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This study investigated how gene expression is affected by dietary fatty acids (FA)
by using pigs as a reliable model for studying human diseases that involve lipid
metabolism. This includes changes in FA composition in the liver, blood serum
parameters and overall metabolic pathways. RNA-Seq data from 32 pigs were
analyzed using Weighted Gene Co-expression Network Analysis (WGCNA). Our
aim was to identify changes in blood serum parameters and gene expression
between diets containing 3% soybean oil (SOY3.0) and a standard pig production
diet containing 1.5% soybean oil (SOY1.5). Significantly, both the SOY1.5 and
SOY3.0 groups showed significant modules, with a higher number of co-
expressed modules identified in the SOY3.0 group. Correlated modules and
specific features were identified, including enriched terms and pathways such
as the histone acetyltransferase complex, type I diabetes mellitus pathway,
cholesterol metabolism, and metabolic pathways in SOY1.5, and pathways
related to neurodegeneration and Alzheimer’s disease in SOY3.0. The variation
in co-expression observed for HDL in the groups analyzed suggests different
regulatory patterns in response to the higher concentration of soybean oil. Key
genes co-expressed with metabolic processes indicative of diseases such as
Alzheimer’s was also identified, as well as genes related to lipid transport and
energy metabolism, including CCL5, PNISR, DEGS1. These findings are important
for understanding the genetic and metabolic responses to dietary variation and
contribute to the development of more precise nutritional strategies.
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1 Introduction

Fatty acids (FA) have an important role in controlling gene
expression and regulating various signaling pathways by binding to
specific transcription factors (Larsen et al., 2018). The ability to
influence gene transcription impacts lipid metabolism, such as
polyunsaturated fatty acids (PUFA) modulating low-density
lipoprotein (LDL) and other genes related to lipid metabolism
(Denke, 2006; Larsen et al., 2018). According to Larsen et al.
(2018), a dietary FA alters plasma lipids, thereby affecting the
risk of cardiovascular disease (CVD). Therefore, maintaining
cholesterol balance is vital for a healthy life, including a healthy
liver, which plays an important role in lipid metabolism and balance
(Cohen, 2008).

The liver is responsible for eliminating excess cholesterol that is
carried on lipoprotein particles such as high-density lipoprotein
(HDL), intermediate-density lipoprotein (IDL), LDL, and remnants
of chylomicrons (Maxfield and Tabas, 2005). In addition, very low-
density lipoprotein (VLDL) is composed primarly of triglycerides
that are assembled in the liver and then released into the
bloodstream (Wondmkun, 2020; Zhou and Sun, 2021).
Moreover, in lipid metabolism, compounds such as albumin, a
predominant protein in mammalian blood plasma, function as
carriers of compounds, including FA, facilitating their transport
into cells (Vusse, 2009; Junk et al., 2010).

Pork consumption has economic importance and nutritional
value for cultural consumers, including the FA profile, which has
a direct impact on human health (OECD-FAO, 2021; Fanalli
et al., 2022a). The consumption of unsaturated fatty acids, such as
linoleic acid (LA, C18:2 cis 9, 12) and oleic acid (OA, C18:1 cis 9)
has been related with health benefits, such as reduction of total
and LDL cholesterol (Lunn and Theobald, 2006) and beneficial in
anti-inflammatory and vascular activities (Sakurai et al., 2021),
respectively. Furthermore, feeding pigs diets that are rich in
vegetable oils containing unsaturated FA can lead to the
production of healthier meat products, depending on changes
in the animal’s lipid profile (Alencar et al., 2021; Fanalli
et al., 2022c)

The chemical composition of blood serum in pigs reflects the
health, nutritional status, and breeding conditions to which they
have been exposed. Plasma protein levels have already been used
to study the genetic control of disease resilience in pigs (Chen
et al., 2023). As a result, the molecular contributions of variation
on blood calcium (Ca) and phosphorus (P) levels and identifying
putative genes and associated QTL regions (Reyer et al., 2019)
and serum parameters for predict total Ca, P intake and identify
biomarkers (Vötterl et al., 2021). However, studies on the
biochemical parameters in pigs remain limited. Pigs are widely
acknowledged as a reliable model for studying human diseases
that involve lipid metabolism, such as diabetes, metabolic
syndrome, obesity, and cardiovascular disease (Miller and
Ullrey, 1987; Zhang et al., 2020; Pan et al., 2021; da Silva
et al., 2023).

In this context, identifying gene networks associated with
biological pathways helps us understand the mechanism of gene
regulation in the liver of pigs fed diets with different levels of
soybean oil. The Weighted Correlation Network Analysis
(WGCNA) is widely used and has a crucial aspect of systems

biology approaches (Kogelman et al., 2014). In our previous
study, the FA profile influenced gene expression, resulting in the
identification of 281 differentially expressed genes (DEG) among
animals that consumed soybean oil at different levels (1.5% and 3%).
This changed the composition of FA deposited in the liver, blood
parameters, and metabolic pathways, as well as the network of
processes in the liver of the animals (Fanalli et al., 2022c). Therefore,
the aim of this study was to further investigate and analyze the
relationships between the expressed genes and blood serum
parameters. We investigated the systemic biological effects of
different levels of soybean oil (1.5% and 3%) added to the diet
using the WGCNA method.

2 Methods

Ethics statement

The experimental procedures involving animals are in
accordance with the requirements of the Animal Care and Use
Committee of Luiz de Queiroz College of Agriculture’s requirements
(University of São Paulo, Piracicaba, Brazil; protocol:
2018.5.1787.11.6 and CEUA number: 2018–28) and are
conducted in accordance with Guide for the Care and Use of
Agricultural Animals in Agricultural Research and Teaching
(Fass, 2010).

2.1 Animal, and experimental diets

In this study, we used 32 immunocastrated male Large White
breed pigs that were homozygous negative for the halothane gene
(NN). Animals used in the study were genotyped for the
malignant hypothermia mutation in the RYR1 gene (Fujii
et al., 1991). The feeding trial included the growth and
finishing phases (98 days); for more information on the
animals, diet and experimental design, can be found in from
Almeida et al. (2021); Fanalli et al. (2022b).

