analysis was conducted between the two

breeds by calculating the linkage disequilibrium coefficients for the
two loci and plotting the LD decay graph (Figure 2). The graph
shows that the average LD coefficients for Xinjiang Brown cows,
Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows
at a genomic distance of 50 kb were approximately 0.2, 0.25, 0.3, and
0.35, respectively, indicating a gradual increase. Noteworthy, the
decay rates of the LD coefficients vary among different populations.
Among the breeds, Brown Swiss bulls exhibited the slowest LD
decay at 0–40 kb, whereas the Chinese Holstein cows exhibited the
fastest LD decay. However, in the range of 40–300 kb, Xinjiang
Brown cows exhibited the fastest LD decay, with a decay rate order
of Xinjiang Brown cows > Chinese Holstein cows > Xinjiang Brown
bulls > Brown Swiss bulls.

3.1.2 Population structure analysis
To further investigate the genetic components of Xinjiang

Brown and Chinese Holstein cows, population structure and
phylogenetic tree analyses were conducted. As shown in Figure 3,
when the number of ancestral populations K = 2, there was a clear
distinction in the genetic structure among Xinjiang Brown cows,
Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein
cows. However, the genetic structure within each group differed
insignificantly. As shown in Figure 4, Xinjiang Brown cows, Xinjiang
Brown bulls, and Brown Swiss bulls were clustered, whereas the
Chinese Holstein cows were clustered separately. In addition,
Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss
bulls appear at the end of a certain branch within the Chinese
Holstein population.

3.1.3 Genetic relatedness between Xinjiang Brown
and Chinese Holstein cows

Using the SNP genotyping information from 403 Xinjiang
Brown cows, 71 Xinjiang Brown bulls, 11 Brown Swiss bulls, and

FIGURE 2
LD decay of Xinjiang Brown cattle and Chinese Holstein cow. BSB
is Brown Swiss Bull, CHC is Chinese Holstein cow, XBB is Xinjiang
Brown Bull, XBC is Xinjiang Brown Cow.

FIGURE 3
Analysis chart of population structure in Xinjiang Brown cattle and Chinese Holstein cow. BSB is Brown Swiss Bull, CHC is Chinese Holstein cow, XBB
is Xinjiang Brown Bull, XBC is Xinjiang Brown Cow.
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2,633 Chinese Holstein cows, a G-matrix was constructed.
Figure 5 was then generated on the basis of the actual genetic
relatedness among individuals in the G-matrix. Figure 5 shows
that the kinship coefficients among Xinjiang Brown cows,
Xinjiang Brown bulls, and Brown Swiss bulls populations were
approximately 0.5, which is significantly higher than those
among individuals within the Chinese Holstein cow
population. The kinship coefficients between Xinjiang Brown
cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese
Holstein cows populations tend toward 0.

3.1.4 PCA
PCA was performed using the genomic kinship relationship

matrix (G-matrix) among individuals from the two breeds
(Figures 2–7). The results revealed that the first principal
component (PC1, accounting for 4.75%) separated Xinjiang
Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and
Chinese Holstein cows into distinct groups. Specifically,
Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss
bulls were closely clustered. The second principal component
(PC2, accounting for 1.76%) could not distinguish between
Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss
bulls; however, it separated the Chinese Holstein cows into two
distinct groups. The third principal component (PC3,
accounting for 1.22%) further distinguished the Chinese
Holstein cows into two groups.

3.2 Multi-breed genomic evaluation using a
joint reference population

3.2.1 Descriptive statistics of the dairy traits of
Xinjiang brown and Chinese Holstein cattle

Table 4 lists the statistics, including sample size, minimum value,
maximum value, mean, standard deviation, and coefficient of variation
of the observed dairy traits of Xinjiang Brown and Chinese Holstein
cattle. 305dMY, MFY, MPY, and SCS between Xinjiang Brown and
Chinese Holstein cattle differed significantly.

3.2.2 Random grouping of the joint
reference group

The chip data of 2,633 Chinese Holstein cows were screened to
eliminate individuals with distant kinship within the Chinese
Holstein cattle population, leaving 2,271 genotyped Chinese
Holstein cows. Among these, 2,100 cows were randomly selected
as the total population of Chinese Holstein cows to be included in
the joint reference group. Random equal-sized groupings were then
performed on 2,100 genotyped Chinese Holstein cows, resulting in
subsets with different numbers of cows. As shown in Figure 7, the
distribution of the subsets in the total population was relatively
scattered for the Chinese Holstein cows added to the joint
reference group.

