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Excessive reactive oxygen species stress due to salinity poses a significant threat
to the growth of Glycyrrhiza uralensis Fisch. To adapt to salt stress, G. uralensis
engages in alternative splicing (AS) to generate a variety of proteins that help it
withstand the effects of salt stress. While several studies have investigated the
impact of alternative splicing on plants stress responses, the mechanisms by
which AS interacts with transcriptional regulation to modulate the salt stress
response in G. uralensis remain poorly understood. In this study, we utilized high-
throughput RNA sequencing data to perform a comprehensive analysis of AS
events at various time points in G. uralensis under salt stress, with exon skipping
(SE) being the predominant AS type. KEGG enrichment analysis was performed on
the different splicing genes (DSG), and pathways associated with AS were
significantly enriched, including RNA transport, mRNA surveillance, and
spliceosome. This indicated splicing regulation of genes, resulting in AS events
under salt stress conditions. Moreover, plant response to salt stress pathways
were also enriched, such as mitogen-activated protein kinase signaling
pathway — plant, flavonoid biosynthesis, and oxidative phosphorylation. We
focused on four differentially significant genes in the MAPK pathway by AS
and gRT-PCR analysis. The alternative splicing type of MPK4 and SnRK2 was
skipped exon (SE). ETR2 and RbohD were retained intron (RI) and alternative
5'splice site (A5SS), respectively. The expression levels of isoforml of these four
genes displayed different but significant increases in different tissue sites and salt
stress treatment times. These findings suggest that MPK4, SnRK2, ETR2, and
RbohD in G. uralensis activate the expression of isoforml, leading to the
production of more isoforml protein and thereby enhancing resistance to salt
stress. These findings suggest that salt-responsive AS directly and indirectly
governs G. uralensis salt response. Further investigations into AS function and
mechanism during abiotic stresses may offer novel references for bolstering plant
stress tolerance.

Glycyrrhiza uralensis, salt stress response, RNA-seq analysis, splicing regulatory factor,
post-transcriptional regulation
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1 Introduction

Increased emissions of greenhouse gases have led to global
warming, while high evapotranspiration rates have exacerbated
soil salinization (Cicek et al., 2022). A lack of annual rainfall is
also preventing salt from reaching the subsoil, resulting in serious
ecological changes to soil (Khosravichenar et al., 2023). Xinjiang has
a large area of saline-alkali land as a result of insufficient annual
precipitation. In recent times, Glycyrrhiza uralensis Fisch, widely
cultivated in Northwest China for medicinal and food purposes, has
suffering from salt exposure throughout the year. For plants to
prevent ROS proliferation, the antioxidant defense system must be
activated. The SOS pathway, for instance, is activated by salt stress,
which results in ROS accumulation and MAPK cascades (Yang
et al., 2018).

Plants respond to salt stress through mitogen-activated protein
kinase (MAPK) cascades. Three primary components comprise
these cascades, each of which is involved in phosphorylation and
activation in succession. In order for the second element to function,
a MAP kinase (MAPKK or MKK) must be phosphorylated and
activated by the first. As a result of the sequential phosphorylation
process, the stress signal can be amplified, thus allowing for a more
robust response. Salt-induced stress requires MAPK cascades to
transduce signals and enable plants to adapt it (Mishra et al., 2006).
The salt stress response of Arabidopsis is mediated by the MPK4
cascade. Null mutants of the gene exhibit hypersensitivity, while
overexpression increases salt tolerance (Teige et al, 2004). Other
plants also activate the MAPK cascade under salt stress; for example,
alfalfa (Medicago sativa) activates the MAPK cascade under salt
stress (Kiegerl et al., 2000). In rice, the MPK4 cascade regulates
transcription factor gene expression in response to salt stress (F.
Wang et al., 2014). When Arabidopsis is dehydrated, mutants of the
MKK4 cascade are more salt sensitive and shed more water than the
wild type (Kim et al.,, 2012).

When G. uralensis is exposed to salt stress, proteins that are
involved in the synthesis of glycyrrhizic acid and liqueritin are
activated, resulting in the cuamulative production of glycyrrhizin and
its components (C. Wang et al., 2020). Alternative splicing events
can involve five different forms: skipped exon (SE), alternate 5-splice
site (A5SS), alternate 3-splice site (A3SS), mutually exclusion exon
(MXE), and retained intron (RI). Some AS events may be gene-
specific and some species-specific, with SE and RI being the most
and least prevalent, respectively, in animals. The majority of AS
cases are caused by SE, while only 0.01% are caused by RI; in
contrast, RI is the most common form of AS in Arabidopsis and
maize (Daszkowska-Golec et al., 2017; Laloum et al., 2018; Thatcher
et al,, 2016). However, in recent years, SE and RI are the most
prevalent AS in licorice and soybeans because of advances in
sequencing technology and detection tools (Li et al., 2022; Song
et al., 2020). The number of genes with introns that undergo
alternative splicing in Arabidopsis thaliana (Marquez et al., 2012)
will increase as more transcriptome data from plants in different
developmental conditions and environmental conditions are
collected. High-throughput analyses are becoming more
sophisticated as more advanced tools are developed for splice
variant identification.