Throughout the experimental period, all pigs had ad libitum
access to food and water. The experimental diets comprised
formulations based on corn and soybean meal. The experimental
diets consisted of corn–soybean meal growing–finishing diets,
supplemented with either 1.5% soybean oil (SOY1.5) or 3%
soybean oil (SOY3.0) These formulations were adjusted based on
the growth and finishing phases, with the percentages representing
the proportion of soybean oil in relation to the total diet
formulation. The diets were formulated to meet or exceed
requirements (Rostagno, 2011). In the SOY1.5 group, 16 animals
received a diet containing 1.5% soybean oil, and in the
SOY3.0 group, 16 animals received a diet containing 1.5%
soybean oil (Supplementary Table S1).

2.2 Blood biochemical parameters

Phenotypic information included serum parameters obtained
from animal blood. Blood samples were collected from the jugular
vein 4 days before slaughter and immediately transferred to non-
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anticoagulant vacuum tubes (Becton Dickinson Vacutainer Systems,
Franklin Lakes, NJ, United States) as described previously (Fanalli
et al., 2022b). The parameters used for analysis were aspartate
aminotransferase (AST), albumin, glucose, total protein,
triglycerides, globulin, cholesterol, low-density lipoprotein (LDL),
high-density lipoprotein (HDL), and very low-density
lipoprotein (VLDL).

Analyzes included serum lipids and biochemistry were
analyzed by the Mindray, BS120 (Guangdong, China).
Quantification of total cholesterol and fractions was also
performed by the enzymatic-colorimetric method, but by
selective precipitation. This procedure was carried out using
commercial kits following the manufacturer’s instructions.
Blood serum glucose was quantified by the colorimetric
enzymatic method according to Trinder (Trinder, 1969), using
commercial kits according to the manufacturer’s recommended
use. The analysis for the determination of total proteins was
performed with commercial kits, following the protocol
suggested by the manufacturer, using the Biureto method with
some modifications (Fanalli et al., 2022b).

2.3 RNA-Seq and data analysis

Briefly, total RNA was extracted from the right hepatic lobe. All
samples were then sequenced using the TruSeq PE Cluster Kit v4-
cBot-HS kit (Illumina, San Diego, CA, United States). Clustering
and sequencing were performed on the HiSeq 2500 instrument
(Illumina, San Diego, CA, United States) using a TruSeq SBS Kit v4-
HS (200 cycles) according to the manufacturer’s instructions
(Fanalli et al., 2023).

The sample accession of the mRNA expression data of the
PRJEB50513 [http://www.ebi.ac.uk/ena/data/view/PRJEB50513].

The RNA-Seq data quality control was checked using the
FastQC, v.0.11.9 [https://www.bioinformatics.babraham.ac.uk/
projects/fastqc]. To remove adapters and bases with low PHRED
scores we use Trim Galore v. 0.6.5. The tagging of duplicate reads
was performed using the Picard Mark Duplicates v. 1.8.x [https://
broadinstitute.github.io/picard/]. The initial ten nucleotides of each
read were removed.

Quality control and reads statistics were estimated using the
RNA-Seq data analysis pipeline used by the EURO-FAANG
group within the scope of the H2020 projects, namely, the
BovReg project. The entire analysis of workflow was
performed by a Nextflow manager (DI Tommaso et al.,
2017). Briefly, after selecting high quality reads, they were
mapped to the reference genome Sus scrofa 11.1 [http://www.
ensembl.org/Sus_scrofa/Info/Index] using the Bowtie2 v.2.4.
3 and RNA-Seq by Expectation Maximization (RSEM) v. 1.3.
1 were used for the estimation of expression values (Li and
Dewey, 2011).

2.4 Network analysis with weighted
correlation network analysis (WGCNA)

The phenotypic data were centered and scaled (Li et al., 2018;
Diniz et al., 2019), then a linear model was fitted in R (R Core Team,

2023), prior to analyze co-expression. An adjustment was performed
using the equation: y* � μ + y −X̂β + ε , where y* represents the
adjusted/corrected phenotype, μ is the general mean vector for
phenotypes, y is the vector of phenotypes, X is the incidence
matrix for fixed effects, β̂ is the vector of fixed effects, and ε is
the residual vector. Fixed effects including block and sire were used,
therefore the block was defined by the weight at the time of exit from
the nursery phase and at the time of entry into the experiment in the
growth phase.

Parallel, gene co-expression networks were generated by using
the WGCNA package in R (Langfelder and Horvath, 2008), with
RNA-Seq data. The gene abundance was normalized by transcript
per million (TPM) counts, to perform comparison among the
samples using RSEM v.1.3.1 (Li and Dewey, 2011; Zhao et al., 2021).

The removed genes included unexpressed genes, defined as
those with zero counts across all samples, and infrequently
expressed genes, which were genes do not present in at least 50%
of the samples.

The similarity among the gene expression profiles of samples
in each of the diets was assessed by creating a similarity matrix
through the calculation of Pearson’s correlations. Subsequently,
the similarity matrix was converted into an adjacency matrix (A)
using a β exponent, adhering to the free-scale topology (R2 >
0.80) (Diniz et al., 2019; Silva-Vignato et al., 2019). We chose to
use signed networks because they are better suited for capturing
gene expression trends, including up and downregulation, and
for classifying co-expressed gene modules (Langfelder and
Horvath, 2008). To define the topological overlap matrix
(TOM) modules based on dissimilarity (1-TOM) were used
(Langfelder and Horvath, 2008). Modules were merged based
on the dissimilarity between the eigengenes. We computed both
the correlation matrix and the adjacency matrix, subsequently
merging them into the topology matrix. Subsequently, we
identified gene modules characterized by dissimilarities less
than 0.25, equivalent to a correlation of 0.75, with a
minimum module size set at 30 genes. Genes without
clusters were grouped in the Grey module (Silva-Vignato
et al., 2019).

Module-trait associations were assessed through the
correlation between the module eigengene (ME) for each blood
serum parameter, enabling the identification of modules correlated
with specific traits. Gene significance (GS), which refers to the
correlation between a gene and a trait, and module membership
(MM), which refers to the correlation between an individual gene
and the module eigengene, were calculated to validate the module-
trait correlation (Zhang and Horvath, 2005; Zhang et al., 2022). For
functional enrichment analysis, module genes were selected that
showed significant associations (p-value <0.05) with at least
one trait.