3.2.3 Estimation of genetic parameters of dairy
traits in the joint reference group

As shown in Table 5, before the inclusion of the Chinese
Holstein population, the heritability of 305dMY was
0.204 without excluding the phenotypic data of 50 genotype
Xinjiang Brown cows, which decreased to 0.203 after data
exclusion. When varying numbers of Chinese Holstein cows were
incorporated into the joint reference group, the heritability of

FIGURE 4
Phylogenetic tree of Xinjiang Brown cattle and Chinese Holstein
cow. BSB is Brown Swiss Bull, CHC is Chinese Holstein cow, XBB is
Xinjiang Brown Bull, XBC is Xinjiang Brown Cow.

FIGURE 5
Genomic relationship matrix of Xinjiang Brown cattle and
Chinese Holstein cow. BSB is Brown Swiss Bull, CHC is Chinese
Holstein cow, XBB is Xinjiang Brown Bull, XBC is Xinjiang Brown Cow.
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305dMY in Xinjiang Brown cows was 0.137–0.249 without
excluding the phenotypic data of the 50 genotype cows. However,
after excluding these data, the heritability of 305dMY in Xinjiang
Brown cows was adjusted to 0.169–0.254.

As shown in Table 6, without the inclusion of Chinese
Holstein cows, the heritability of MFY, was 0.07 when the
phenotypic data of 50 genotype Xinjiang Brown cows were
included, and it was 0.073 when the phenotypic data were
excluded. When different numbers of Chinese Holstein
cows were added to the reference population, the MFY,
heritability of Xinjiang Brown cows was 0.073–0.086 when
the phenotypic data of 50 genotype Xinjiang Brown cows
were included, and it was 0.057–0.085 when the phenotypic
data were excluded.

As shown in Table 7, without the inclusion of the Chinese
Holstein cows, the heritability of MPY, was 0.143 when the

phenotypic data of 50 genotyped Xinjiang Brown cows were
included, and it was 0.145 when the phenotypic data were
excluded. When different numbers of Chinese Holstein cows were
added to the reference population, the MPY, heritability of Xinjiang
Brown cows was 0.123–0.158 when the phenotypic data of the
50 genotyped Xinjiang Brown cows were included, and it was
0.0142–0.174 when the phenotypic data were excluded.

Table 8 shows that without the inclusion of the Chinese Holstein
cow population, the heritability of SCSwas 0.042 when the phenotypic
data of the 50 genotyped Xinjiang Brown cows were included and
0.043 when the phenotypic data were excluded. After adding different
numbers of the Chinese Holstein cows to the joint reference
population, the SCS heritability for Xinjiang Brown cows was
0.02–0.062 when the phenotypic data of the 50 genotyped Xinjiang
Brown cows were included.When the phenotypic data were excluded,
the SCS heritability for Xinjiang Brown cows was 0.015–0.081.

FIGURE 6
Principal Component Analysis of Xinjiang Brown Cattle and Chinese Holstein cow.
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FIGURE 7
Gradient grouping of PCA analysis in joint reference group.
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3.2.4 Verification of the genomic breeding value
reliability

As shown in Table 9, when different numbers of Chinese
Holstein cows were added to the joint reference population, the
reliability of the total population genomic breeding values for
305dMY of Xinjiang Brown cows was 0.142–0.340, with a
regression coefficient of 0.129–0.312. The reliability of the
genomic breeding values for the validation population
was −0.033–0.087, with a regression coefficient of −0.064–0.056.

As shown in Table 10, when different numbers of the Chinese
Holstein cows were added to the joint reference population, the
reliability of the total population genomic breeding values for MFY,
of Xinjiang Brown cows was 0.263–0.424, with a regression
coefficient of 0.296–0.437. The reliability of the genomic breeding
values for the validation population was −0.149–0.138, with a
regression coefficient of −0.192–0.137.

As shown in Table 11, when different numbers of Chinese
Holstein cows were added to the joint reference population,
the reliability of the total population genomic breeding
values for MPY, of Xinjiang Brown cows was 0.28–0.465,
with a regression coefficient of 0.277–0.504. The reliability
of the genomic breeding values for the validation
population was −0.259–0.203, with a regression coefficient
of −0.213–0.032.

As shown in Table 12, when different numbers of Chinese
Holstein cows were added to the joint reference population, the
reliability of the total population genomic breeding values for SCS,
of Xinjiang Brown cows was 0.190–0.448, with a regression coefficient
of 0.207–0.502. The reliability of the genomic breeding values for the
validation population was −0.145–0.062, with a regression coefficient
of −0.223–0.075.