Multiple studies have illustrated the important functions of
alternative cellular abiotic

splicing in the response to

Frontiers in Genetics

10.3389/fgene.2024.1397502

stresses—specifically, salt stress (Laloum et al, 2018). Recent
research provides evidence that highlights the essential biological
function of alternative splicing (AS) in increasing plant resilience to
salt stress. These events have been implicated in regulating stress
responses in plants. Spliceosomal components of Arabidopsis also
affect response to stress in plants. There are over 6,000 Arabidopsis
genes, for instance, that alter their alternative splicing patterns when
exposed to salt stress (Feng et al., 2015). Mutations in SKIP protein
interact physically with SR45, which modulates recognition or
cleavage of splice sites 5’ and 3’ in alternative splicing in SNW/
Ski-interacting protein (SKIP) (Wang et al, 2012), leading to
increased salt and osmotic sensitivity in plants (Feng et al,
2015). In rice, OsNHXI-related gene undergoes AS under the salt
stress, yielding three distinct transcripts. Notably, the transcript
carrying the 3'UTR has been demonstrated to boost salt endurance
the most (Amin et al., 2016). Three transcript isoforms of WDREB2
were produced by AS in wheat: WDREB2a, WDREB2f, and
WDREB2y. During a 24-hour stress treatment period, the
expression of the non-functional isoform WDREB2f lacking the
third exon remained relatively constant. In contrast, the functional
isoforms WDREB2« and WDREB2y exhibited temporary increases
in transcript levels when subjected to drought, salt, and ABA stress
treatment (Egawa et al., 2006; Liu et al., 2018).

Recent studies have demonstrated that alternative splicing plays
a regulatory role in plants under salt stress (Cinatl et al., 2003).
However, studies on how AS responds to salt in G. uralensis are
rarely reported. Therefore, this study aims to investigate the
regulatory mechanism of AS and expression profiles of different
AS isoforms in response to salt stress by transcriptional regulation in
G. uralensis. To gain valuable insights into the mechanisms
underlying salt stress response in G. uralensis, we investigated the
regulation of alternative splicing (AS) and expression patterns of
various AS isoforms. Moreover, we aimed to examine the impact of
AS on the development of G. uralensis under salt stress. In this study,
we conducted RNA sequencing (RNA-seq) experiments on both
aboveground parts (AP) and underground parts (UP) of G.
uralensis. The plants were exposed to salt stress for durations of
0, 2, 6, and 12 h. We identified isoforms and quantified events of
alternative splicing at diverse stages of the salt stress. Five AS types
were identified at the AP and UP of salt-stressed G. uralensis. We
identified differentially spliced genes (DSGs) that were then
subjected to Gene Ontology (GO) term and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis. The predominant
AS events observed in our study were exon skipping (SE). In G.
uralensis, we also identified several new AS events that greatly
contributed to the response process to salt stress. Our results
provide valuable insights into the stress response mechanism in
G. uralensis. The findings illuminate the post-transcriptional
regulation patterns of AS at different time points throughout the
salt stress process.

2 Materials and methods
2.1 Plant material and salt stress treatments

The experimental materials were sourced from wild G.
uralensis plants (Ding et al., 2014). Wild G. wuralensis seeds
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were treated with 95% concentrated H,SO, for 60 min and rinsed
8-10 times with sterile water and were then let dry. Later, these
seeds were placed in a flowerpot containing nutrient soil and
vermiculite 1:1. These flowerpots were allowed to germinate at
25°C in an illumination incubator (GXZ-430D) under dark
conditions before being grown in a climate-controlled
chamber. Licorice seedlings 60 days after emergence were
transplanted into a hydroponic box (38 x 28 x 14 cm) with
nutrient solution (Hogrland nutrient solution) for 5 days to adapt
to the hydroponic conditions. NaCl was added to the hydroponic
culture solution to a concentration of 150 mM/L. The culture
media was changed once every 2 days. After 2, 6,and 12 h of NaCl
stress, tissue samples of NaCl treatment for different times were
collected. All samples were collected immediately, washed with
distilled water, dried, frozen in liquid nitrogen, and stored

at —80°C in three biological replicates of each treatment.