2.5 Functional enrichment analysis of co-
expressed modules

Functional enrichment analysis was performed using the
DAVID database (Sherman et al., 2022) (v. 2021). All nodes were
considered after applying the weight threshold, with ME being
significantly correlated with fatty acids using a significance
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criterion of p-value <0.05. The cut-off criterion for Gene Ontology
(GO) terms (Ashburner et al., 2000) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways (Kanehisa and Goto, 2000;

Kanehisa, 2019) was set at p-value <0.05. We selected the terms GO
and KEGG pathway based on their relationship to metabolism,
immunity, disease and FA.

FIGURE 1
Module-trace associations between eigengene modules (ME) and the biochemical parameters studied. Panel (A) corresponds to SOY1.5 dietary
treatment associations, while panel (B) corresponds to SOY3.0. Each row corresponds to an eigengene module, and each column to a biochemical
parameter. Each cell contains the Pearson coefficient (number outside the parentheses) and the correction p-value (number in parentheses). The graphs
are color-correlation coded according to the legend, where red represents a positive correlation and blue represents a negative correlation. AST:
Aspartate aminotransferase; PROT: Total protein; ALB: Albumin, and TRIGL: Triglycerides.
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2.6 Mining and detection of hub genes of
co-expression modules

The weight threshold filter was used to retain higher weight
connections. The weight assigned to each interaction reflects the
degree of biological similarity between two proteins, ranging from
0 to 1. To maintain robustness, proteins with very low functional
similarity were excluded from the analysis (Karaca, et al., 2024)

In all constructed networks, our goal was to use the most
accurate edge quantification possible, while maintaining a
threshold that minimizes disruption to the network, following
Zhang’s recommendations (Zhang and Horvath, 2005).

Additionally, the stringApp plugin with STRINGFy
function—STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) app was used.

We identified the hub gene using on the following criteria: 1)
MM vs. GS with a correlation greater than 0.20 and a p-value
of <0.05; 2) we visualized the most significantly correlated genes
with a WGCNA edge weight using Cytoscape (Shannon et al.,
2003), utilizing the edges provided by the WGCNA
“exportNetworkToCytoscape” function; 3) we applied the
MCODE clustering algorithm (Wang et al., 2015) to identify
densely connected subnetworks or modules. Default parameter
settings, including “DegreeThreshold,” “NodeScoreThreshold,”
“K-CoreThreshold” and “MaxDepth,” were used to extract a
highly connected core subnetwork; 4) we obtained annotation
information using the STRINGFy network function of the
STRING app; 5) as a final step to identify the hub gene,
we used the Maximal Clique Centrality (MCC) algorithm
available in CytoHubba. This algorithm is a measure of the
importance of nodes within a biological network (Chin
et al., 2014).

3 Results

3.1 Construction and analysis of
co-expression modules

We used RNA-Seq data obtained from liver samples from
pigs fed diets containing two different levels of soybean oil.
These data were used to construct a gene expression matrix
consisting of 15,912 genes from 17 samples for the
SOY1.5 group. During hierarchical clustering of the
SOY1.5 samples, sample L7 was identified as an outlier and
subsequently removed from the analysis, leaving a total of
16 samples. For the SOY3.0 group, we used 16 samples, as
determined by statistical analysis in previous work, and
generated a gene expression matrix comprising 16,098 genes
(Fanalli et al., 2022b). Signed gene co-expression networks
(i.e., modules) were identified with the WGCNA package in
R. Supplementary Table S2 shows animal identification, and
phenotypic values (blood serum parameters). The same
sequential input relationship was followed for blood serum
parameters. Following the scale-free network criteria, we
select an appropriate weighting parameter for the adjacency
function (Zhao et al., 2022).

The Pearson’s correlation coefficient between the ME and their
respective variables illustrates the correlation between the module
and the phenotypic information (Figure 1).

As shown in Figure 1, we identified 5 ME for SOY1.5 and 10 ME
for SOY3.0 (p-value <0.05) in the gene co-expression network
analysis performed. All nodes identified in each color are in
Table 1. This suggests that the addition of 3% soybean oil to the
diet may cause changes due to the difference in oils.

In the SOY1.5 group, a significant association was observed
between modules and traits such as albumin, cholesterol, globulin,
and HDL (p-value <0.05). Specifically, albumin showed a positive
correlation with both the Green module (r = 0.5) and the Grey60
module (r = 0.53), while cholesterol was positively correlated with
the Saddlebrownmodule (r = 0.59). Furthermore, HDL also showed
a positive correlation with the Darkturquoise module (r = 0.5).
Additionally, globulins showed a negative correlation with the
Greenyellow module (r = −0.54). In SOY3.0, significant module-
trait associations were found for glucose, AST, total proteins,
albumin, and HDL across 10 modules (p-value <0.05). Glucose
showed a negative correlation with the Plum2 (r = −0.59) and
Navajowhite2 (r = −0.53) and a positive correlation with
Turquoise (r = 0.63). AST was negative correlation with the
Darkolivegreen (r = −0.55) and Lightgreen (r = −0.62). The
Darkorange2 was found to be associated with total proteins
(r = −0.65). Albumin was positively correlated with the Darkred
(r = 0.59) and Plum2 (r = 0.7) modules, and negative correlated with

TABLE 1 Module Eigengene (ME) and nodes in groups SOY1.5 and SOY3.0.

ME SOY3.0 group Nodes ME SOY1.5 group Nodes

Lightcyan1 101 Darkorange 170

Darkorange2 92 Darkred 211

Orangered4 114 Paleturquoise 85

Lightsteelblue1 101 Steelblue 121

Darkred 288 Lightcyan 273

Darkolivegreen 135 Greenyellow 464

Lightgreen 357 Magenta 511

Plum2 71 Black 618

Greenyellow 442 Darkturquoise 200

Lightcyan 408 Green 696

Turquoise 1227 Midnightblue 277

Lightyellow 343 Brown 1396

Darkturquoise 255 Salmon 393

Navajowhite2 56 Darkgrey 177

Bisque4 75 Grey60 251

Darkgreen 270 Lightyellow 246

Grey60 406 Saddlebrown 139

Darkmagenta 132

Plum1 118
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theDarkorange2 (r = −0.52). HDL was negatively correlated with the
Bisque4 module (r = −0.57).

As mentioned above, the identified correlations can be used to
support in-depth studies on the effects of oil levels in pig diets and how
they obtained gene interactions may play different roles in regulation.