4 Discussion

4.1 Genetic structure analysis

LD is a metric that quantifies whether genotype variations in two
SNP markers are relatively consistent and whether they are
correlated (Park, 2012). If two loci with adjacent alleles are
correlated, certain genotypes tend to be co-inherited, resulting in

a higher frequency of certain haplotypes than expected. This pattern
can be visually represented using an LD decay plot (Amaral et al.,
2008). Because of the correlated inheritance of the two loci, the decay
rate of the LD coefficient decreases with increasing generations and
recombination events. Genetic background also influences it.
Domestication selection reduces genetic diversity within a
population, reinforcing the correlation or linkage between SNP
loci (Farnir et al., 2000). Consequently, populations with higher
degrees of domestication exhibit stronger selection intensities
(Odani et al., 2006), resulting in slower LD decay rates. The
higher selection intensity in breeding bulls likely reduced the
effective population size, thereby affecting LD in these groups.
Meanwhile, the LD decay patterns in Xinjiang Brown and
Chinese Holstein cows exhibit potential similarities, favoring the
construction of a combined reference population. Overall, the LD
decayed fastest in Xinjiang Brown cows, indicating lower levels of
selection than the other three groups. This suggests a high level of
genetic diversity in Xinjiang Brown cows, which harbor rich genetic
resources with potential for development and use. These findings
provide a scientific basis for the conservation, exploitation, and use
of genetic diversity in Xinjiang Brown cattle.

Genetic structure analysis can elucidate phylogenetic
relationships and genetic distances among different
populations (Whelan and Goldman, 2001). Under the
influence of natural and artificial selection, populations
exhibiting pronounced genetic differences are evident. When
K = 2, there is a distinct genetic structure differentiation
among Xinjiang Brown cows, Xinjiang Brown bulls, Brown
Swiss bulls, and Chinese Holstein cows. This is related to the
breeding strategies employed during the intense selection process
of Xinjiang Brown and Chinese Holstein cattle, where most
female progenitors in the early stages of population breeding
originated from local Chinese yellow cattle (Liu, 2013).

The breeding of Xinjiang Brown and Chinese Holstein cattle
involves the introduction of foreign breeds for crossbreeding to
improve and enhance the local yellow cattle population in China.
Subsequently, through crossbreeding fixation and selective breeding,
these breeds have been further developed and stabilized. The genetic
background of Xinjiang Brown cattle is traceable to the original
crossbreeding improvement in 1951, when the maternal breed was
Kazakh cattle (Ma, 2015). Conversely, the genetic background of the

TABLE 4 Description of milk traits in Xinjiang Brown Cattle and Chinese Holstein Cattle.

Breed Traita Number Minimum Maximum Average SD CV(%)

Xinjiang Brown 305dMY/kg 7,515 814 8,444 4126.49 1405.71 34.07

MFY/kg 2,655 21.6 431.55 168.53 68.29 40.52

MPY/kg 2,655 20.3 302.72 143.71 51.42 35.78

SCS 2,655 −2.05 10.95 4.98 2.16 43.37

Chinese Holstein 305dMY/kg 89,350 4001 15,000 10116.68 2045.07 20.21

MFY/kg 89,350 86.30 1019.21 398.52 117.43 29.47

MPY/kg 89,350 87.72 951.76 329.92 74.40 22.55

SCS 89,350 −3.65 9.65 3.25 1.81 55.66

a305 dMY: 305 daily milk yield; MFY: milk fat yield; MPY: milk protein yield; SCS: somatic cell score. SD: Standard deviation.
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Chinese Holstein cattle dates back to 1840. From 1840 to 1948, the
Chinese Holstein cattle underwent more than a century of
introduction and early stages of crossbreeding improvement.
During this period, China initially introduced various dairy
breeds, including the Holstein cattle, Jersey cattle, Ayrshire cattle,
Brown Swiss cattle, and Shorthorn cattle (Liu, 2013). The distinct
genetic structure observed among Xinjiang Brown cows, Xinjiang
Brown bulls, Brown Swiss bulls, and Chinese Holstein cows

indicates a significant genetic distance between these two major
groups. This significantly affects the genetic structure of multi-breed
joint reference genomes established later, subsequently affecting the
accuracy of genomic predictions.

Figure 5 shows that the coefficient of kinship among individuals
within the populations of Xinjiang Brown cows, Xinjiang Brown
bulls, and Brown Swiss bulls was relatively high. However, the
coefficient of kinship between these groups and the Chinese

TABLE 5 Genetic parameter estimation of 305dMY in joint reference population based on ssGBLUP.