3.2 Functional enrichment analysis of genes
in relevant modules

We used Cytoscape to visualize networks with high weight
nodes and edges. We have organized the results into separate
topics for each phenotype, to provide a comprehensive
understanding of the underlying gene interactions and
regulatory mechanisms in response to soybean oil inclusion in
the diet (SOY1.5 or SOY3.0).

3.3 Analysis of albumin-associated modules
and their differential enrichment across diets

For albumin phenotype, two modules were identified for
SOY1.5 and three for SOY3.0. Among these, the Grey60 module
in SOY1.5 was selected, containing nodes and edges with a
weight >0.19. The Grey60 module was found to be associated
with the albumin phenotype and comprised 755 nodes and
280,021 edges. After applying filtering, the resulting network was
112 nodes and 357 edges (Supplementary Table S3A) incorporating
genes such as 3-hydroxyacyl-CoA dehydratase 1 (HACD1), glycogen
phosphorylase, muscle-associated (PYGM), histone deacetylase 6
(HDAC6), formin-binding protein 4 (FNBP4), and protein
phosphatase 1 regulatory subunit 12B (PPP1R12B), among others.

The enriched GO terms included histone acetyltransferase
complex (GO:0000123) with genes such as acrosin binding

FIGURE 2
Network view highlighting interactions of the hub gene PNISR. Interaction networks within the liver tissue from pigs fed a diet with 1.5% soybean oil
inclusion (SOY1.5) were constructed using Cytoscape, followed by the stringApp plugin. The network associatedwith theGrey60module is co-expressed
with the albumin phenotype. Colored nodes represent genes/proteins included in the query.
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protein (ACRBP) and OGT gene. Another enriched term was
regulation of transcription (GO:0006357; GO:0006355) with
genes like bromodomain-containing 2 (BRD2), zinc finger
protein 630 (ZNF630), cyclin D binding myb-like transcription
factor 1 (DMTF1), and notch receptor 3 (NOTCH3).
Additionally, the DNA binding term (GO:0003677) was enriched
and included genes such as methyl-CpG binding domain protein 6
(MBD6), nucleic acid binding protein 1 (NABP1), among others.

The hub gene identified was PNN Interacting Serine and
Arginine Rich Protein (PNISR) for the Grey60 module (Figure 2).
PNISR is a serine-arginine-rich protein that plays a role in the pre-
mRNA splicing machinery (Zappaterra et al., 2020).

Regarding the SOY1.5 group, the Green module, similar to the
Grey60 module, showed a moderate correlation with the albumin
phenotype. This module consists of 867 nodes and 373,625 edges. To

ensure the relevance of our findings, we applied a filtering criterion
with a weight threshold >0.18, resulting in a refined network
comprising 95 nodes and 252 edges (Supplementary Table S3B).
Genes included in this network are interleukin 16 (IL16), interleukin
10 receptor subunit alpha (IL10RA), C-X-C motif chemokine ligand
13 (CXCL13), FXYD domain containing ion transport regulator
2 (FXYD2).

The network showed enrichments related to GO terms,
including immune response (GO:0006955) with genes such as
C-C motif chemokine ligand 5 (CCL5), lymphocyte antigen 86
(LY86), and transport vesicle membrane (CD74), among others.
Another significant GO term was positive regulation of
ERK1 and ERK2 cascade (GO:0070374) with genes like
CD4 molecule (CD4), caveolae associated (CAVIN3), arrestin
beta 1 (ARRB1), arrestin beta 2 (ARRB2), and CD74.

FIGURE 3
Network view highlighting interactions of the hub gene CCL5. Interaction networks within the liver tissue from pigs fed a diet with 1.5% soybean oil
inclusion (SOY1.5) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with theGreenmodule is co-expressed
with the albumin phenotype. Colored nodes represent genes/proteins included in the query.
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Additionally, negative regulation of NF-kappaB transcription factor
activity (GO:0032088) was associated with genes such as ARRB1,
ARRB2, and coronin 1A (CORO1A), along with other
relevant terms.

Moreover, we observed significant enrichments in KEGG
pathways, including hematopoietic cell lineage (ssc04640) with
genes such as CD3 epsilon subunit of T-cell receptor complex
(CD3E), CD4, MHC class II DR-alpha (HLA-DRA), and SLA-
DQ beta1 domain (SLA-DQB1). The Th1 and Th2 cell
differentiation pathway (ssc04658) exhibited the same genes.
Additionally, the type I diabetes mellitus pathway (ssc04940)
showed associations with genes such as HLA-DRA, SLA-DQA,
SLA-DQB1, and MHC class II, DM beta (SLA-DMB), along with
other pathways. In this context, the module displays genes with
important relationships to immune response, cell signaling
and disease.

The hub gene identified in the Green module is CCL5, which is
associated with immunoregulatory and inflammatory processes
(Figure 3) (O’Leary et al., 2016).

For the SOY3.0 group, the Darkorange2, Darkred, and Plum2
modules were identified as associated with albumin.

The Darkredmodule consists of 288 nodes and 35,408 edges. To
ensure the relevance of our findings, we applied a filtering criterion
with a weight threshold >0.14, resulting in a refined network
comprising 142 nodes and 2047 edges (Supplementary Table
S4A). The enrichment pathways of the Darkred module, such as
the (ssc05022) pathways of neurodegeneration—multiple diseases,
with genes such as calcium voltage-gated channel subunit alpha1 F
(CACNA1F), NADH dehydrogenase subunit 1 (ND1), ATP synthase
F0 subunit 8 (ATP8), dynein axonemal heavy chain 12 (DNAH12),
RAB39B, member of the RAS oncogene family (RAB39B) and
FRAT1 (FRAT regulator of WNT signaling pathway 1).
Additionally, Alzheimer’s disease pathway (ssc05010) was also

identified (Table 2). The hub gene identified in this module is
ENSSCG00000047967 (Figure 4).

Darkorange2 module was identified in total protein and
albumin. It showed a negative correlation in both phenotypes.
For the Darkorange2, the hub gene identified was
ENSSSCG00000041994 (Figure 5). The enriched pathways are
related to fatty acid catabolic process (GO:0009062);
gluconeogenesis (GO:0006094); response to insulin (GO:
0032868); among others (Table 3). This module consists of
92 nodes and 3015 edges. To ensure the relevance of our
findings, we applied a filtering criterion with a weight
threshold >0.03, resulting in a refined network comprising
91 nodes and 2312 edges (Supplementary Table S4B).

For the Plum2 module (Supplementary Table S4C), pathways
were enriched, such as insulin-like growth factor receptor signaling
pathway (GO:0048009), valine, leucine and isoleucine degradation
(ssc00280), metabolic pathways (ssc01100), fatty acids degradation
(ssc00071), acyl-CoA metabolic process (GO:0006637), and
ssc04976 (bile secretion) (Supplementary Table S5). The hub
gene identified is SH3 Domain Containing 19 (SH3D19) (Figure 6).

This module is related to glucose and albumin. It has a strong
positive correlation with albumin and a negative correlation
with glucose.

3.4 Hub genes and pathways related to AST

For AST, we identified the Darkolivegreen and Lightgreen
modules in SOY3.0. After filtering for values >0.05, the network
for Darkolivegreen module consisted of 6595 nodes and 2698 edges
(Supplementary Table S6A). In the Lightgreen module, after
applying a filter >0.10, the network retained 237 nodes and
2158 edges (Supplementary Table S6B). In the Lightgreen

TABLE 2 Pathways enriched in the Darkred module for SOY3.0.

Top 10 pathways enriched in the Darkred
module for SOY3.0

p-value Genes

ssc05022:Pathways of neurodegeneration - multiple diseases 0.0028 ENSSSCG00000018065, ENSSSCG00000024233,
ENSSSCG00000012298, ENSSSCG00000020990,
ENSSSCG00000032821, ENSSSCG00000018080

GO:0007368~determination of left/right symmetry 0.0068 ENSSSCG00000030998, ENSSSCG00000011632,
ENSSSCG00000005124

GO:0005813~centrosome 0.0126 ENSSSCG00000010614, ENSSSCG00000024663,
ENSSSCG00000026746, ENSSSCG00000008970,
ENSSSCG00000015212, ENSSSCG00000005124

GO:0005856~cytoskeleton 0.0159 ENSSSCG00000029860, ENSSSCG00000023728,
ENSSSCG00000015329, ENSSSCG00000010614,
ENSSSCG00000037530

GO:0007018~microtubule-based movement 0.0274 ENSSSCG00000001705, ENSSSCG00000023296,
ENSSSCG00000020990

GO:0038092~nodal signaling pathway 0.0321 ENSSSCG00000039399, ENSSSCG00000030998

GO:0051382~kinetochore assembly 0.0349 ENSSSCG00000016946, ENSSSCG00000023296

ssc05014:Amyotrophic lateral sclerosis 0.0423 ENSSSCG00000018065, ENSSSCG00000024233,
ENSSSCG00000020990, ENSSSCG00000018080

ssc05010:Alzheimer disease 0.0483 ENSSSCG00000018065, ENSSSCG00000012298,
ENSSSCG00000032821, ENSSSCG00000018080
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module, pathways were identified as (GO:0006629) lipid metabolic
process with the genes LIPC, FMO5, COMT, PLA1A, AOX1,
ACSM4, SLC27A5 and BCAT2. Additionally, pathways such a
cholesterol homeostasis (GO:0042632); PPAR signaling pathway
(ssc03320); fatty acid metabolism (ssc01212); gene expression
(GO:0010467); fatty acid binding (GO:0005504); metabolic
pathways (ssc01100) were enrichment. The hub gene aldo-keto
reductase family 1 member D1 (AKR1D1) was identified (Figure 7).

Deficiency of the enzyme encoded by this gene may contribute
to liver dysfunction (Stelzer et al., 2016).

Regarding the Darkolivegreen module, the hub gene
ENSSSCG00000050714 was identified (Figure 8), and the enriched
pathways were inflammatory response (GO:0006954); metabolic
pathways (ssc01100); regulation of triglyceride biosynthetic
process (GO:0010866); innate immune response (GO:0045087);
and transmembrane transport (GO:0055085).

3.5 Identifying modules and key genes
associated with globulins

The Greenyellowmodule was found to be moderately associated
with the globulin’s phenotype in SOY1.5. The network constructed

from this module consisted of 466 nodes and 106,695 edges. After
applying a filter to remove edges with a weight less than 0.17, the
resulting network contained 144 nodes and 554 edges
(Supplementary Table S7), which included genes such as OTU
domain-containing ubiquitin aldehyde-binding protein 1
(OTUB1), leukotriene A4 hydrolase (LTA4H); niban apoptosis
regulator 3 (NIBAN3); and eukaryotic translation initiation factor
4H (EIF4H).

Enriched KEGG pathways included endocytosis (ssc04144),
amyotrophic lateral sclerosis (ssc05014), and aminoacyl-tRNA
biosynthesis (ssc00970), among others. The GO terms enriched
included GTP binding (GO:0005525), rRNA methylation (GO:
0031167), translation initiation factor activity (GO:0003743), and
golgi apparatus (GO:0005794), among others. The gene identified as
the hub gene is Delta 4-Desaturase, Sphingolipid
1 (DEGS1) (Figure 9).

3.6 Identification ofmodules associatedwith
cholesterol, and HDL

In the SOY1.5 group, the Saddlebrown module was associated
with total cholesterol. The network contained 139 nodes and

FIGURE 4
Network view highlighting interactions of the hub gene ENSSCG00000047967. Interaction networks within the liver tissue from pigs fed a diet with
3% soybean oil inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with theDarkredmodule
is co-expressed with the albumin phenotype. Colored nodes represent genes/proteins included in the query.
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9,580 edges. After filtering with a weight threshold of >0.13, the
network was reduced to 141 nodes and 752 edges. Genes represents
in this module include TNF receptor superfamily member 11b
(TNFRSF11B), Fos proto-oncogene, AP-1 transcription factor
subunit (FOS), solute carrier family 2 member 3 (SLC2A3),
mitogen-activated protein kinase kinase kinase 8 (MAP3K8),
vascular cell adhesion molecule 1 (VCAM1), and vascular
endothelial growth factor C (VEGFC), among others.

The cholesterol-related hub gene identified in the Saddlebrown
module is synaptonemal complex protein 3 (SYCP3). Suppression of
SYCP3 affects the expression of genes associated with lipid
metabolism. However, in the SOY1.5 group, the MM vs. GS for
the module did not show a p-value <0.05.