Joint reference
population

Xinjiang
Brown

Chinese
holstein

Breed All data All data-50

σa2(SE) σe2(SE) h2(SE) σa2(SE) σe2(SE) h2(SE)

485 485 0 Xinjiang
Brown

235,810 925,050 0.204 237,340 931,960 0.203

(23,428) (19,516) (0.018) (23,720) (19,687) (0.018)

785 485 300 Xinjiang
Brown

395,790 2,495,000 0.137 605,190 2,378,800 0.203

(256,700) (292,170) (0.081) (236,900) (272,020) (0.072)

785 485 300 Chinese
Holstein

245,370 923,400 0.21 245,710 930,680 0.209

(24,660) (19,243) (0.019) (24,693) (19,285) (0.019)

1,085 485 600 Xinjiang
Brown

768,210 2,324,100 0.249 785,140 2,313,700 0.254

(205,040) (181,580) (0.057) (192,460) (180,370) (0.054)

1,085 485 600 Chinese
Holstein

246,200 922,650 0.211 246,250 930,390 0.21

(24,449) (18,966) (0.019) (24,649) (19,962) (0.019)

1,385 485 900 Xinjiang
Brown

635,210 2,316,300 0.216 544,100 2,363,400 0.188

(125,820) (129,040) (0.038) (122,830) (136,000) (0.039)

1,385 485 900 Chinese
Holstein

243,990 923,970 0.209 249,440 929,320 0.212

(24,038) (19,290) (0.018) (24,562) (19,131) (0.018)

1,685 485 1,200 Xinjiang
Brown

591,430 2,562,300 0.188 523,940 2,586,200 0.169

(130,800) (123,390) (0.037) (75,741) (110,240) (0.023)

1,685 485 1,200 Chinese
Holstein

243,880 923,950 0.209 253,520 926,610 0.215

(24,708) (19,457) (0.019) (23,774) (19,612) (0.018)

1985 485 1,500 Xinjiang
Brown

610,630 2,556,100 0.193 582,790 2,571,100 0.185

(107,850) (101,890) (0.031) (119,430) (105,660) (0.035)

1985 485 1,500 Chinese
Holstein

242,740 923,660 0.209 246,930 929,650 0.21

(24,064) (19,028) (0.018) (24,018) (19,202) (0.018)

2,285 485 1800 Xinjiang
Brown

629,300 2,573,000 0.197 637,850 2,569,600 0.199

(97,901) (92,596) (0.028) (102,810) (94,655) (0.029)

2,285 485 1800 Chinese
Holstein

244,750 923,220 0.21 246,040 930,360 0.21

(23,787) (18,710) (0.018) (25,235) (19,941) (0.019)

2,585 485 2,100 Xinjiang
Brown

654,250 2,513,800 0.207 642,470 2,520,000 0.204

(91,086) (85,262) (0.026) (91,676) (83,306) (0.026)

2,585 485 2,100 Chinese
Holstein

242,120 924,250 0.208 247,120 929,710 0.21

(23,562) (19,207) (0.018) (25,612) (19,792) (0.019)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; “All data-50” refers to the calculation results after excluding the phenotypic

data of the 50 validation animals. σ2a = additive genetic variance; σ2E = residual variance; h2 = heritability; SE, standard error.
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Holstein cow population tended to be close to 0. This result suggests
that when conducting multi-breed genomic selection, it is not
advisable to use only one breed as the reference population and
the other as the selection population. Instead, it is necessary to fully
consider the relationship between the selection and reference
populations. When the kinship between the two breeds involved
in multi-breed genomic selection is weak or extremely weak, it is
necessary to include a certain number of individuals from the same

breed in the reference population to ensure high reliability in the
estimation of genomic breeding values.

The PCA results identified two major clusters: one containing
Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and
Chinese Holstein cows, whereas the other mainly contained Chinese
Holstein cows. This suggests a relatively distant genetic relationship
between these two clusters. Clustering of Xinjiang Brown cows,
Xinjiang Brown bulls, and Brown Swiss bulls is highly concentrated,

TABLE 6 Genetic parameter estimation of MFY in joint reference population based on ssGBLUP.

Joint reference
population

Xinjiang
Brown

Chinese
holstein

Breed All data All data-50

σa2(SE) σe2(SE) h2(SE) σa2(SE) σe2(SE) h2(SE)

485 485 0 Xinjiang
Brown

211.01 2843.6 0.07 225.03 2879.9 0.073

(64.235) (94.068) (0.021) (67.683) (97.71) (0.022)

785 485 300 Xinjiang
Brown

260.07 2820.2 0.085 261.65 2860.5 0.084

(70.93) (92.423) (0.023) (73.108) (97.286) (0.023)

785 485 300 Chinese
Holstein

667.02 10,151 0.062 1,091 9870.2 0.1

(628.76) (1056.8) (0.056) (663.79) (1014.2) (0.057)