On the other hand, HDL had modules in both SOY1.5 and
SOY3.0. The Darkturquoise module was identified in SOY1.5, while
the Bisque4 module were found in SOY3.0. The Darkturquoise

module in the network consisted of 63 nodes and 252 edges
(Supplementary Table S8A). Notable genes within this module
include apolipoprotein E (APOE), apolipoprotein A2 (APOA2),
fatty acid binding protein 1 (FABP1), and transcription factor
like 5 (TCFL5).

The network was enriched for cholesterol metabolism
(ssc04979), metabolic pathways (ssc01100). The GO terms such
as high-density lipoprotein particle clearance (GO:0034384),
tetrahydrobiopterin biosynthetic process (GO:0006729), positive
regulation of cholesterol esterification (GO:0010873), high-density
lipoprotein particle assembly (GO:0034380), phospholipid efflux
(GO:0033700), low-density lipoprotein particle remodeling (GO:
0034374), reverse cholesterol transport (GO:0043691), high-density
lipoprotein particle remodeling (GO:0034375), mitochondrial
membrane (GO:0031966), chylomicron (GO:0042627), and very-
low-density lipoprotein particle (GO:0034361), among others.

FIGURE 5
Network view highlighting interactions of the hub gene ENSSSCG00000041994. Interaction networks within the liver tissue from pigs fed a diet with
3% soybean oil inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with the Darkorange2
module is co-expressed with the total protein and albumin phenotypes. Colored nodes represent genes/proteins included in the query.
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Relevant genes and pathways associated with the HDL in the
liver were identified for SOY3.0 (Supplementary Table S8B). The
enrichment analysis identified pathways such as positive regulation
of I-kappaB kinase/NF-kappaB signaling (GO:0043123); response to
interferon-gamma (GO:0034341); toll-like receptor signaling
pathway (GO:0002224); ubiquitin protein ligase binding (GO:
0031625); interleukin-27-mediated signaling pathway (GO:
0070106); immune system process (GO:000237); and positive
regulation of interleukin-6 production (GO:0032755). The hub
gene identified in this pathway was interferon induced protein 44
(IF144) (Figure 10).

3.7 Identification of modules and key genes
associated with glucose

Three modules were identified for glucose: Plum2, Turquoise,
Navajowhite2 for SOY3.0. As previously observed, the Plum2
module with the hub gene SH3D19, just as in the glucose phenotype.

In the Turquoise module (SSupplementary Table S9A), the
enrichment pathways included immune response (GO:0006955),
inflammatory response (GO:0006954), response to cholesterol (GO:
0070723), negative regulation of I-kappaB kinase/NF-kappaB
signaling (GO:0043124), positive regulation of interleukin-4
production (GO:0032753), positive regulation of interleukin-2
production (GO:0032743), positive regulation of angiogenesis
(GO:0045766), and Th1 and Th2 cell differentiation (ssc04658).
The hub gene identified is serpin family B member 9
(SERPINB9) (Figure 11).

For the Navajowhite2 module (Supplementary Table S9B), we
identified enriched pathways as spliceosome (ssc03040); NF-kappaB
binding (GO:0051059); RNA binding (GO:0003723); RNA helicase
activity (GO:0003724).

The DEAD-box helicase 3 X-linked (DDX3X) gene was
identified as a hub gene in the Navajowhite2 module (Figure 12).

4 Discussion

The WGCNA algorithms, according to Xing et al. (2021),
attempt to build a network with correlation values that match
the properties of a scale-free network because they have
biological significance. Thus, in this study, we identified the gene
modules and the main signaling pathways that influence the blood
serum parameters of pigs fed different levels of soybean oil from the
networks constructed by the WGCNA. The variation in the number
of modules identified in both SOY1.5 and SOY3.0 can be attributed
to differences in the genes expressed in the liver, possibly due to
regulatory mechanisms in response to oil intake. This would help to
explain the differences in module content and enrichment results
between the groups. In addition, these results support that
regulation of gene expression plays a role in influencing
pathways that may affect traits related to blood serum parameters.

A higher number of ME was observed in the SOY3.0 group. In
our previous study, we observed differences in albumin levels
between the SOY1.5 and SOY3.0 diet groups, with higher values
observed in the SOY1.5 group (Fanalli et al., 2022b). Our results
illustrate the changes in co-expression in the SOY1.5 and
SOY3.0 groups in the diet, furthering our understanding of
metabolic processes and their relevance to disease. These results
are consistent with our previous findings indicating changes in gene
expression when 3% soybean oil was added to the diet, showing
differential expression (Fanalli et al., 2022c).

4.1 Co-expressed modules related
to albumin

By examining the co-expression of albumin-related genes, we
can understand the potential mechanisms and processes that are
regulated by FA in the liver. Albumin is produced by the liver and is
associated with a wide range of important physiological functions,

TABLE 3 Pathways enriched in the Darkorange2 module for SOY3.0.

Pathways enriched in the Darkorange2 module
for SOY3.0

p-value Genes

GO:0006094~gluconeogenesis 0.0107 ENSSSCG00000015595, ENSSSCG00000007507,
ENSSSCG00000000164

GO:0008104~protein localization 0.0292 ENSSSCG00000002743, ENSSSCG00000022099,
ENSSSCG00000009742

GO:0008195~phosphatidate phosphatase activity 0.0434 ENSSSCG00000008624, ENSSSCG00000038494

GO:0009062~fatty acid catabolic process 0.0242 ENSSSCG00000008624, ENSSSCG00000038494

GO:0014823~response to activity 0.0272 ENSSSCG00000005636, ENSSSCG00000000164

GO:0032868~response to insulin 0.0057 ENSSSCG00000016728, ENSSSCG00000003459,
ENSSSCG00000000164

GO:0032869~cellular response to insulin stimulus 0.0119 ENSSSCG00000008624, ENSSSCG00000038494,
ENSSSCG00000007507

GO:0042594~response to starvation 0.0479 ENSSSCG00000007507, ENSSSCG00000009742

GO:0071549~cellular response to dexamethasone stimulus 0.0391 ENSSSCG00000007507, ENSSSCG00000031888

ssc04150:mTOR signaling pathway 0.0199 ENSSSCG00000008624, ENSSSCG00000038494,
ENSSSCG00000031888, ENSSSCG00000009742
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such as immunomodulation and antioxidant effects (Spinella et al.,
2016). Albumin may serve as an important modulator of innate
immune responses to systemic inflammation (Spinella et al., 2016).
Immune-related diseases are linked to the body’s defense against
infection. In this context, the inclusion of immune nutrients, such as
FA, has the potential to alter the body’s inflammatory and immune
responses, as FA is involved in modulating macrophage functions
(Radzikowska et al., 2019). This has been attributed to the
immunomodulatory effects of PUFA, particularly those from the
omega-3 series, which can influence clinical outcomes by
modulating the immune system (Miles and Calder, 2015; Fanalli
et al., 2022b). In inflammatory conditions, omega-3 FA can restore
impaired barrier function and reduce the pro-inflammatory
mediator production (Radzikowska et al., 2019).