1,085 485 600 Xinjiang
Brown

261.42 2821.7 0.085 260.63 2863.3 0.084

(72.708) (92.754) (0.023) (68.761) (96.963) (0.022)

1,085 485 600 Chinese
Holstein

1,248 9922.6 0.112 1594.4 9682.6 0.142

(522.17) (703.23) (0.045) (544.89) (678.09) (0.046)

1,385 485 900 Xinjiang
Brown

262.8 2819.4 0.086 251.19 2865.4 0.081

(66.884) (93.427) (0.021) (77.111) (97.509) (0.024)

1,385 485 900 Chinese
Holstein

1015.3 10,726 0.087 734.34 10,921 0.064

(414.44) (553.17) (0.034) (511.15) (601.11) (0.043)

1,685 485 1,200 Xinjiang
Brown

256.98 2821.5 0.084 263.17 2860.9 0.085

(67.492) (94.732) (0.022) (80.748) (97.523) (0.025)

1,685 485 1,200 Chinese
Holstein

715.82 10,683 0.063 838.62 10,581 0.074

(372.83) (497.08) (0.032) (339.32) (467.88) (0.029)

1985 485 1,500 Xinjiang
Brown

253.46 2820.4 0.083 249.42 2866.8 0.081

(58.914) (91.339) (0.019) (75.035) (96.106) (0.024)

1985 485 1,500 Chinese
Holstein

629.08 10,465 0.057 785.9 10,349 0.071

(317.84) (417.27) (0.028) (285.16) (399.72) (0.025)

2,285 485 1800 Xinjiang
Brown

266.36 2818.9 0.087 242.33 2871.7 0.078

(73.755) (97.11) (0.023) (61.402) (94.469) (0.02)

2,285 485 1800 Chinese
Holstein

717.61 10,529 0.064 754.32 10,503 0.068

(239.88) (360.06) (0.021) (266.09) (364.18) (0.024)

2,585 485 2,100 Xinjiang
Brown

223.39 2843.5 0.073 174.8 2,917 0.057

(67.122) (91.748) (0.022) (74.579) (101.76) (0.024)

2,585 485 2,100 Chinese
Holstein

1037.2 10,437 0.091 1139.2 10,376 0.099

(256.92) (336.28) (0.022) (249.42) (329.61) (0.021)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; “All data-50” refers to the calculation results after excluding the phenotypic

data of the 50 validation animals. σ2a = additive genetic variance; σ2E = residual variance; h2 = heritability; SE, standard error.
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indicating a close genetic distance among these groups. When
considering only the clustering of Chinese Holstein cows, a small
subset can be distinguished from the larger population, which
exhibits a distant genetic relationship with Xinjiang Brown cows,
Xinjiang Brown bulls, and Brown Swiss bulls and with most Chinese
Holstein cows. In the subsequent multi-breed genetic evaluations, it is
recommended to exclude chip and phenotypic data from this subset of
Chinese Holstein cows and their respective farms. This approach can
help reduce the interference of genetic structure differences while

estimating SNP effects. These findings suggest a low genetic linkage
between Xinjiang Brown and Chinese Holstein cattle.

4.2 Genetic parameter analysis of the joint
reference population

The number of genotyped Chinese Holstein cattle in the joint
reference population significantly affects the estimation of variance

TABLE 7 Genetic parameter estimation of MPY in joint reference population based on ssGBLUP.

Joint reference
population

Xinjiang
Brown

Chinese
holstein

Breed All data All data-50

σa2(SE) σe2(SE) h2(SE) σa2(SE) σe2(SE) h2(SE)

485 485 0 Xinjiang
Brown

238.44 1429.4 0.143 246.05 1455.9 0.145

(46.431) (48.997) (0.026) (47.902) (50.543) (0.027)

785 485 300 Xinjiang
Brown

253.09 1423.1 0.151 267.32 1446.7 0.156

(50.485) (49.704) (0.028) (48.616) (48.525) (0.027)

785 485 300 Chinese
Holstein

463.33 3956.7 0.105 451.38 3955.5 0.103

(477.27) (464.24) (0.1) (382.5) (461.92) (0.081)

1,085 485 600 Xinjiang
Brown

261.17 1419.4 0.156 264.41 1450.2 0.155

(48.804) (47.058) (0.027) (51.41) (49.689) (0.028)

1,085 485 600 Chinese
Holstein

786.7 3971.3 0.166 828.05 3935.7 0.174

(310.95) (308.68) (0.061) (280.6) (277.55) (0.053)

1,385 485 900 Xinjiang
Brown

264.73 1419.4 0.158 265.12 1450.5 0.155

(51.675) (48.283) (0.029) (47.87) (49.206) (0.026)

1,385 485 900 Chinese
Holstein

544.43 3886.4 0.123 593.77 3858.1 0.134

(188.04) (222.02) (0.041) (172.04) (204.45) (0.036)

1,685 485 1,200 Xinjiang
Brown

255.49 1423.7 0.153 265.08 1447.8 0.155

(49.583) (48.699) (0.028) (50.392) (52.497) (0.028)

1,685 485 1,200 Chinese
Holstein

576.71 3958.4 0.128 560.76 3962.6 0.124

(140.64) (175.24) (0.03) (149.43) (183.38) (0.032)

1985 485 1,500 Xinjiang
Brown

257.41 1422.2 0.154 250.87 1457.3 0.147

(48.761) (48.203) (0.027) (52.614) (52.575) (0.029)

1985 485 1,500 Chinese
Holstein

563.84 3980.9 0.125 576.8 3988.6 0.127

(136.03) (154.87) (0.029) (118.89) (155.55) (0.025)

2,285 485 1800 Xinjiang
Brown

249.04 1424.2 0.149 261.17 1451.4 0.153

(48.875) (48.052) (0.028) (48.144) (49.9) (0.026)

2,285 485 1800 Chinese
Holstein

653.65 3916.5 0.144 645.01 3918.3 0.142

(115.42) (138.07) (0.024) (128.01) (138.72) (0.027)

2,585 485 2,100 Xinjiang
Brown

246.36 1427.5 0.148 243.18 1458.6 0.143

(41.863) (47.265) (0.024) (52.403) (51) (0.029)

2,585 485 2,100 Chinese
Holstein

7,112.74 3795.6 0.158 717.43 3796.2 0.159

(118.26) (126.31) (0.025) (116.58) (119.39) (0.024)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; “All data-50” refers to the calculation results after excluding the phenotypic

data of the 50 validation animals. σ2a = additive genetic variance; σ2E = residual variance; h2 = heritability; SE, standard error.
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components. Therefore, it is necessary to consider the number of
genotyped animals from different populations in the joint reference
population during multi-breed genetic evaluations. The most
important factors that affect the reliability of genomic breeding
value estimation are the proportion of genetic variance explained by
SNPs and trait heritability (Steyn et al., 2019; van Grevenhof et al.,
2019). These genetic parameters are directly related to the size and
structure of the training population as well as the range, quality, and
quantity of phenotypic and genomic information available for

individuals in the training population. To ensure accurate
genomic breeding value estimation, it is important to minimize
the relationship between genotyped individuals within the training
population and maximize the relationship between the training and
prediction populations. Because ssGBLUP generates genomic
breeding values for cows, it is particularly useful for cows with
only parental average information. The single-step genomic
evaluation combines information from all countries, considering
potential duplicate counting of the same information, thereby

TABLE 8 Genetic parameter estimation of SCS in joint reference population based on ssGBLUP.

Joint reference
population

Xinjiang
Brown

Chinese
holstein

Breed All data All data-50

σa2(SE) σe2(SE) h2(SE) σa2(SE) σe2(SE) h2(SE)

485 485 0 Xinjiang
Brown

0.174 4.043 0.042 0.18 4.015 0.043

(0.073) (0.127) (0.017) (0.079) (0.131) (0.019)

785 485 300 Xinjiang
Brown

0.143 2.721 0.05 0.235 2.687 0.081

(0.073) (0.124) (0.045) (0.204) (0.271) (0.065)

785 485 300 Chinese
Holstein

0.216 4.026 0.051 0.184 4.029 0.044

(0.077) (0.124) (0.018) (0.089) (0.131) (0.021)

1,085 485 600 Xinjiang
Brown

0.159 2.718 0.056 0.106 2.76 0.037

(0.107) (0.18) (0.037) (0.113) (0.181) (0.039)

1,085 485 600 Chinese
Holstein

0.213 4.033 0.051 0.234 3.99 0.056

(0.802) (0.129) (0.019) (0.855) (0.127) (0.02)

1,385 485 900 Xinjiang
Brown

0.177 2.68 0.062 0.125 2.711 0.044

(0.088) (0.133) (0.03) (0.083) (0.138) (0.029)

1,385 485 900 Chinese
Holstein

0.199 4.039 0.047 0.232 3.992 0.055

(0.073) (0.123) (0.017) (0.081) (0.127) (0.019)

1,685 485 1,200 Xinjiang
Brown

0.139 2.891 0.046 0.134 2.896 0.045

(0.039) (0.112) (0.013) (0.055) (0.114) (0.018)