Albumin is used as an indicator to evaluate dysfunction in the
liver, pancreas, and overall nutritional status. It is more susceptible
to reactive oxygen species (ROS) compared to other proteins, and
the proportion of oxidized albumin serves as a marker for the degree

of oxidative stress associated with various pathological conditions
(Belinskaia et al., 2021). FA, especially PUFA, plays an important
role in regulating the antioxidant properties of albumin, with PUFA
significantly contributing to the pool of oxidizable biological
compounds in plasma. In addition, these biomarkers associated
with oxidative stress may hold prognostic and therapeutic
significance for acute-on-chronic liver failure (ACLF). The gene
CCL5, identified in this context, is correlated with immune response
metabolic processes and immune response (Zhu and Jiang, 2023).

The hub gene identified in our study in the SOY1.5 group, that
correlates with albumin, is CCL5 (RANTES) in diabetes-related
renal pathophysiology, and serum albumin may play a relevant
role (Nakajima et al., 2003). Furthermore, omega-6 and omega-3
have been observed in FA-related studies to play a role in regulating
inflammatory responses through nuclear receptors that influence
gene expression (Ogłuszka et al., 2017). In a study investigating the
effects of diet on gene expression in pig muscle, an increase in
dietary PUFAwas related with a decrease in the expression of several

FIGURE 6
Network view highlighting interactions of the hub gene SH3D19. Interaction networks within the liver tissue from pigs fed a diet with 3% soybean oil
inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with the Plum2module is co-expressed
with the glucose and albumin phenotype. Colored nodes represent genes/proteins included in the query.
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chemokines, including CCL5. These chemokines are known to
attract macrophages and monocytes to sites of inflammation, and
the authors suggested that this decrease in the expression of these
chemokines could be related to a reduction (Ogłuszka et al., 2017).
This confirms our previous results where we observed greater PUFA
deposition in the liver in the SOY1.5 group. Dietary changes can
modulate gene expression, affecting inflammation, lipid metabolism
and homeostasis.

On the other hand, in the SOY3.0 group, we observe more
albumin-related and neurodegenerative disease-related cluster
groups such as Darkred. Polyunsaturated fatty acids, including
those of the omega-3 and omega-6 series, have been shown to
improve cognitive function in individuals with neurodegenerative
diseases (Avallone et al., 2019). These FA achieve this by modulating

cellular properties and physiological processes (Avallone et al.,
2019). Consequently, diets supplemented with PUFA-rich
vegetable oils, such as rapeseed and soybean oil, may offer
benefits to consumers. Fanalli et al. (2022c), who investigated
differentially expressed genes in the same pig population,
identified genes associated with network maps related to
neurodegenerative diseases.

Some of the GO terms and KEGG pathways we identified in this
study are enriched to general metabolism, human diseases such as
neurodegenerative and infectious diseases, and the immune system.
This demonstrates the importance of the study and its relevance to
biological processes. In addition, related KEGG pathways
Alzheimer’s disease and neurodegeneration are specifically
associated with albumin.

FIGURE 7
Network view highlighting interactions of the hub gene AKR1D1. Interaction networks within the liver tissue from pigs fed a diet with 3% soybean oil
inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with the Lightgreen module is co-
expressed with the AST phenotype. Colored nodes represent genes/proteins included in the query (small nodes indicate proteins with unidentified 3D
structure, large nodes indicate those with known structures).
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4.2 Co-expressed modules related
to glucose

Significant changes observed in the SOY3.0 group could
potentially have a more profound effect on gene expression and
regulatory networks, leading to a broader effect on lipid and
glucose metabolism in porcine liver tissue. The difference in co-
expression observed in relation to glucose may be related to the
regulation of angiogenesis, suggesting a specific response to the
diet with a higher concentration of soybean oil (SOY3.0).
According to Fernandez and West, (2005), omega-3 are
involved in reducing plasma TG by decreasing lipogenesis and
VLDL secretion.

Significantly, the SOY3.0 group showed increased accumulation
of OA. Both MUFA and PUFA have been implicated in the
regulation of key regulators of hepatic gene transcription. These
FA affect transcription factors that play a role in influencing the
expression of genes central to glycolysis, de novo fatty acid synthesis,
and FA oxidation. This regulatory effect on lipid metabolism can be
either direct or indirect (Gnoni et al., 2010).

4.3 Co-expressed modules related to HDL

We have identified APOE associated with the SOY1.5 group co-
expressed with HDL. In a study in which the APOE gene was
knockout in Bama miniature pigs using the CRISPR-associated
protein 9 (CRISPR/Cas9) system, increased levels of HDL
cholesterol were observed in the pigs. When fed a high-fat, high-
cholesterol diet, the pigs developed significant hypercholesterolemia
and progressive atherosclerotic lesions (Fang et al., 2018).

Another gene identified is FABP1, a member of the FABP family,
which plays a direct role in the conversion of fatty acids into
eicosanoid intermediates, as well as in the stabilization of
leukotriene, and is also a biomarker of liver injury or liver-
damaging stress (Furuhashi and Hotamisligil, 2008; Ishimura
et al., 2013). In human studies, this gene showed positive results
with blood pressure, triglycerides and AST (Ishimura et al., 2013),
while in this study we showed co-expression in modules related to
HDL. Studies in young adults agreed that low HDL cholesterol levels
and hypertriglyceridemia were associated with serum FABP1 levels,
suggesting it as a possible circulating biomarker of adiposity and

FIGURE 8
Network view highlighting interactions of the hub gene ENSSSCG00000050714. Interaction networks within the liver tissue from pigs fed a diet with
3% soybean oil inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with theDarkolivegreen
module is co-expressed with the AST phenotype. Colored nodes represent genes/proteins included in the query.