1,685 485 1,200 Chinese
Holstein

0.218 4.027 0.052 0.2 4.01 0.048

(0.058) (0.123) (0.014) (0.071) (0.127) (0.017)

1985 485 1,500 Xinjiang
Brown

0.09 2.899 0.03 0.918 2.896 0.031

(0.046) (0.101) (0.016) (0.463) (0.104) (0.016)

1985 485 1,500 Chinese
Holstein

0.226 4.021 0.054 0.229 3.988 0.055

(0.078) (0.124) (0.018) (0.077) (0.125) (0.018)

2,285 485 1800 Xinjiang
Brown

0.058 2.923 0.02 0.074 2.913 0.025

(0.043) (0.095) (0.015) (0.042) (0.091) (0.014)

2,285 485 1800 Chinese
Holstein

0.208 4.03 0.049 0.201 4.011 0.048

(0.069) (0.122) (0.016) (0.089) (0.13) (0.021)

2,585 485 2,100 Xinjiang
Brown

0.057 2.863 0.02 0.044 2.868 0.015

(0.044) (0.082) (0.015) (0.032) (0.084) (0.011)

2,585 485 2,100 Chinese
Holstein

0.218 4.024 0.052 0.197 4.014 0.047

(0.082) (0.129) (0.019) (0.099) (0.133) (0.023)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; “A ll data-50” refers to the calculation results after excluding the phenotypic

data of the 50 validation animals. σ2a = additive genetic variance; σ2E = residual variance; h2 = heritability; SE, standard error.
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ensuring more accurate estimation of genomic breeding values.
Adding carefully selected cows to the training population can
expand the population, improve its structure and relationship
with the prediction population, and reduce selection bias.
However, in this study, a large proportion of the chip data came

from cows, with relatively fewer bulls for validation, probably being
a reason for the poor prediction performance.

The ssGBLUP method can simultaneously analyze phenotypic,
genomic, and pedigree information from both genotype and non-
genotype animals by integrating external information. This method

TABLE 9 Genetic parameter estimation of 305dMY in joint reference population based on ssGBLUP.

Joint reference population Xinjiang Brown Chinese holstein Total population Validation population

R2
GEBV b0 b1 R2

GEBV b0 b1

485 485 0 0.172 −66.82 0.171 0.225 −101.864 0.42

785 485 300 0.272 −27.443 0.271 −0.041 −36.453 −0.034

1,085 485 600 0.196 −25.215 0.201 0.087 −38.312 0.056

1,385 485 900 0.142 −25.038 0.129 0.04 −38.802 0.027

1,685 485 1,200 0.340 −12.308 0.312 −0.061 −64.426 −0.037

1985 485 1,500 0.245 −12.074 0.242 −0.083 −72.544 −0.064

2,285 485 1800 0.302 −14.355 0.291 −0.033 −71.878 −0.024

2,585 485 2,100 0.205 −18.233 0.257 −0.147 −80.443 −0.13

TABLE 10 Genetic parameter estimation of MFY in joint reference population based on ssGBLUP.

Joint reference population Xinjiang Brown Chinese holstein Total population Validation population

R2
GEBV b0 b1 R2

GEBV b0 b1

485 485 0 0.300 −1.492 0.296 −0.141 −0.776 −0.083

785 485 300 0.414 −0.332 0.437 0.035 −2.114 0.038

1,085 485 600 0.404 −0.236 0.413 0.138 −2.734 0.137

1,385 485 900 0.374 −0.189 0.41 −0.065 −3.829 −0.061

1,685 485 1,200 0.379 −0.271 0.389 0.038 −3.699 0.033

1985 485 1,500 0.382 −0.227 0.374 −0.132 −4.211 −0.101

2,285 485 1800 0.263 −0.303 0.297 −0.149 −4.21 −0.192

2,585 485 2,100 0.424 −0.253 0.393 −0.03 −4.451 −0.032

TABLE 11 Genetic parameter estimation of MPY in joint reference population based on ssGBLUP.

Joint reference population Xinjiang Brown Chinese holstein Total population Validation population

R2
GEBV b0 b1 R2

GEBV b0 b1

485 485 0 0.280 −2.234 0.277 0.203 −1.654 0.136

785 485 300 0.465 −0.307 0.468 −0.066 −4.338 −0.048

1,085 485 600 0.444 −0.185 0.458 −0.158 −5.416 −0.116

1,385 485 900 0.421 −0.17 0.418 0.04 −5.773 0.032

1,685 485 1,200 0.386 −0.28 0.356 −0.091 −6.293 −0.079

1985 485 1,500 0.399 −0.243 0.401 −0.259 −6.967 −0.213

2,285 485 1800 0.397 −0.343 0.504 −0.165 −5.99 −0.162

2,585 485 2,100 0.371 −0.234 0.3 −0.222 −6.578 −0.176
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is particularly convenient when using foreign paternal genetic
material. For example, during the Interbull evaluation of Brown
Swiss bulls, a country can obtain genomic information from
multiple countries and MACE information. Combining external
MACE information with ssGBLUP can complement paternal
information from different countries and provide
pseudophenotypic information for foreign paternal lines with no
or few offsprings. This research result suggests that we can conduct
cross-country genetic evaluations with the Brown Swiss bull origin
introduced during the breeding of Xinjiang Brown cattle, which
could improve the reliability of genomic predictions for Xinjiang
Brown cattle.

4.3 Reliability of genetic evaluation in joint
reference populations

In theory, a model that assumes the closest distribution of SNP
effects to their true distribution can achieve the highest reliability in
genomic prediction. The GBLUP model assumes that all SNP effects
follow the same normal distribution and compresses the effects of all
SNPs to the same degree because different models have different
assumptions about the distribution of SNP effects (Villar-
hernÁndez et al., 2021). Several methods have been proposed to
improve the accuracy of genomic prediction in small populations of
dairy cattle (Marjanovic et al., 2021), and one effective approach is to
use joint reference populations by combining reference data from
different populations (Steyn et al., 2019; van Grevenhof et al., 2019).
This method has reported significant benefits in genomic prediction
for North American Holstein, European Holstein, Chinese Holstein,
and Brown Swiss populations (Vanderick et al., 2017; van den berg
et al., 2016). However, the accuracy of genomic prediction is
dependent on the relationship between candidate and reference
animals, requiring the reference population to be sufficiently close to
the target population (Xu et al., 2019). Therefore, for multi-breed
joint genetic evaluation between Xinjiang Brown and Chinese
Holstein cattle, considering only the added number of animals is
insufficient. Further in-depth analysis of important influencing
factors, including assumptions about SNP effects (van den berg
et al., 2019) and the weights of the A- and G-matrices in the

H-matrix (Karaman et al., 2018; Botelho et al., 2021), is required
to improve the accuracy and unbiasedness of predictions (Botelho
et al., 2021).

Including cows in the genotyping reference population is
necessary because of the limited number of cows with reliable
phenotypic information available for predicting offspring traits.
To improve the genomic breeding values of the population, it is
necessary to include a certain number of validated bulls with
reliable phenotypic information in the reference population
(Vanraden et al., 2020). Previous studies have reported that
the inclusion of cows in the validated bull reference
population can improve the accuracy of genomic prediction
(Ding et al., 2013). Although the phenotypic information for
cows is less accurate than that for bulls with offspring validation,
additional information can still be significant (Cole et al., 2021),
considering the large number of cows available as
reference animals.

5 Conclusion

The genetic structure of mature Xinjiang Brown and Chinese
Holstein cows is different, and the individual kinship between
these two populations is relatively distant. This increases the
impact of genetic structure and kinship on the reliability of
genomic breeding value estimation. Through comparisons of
parameters, including heritability, breeding value reliability, and
unbiasedness, it was initially determined that including 600 and
900 Chinese Holstein cows in the joint reference population
positively impacted the genomic prediction of Xinjiang Brown
cattle to some extent. In multi-breed genome selection, it is
necessary to pre-evaluate the genetic structure and genetic
relationship of the population. It is feasible to combine the
Chinese Holstein cattle population into the Xinjiang brown
cattle population to form a joint reference group for cross-
breed genetic assessment. It can provide theoretical guidance
for applied genomic genetic assessment and multi-breed
genomic genetic assessment of Xinjiang brown cattle, and also
provide reference for genome selection of other dual-use cattle and
small population breeds.

TABLE 12 Genetic parameter estimation of SCS in joint reference population based on ssGBLUP.

Joint reference population Xinjiang Brown Chinese holstein Total population Validation population

R2
GEBV b0 b1 R2

GEBV b0 b1

485 485 0 0.245 0.011 0.249 0.04 0.007 0.025

785 485 300 0.255 0.01 0.295 −0.145 −0.066 −0.223

1,085 485 600 0.234 0.008 0.232 0.002 −0.071 0.002

1,385 485 900 0.221 0.007 0.207 0.062 −0.084 0.075

1,685 485 1,200 0.448 0.002 0.502 −0.4 −0.084 −0.501

1985 485 1,500 0.248 0.006 0.255 −0.117 −0.089 −0.178

2,285 485 1800 0.254 0.002 0.29 0.005 −0.073 0.006

2,585 485 2,100 0.190 0.003 0.239 −0.093 −0.089 −0.138
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