Frontiers in Genetics frontiersin.org14

Fanalli et al. 10.3389/fgene.2024.1394971

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1394971


metabolic diseases associated with insulin resistance, involved in
hepatic lipid binding and lipid metabolism (Shi et al., 2012). In the
SOY1.5 group, the hub gene of the Darkturquoise module, DCXR,
acts as an enzyme mediating the reductive metabolism of toxic
reactive and toxic carbonyl compounds, already associated with
diseases such as diabetes (Yang et al., 2017).

HDL plays a role in cytokine regulation, is part of the innate
immune response and may have an atheroprotective effect by
modulating the complement system (Yu et al., 2010). In addition
to its antiatherogenic properties, it is associated with several
immunomodulatory effects due to HDL ability to remove free
cholesterol from the cell membrane. These findings are
corroborated by the fact that the co-expressed hub gene is IF144,
which is involved in the immune response. The main pathways

enriched in this context were the immune system process and the
positive regulation of interleukin-6 production. In people over
65 years of age, IL-6 is one of the factors that may influence the
contribution of low HDL-C levels, as IL-6 has effects related to
modifying the activity of triglyceride lipases (Zuliani et al., 2007). In
relation to the SOY3.0 group, the correlation with this module
was negative.

4.4 Key enrichment and hub gene related to
globulins, cholesterol, AST and total proteins

We identified a negative correlation with globulins in the
SOY1.5 group, along with enrichment in endocytosis, GTP

FIGURE 9
Network view highlighting interactions of the hub geneDEGS1. Interaction networks within the liver tissue from pigs fed a diet with 1.5% soybean oil
inclusion (SOY1.5) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with the Greenyellow module is co-
expressed with the globulin phenotype. Colored nodes represent genes/proteins included in the query.
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binding, and translation initiation factor activity. In addition, we
observed a module positively associated with cholesterol in the
SOY1.5 group, with genes enriched in pathways such as
cholesterol metabolism, and the SYCP3 gene was the hub gene
identified, where knockdown of this gene affects the expression of
genes related to lipid metabolism (Manunza et al., 2014).

We identified AST and total protein as modules present
exclusively in the SOY3.0 group, suggesting specific modulations
in important biological processes in response to the oil level.

The AKR1D1 hub gene, which has been identified in
association with AST, is associated with steatosis and
inflammation and regulates key metabolic processes. In vitro
studies using human hepatoma cells have linked negative

expression of AKR1D1 to Nonalcoholic fatty liver disease
(NAFLD) (Nikolaou et al., 2019).

Modulation of co-expression by diets with different oil content:
By applying WGCNA and analyzing the RNA-Seq data, we can
examine how FA were specifically modulated in each diet,
improving our understanding of what happened in the
differential expression analysis (Fanalli et al., 2022c), where we
identified several of them enriched in interesting pathways.

Briefly, in the SOY1.5 group, we identified genes with positive
co-expression with albumin that may play specific roles in
biological processes related to immune response, regulation of
intracellular signaling cascades, and control of gene expression.
Highlighting the diversity of genetic interactions and biological

FIGURE 10
Network view highlighting interactions of the hub gene IF144. Interaction networks within the liver tissue of pigs fed a diet with 3.0% soybean oil
inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with the Bisque4 module is co-
expressed with the HDL phenotype. Colored nodes represent genes/proteins included in the query.
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processes affected by the higher concentration of soybean oil,
we identified positive co-expression in SOY3.0 that may be
involved in specific biological processes such as Alzheimer’s
disease, immune response, RNA binding, NF-kappaB binding.
These effects differ from those observed in SOY1.5, where
gene expression varied between groups, possibly due to the
inclusion of oil at different concentrations and may be
related to the effects of FA composition in modulating the
properties of the membrane as well as some of the
membrane lipids.

It has also been reported that membrane lipids are important for
cellular maintenance and that changes or disorders in these lipids
may have consequences in the brain, as the liver serves as a central
organ for systemic metabolism (De Carvalho and Caramujo, 2018;
Fanalli et al., 2022c).

The difference in co-expression observed in relation to HDL in
the SOY1.5 and SOY3.0 groups suggests a different regulatory
pattern for HDL in response to the higher concentration of
soybean oil.

The results obtained illustrate how FA can modulate gene
expression and biological processes in response to different
dietary compositions, revealing a complex relationship between
diet, blood phenotypes, and molecular pathways in pigs. Our
study clearly demonstrates that different dietary FA profiles
induce changes in tissue-specific expression profiles to alter the
complex network of co-expression. By highlighting the importance
of FA in health, our findings underscore the practicality of using
serum biochemical parameter sampling. Further studies are
warranted to explore potential applications for optimizing swine
production and disease management.

FIGURE 11
Network view highlighting interactions of the hub gene SERPINB9. Interaction networks within the liver tissue of pigs fed a diet with 3.0% soybean oil
inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with the Turquoise module is co-
expressed with the glucose phenotype. Colored nodes represent genes/proteins included in the query.
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5 Conclusion

We used a weighted gene co-expression network to investigate
the effects of different diets on expression profiles. This resulted in
altered gene interaction and co-expression patterns within the
transcriptome. Our study also identified key pathways related to
cardiovascular and neurodegenerative diseases, as well as immune
responses, metabolic pathways and cholesterol metabolism, which
showed correlations with biochemical parameters of pig blood
serum. We identified key genes co-expressed with albumin such as
CCL5, PNISR, ENSSCG00000047967, and globulins such as

DEGS1. We also observed genes co-expressed with HDL such as
DCXR and IF144. These correlations were observed in the context
of two different levels of soybean oil supplementation, specifically
1.5% and 3%. These findings provide valuable insights into the
complex effects of dietary FA profile on gene expression and
metabolic pathways in pigs and contribute to our
understanding of genetic and metabolic responses to dietary
variation. These findings are also crucial for understanding the
genetic and metabolic responses to dietary modification and
contribute to the development of more precise nutritional
strategies.

FIGURE 12
Network view highlighting interactions of the hub gene DDX3X. Interaction networks within the liver tissue of pigs fed a diet with 3.0% soybean oil
inclusion (SOY3.0) were constructed using Cytoscape, followed by the stringApp plugin. The network associated with the Najowhite2 module is co-
expressed with the glucose phenotype. Colored nodes represent genes/proteins included in the query.
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