2.2 RNA-seq datasets and
processing methods

The experiment involved all AS in the RNA-seq datasets which
were detected by rMATs [(version 4.0.1) (http://rnaseq-mats.
This
24 libraries, each representing different conditions (two tissue

sourceforge.net/index.html)]. incorporated data from
types x time points of salt stress treatment x three biological

replicates).

2.3 Reference genome-based assembly of
transcript structures, mapping reads

A stringent quality control procedure, which can ensure the
accuracy of rMATSs analysis results, was performed on the RNA-
seq raw read datasets. Attaining high-quality raw sequencing
data necessitates the elimination of low-quality reads, which
contain sequences with high “N” and short reads. To screen
out low-quality bases, SeqPrep (https://github.com/jstjohn/
SeqPrep) and Sickle (https://github.com/najoshi/sickle) were
used (Li et al., 2022). We used the reference genome for the
species name: Glycyrrhiza_uralensis Reference genome Version:
riken (Reference Genome Source: http://ngs-data-archive.psc.
riken.jp/Gur-genome/index.pl). We employed TopHat2 (http://
ccb.jhu.edu/software/tophat/index.shtml) to locate new splice
sites mapped directly to pre-existing transcripts for accurate
comparison. In addition, we used String Tie (http://ccb.jhu.
edu/software/stringtie/) to assemble complex datasets into
transcripts and compared them with known transcripts.

2.4 AS events identification in response to
salt stress

We used rMATS to identify and analyze AS events between these
samples. We detected AS events showing a significant salt stress
response by comparing them to AS events with a false discovery rate
(FDR) < 0.01. We identified five AS event types: SE, MXE, A5SS,
A3SS, and RI.
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2.5 DEGs, gene ontology, and pathway
enrichment analysis

We used DESeq2V (http://bioconductor.org/packages/stats/
bioc/DESeq2/) to analyze RNA-seq datasets in pair comparisons
between the salt-stressed treatment and control group to
identify DEGs. We identified genes as differentially expressed
(DEGs) when their fold change was greater than or equal to
2 and their false discovery rate (FDR) was below 0.05.
Transcripts per million (TPM) were utilized to quantify the
gene expression levels in our study. DSGs were determined
based on the FDR (p < 0.05) from exclusive nodal reads, and
significant AS were mapped to the GO term (http://www.
geneontology.org/).  The  significance of DSGs in
KEGG pathways for genome KEGG background was tested
(p < 0.05).

2.6 Genes of encoding salt stress regulators
express patterns

To enable qRT-PCR analysis, cDNA synthesis was performed
using total RNA extracted from G. uralensis as the template. This
specific method is consistent with Li et al. (2022). The primers used
are lists in Supplementary Table SI.

3 Results

3.1 Overview of RNA-seq datasets
sequencing quality under salt stress
conditions

We analyzed AS events in G. uralensis in response to salt
stress by utilizing 24 high-throughput RNA-seq libraries. The
seedlings were exposed to salt stress at different time points: 0
(APSSCK and UPDSCK), 2 (APSS_2h and UPSS_2h), 6 (APSS_
6h and UPSS_6h), and 12 h (APSS_12h and UPSS_12h). The
analysis was performed using TopHat2 software, which has
been proven superior to previously used TopHat software for
analyzing soybean and G. uralensis RNA-seq data (Li et al,,
2020; Song et al., 2020). We analyzed each sample using over
4.2 million clean reads. The presence of high percentages of Q20
(>98%) and Q30 (>94%) confirmed high sequencing accuracy
(Supplementary Table S2), enabling further data analyses. The
distribution of filtered reads across the first 20 chromosomes of
G. uralensis was indicated (Supplementary Figure S1A). There
was no conspicuous preference in the sequence coverage
(Supplementary Figure S1B), allowing us to perform further
data analysis for AS event identification. Principal component
analysis (PCA) was performed to validate sample repeatability
(Figure 1A). Clusters of biological replicates were observed to
have close distances, indicating acceptable variation between
different time points. In addition, the biological replicates
showed strong correlations with correlation coefficients (r2)
ranging from 0.77 to 1 in AP and 0.94 to 1 in UP (Figure 1B).
This indicated that these RNA-seq datasets were high-quality
and reliable.
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icated as mean + standard deviation. The

mean values were evaluated by Bonferroni test, with distinct letters to
represent significant differences among diverse treatments (p < 0.05).

3.2 Ildentification of AS events in G. uralensis

tissues under

salt treatment

We used 24 RNA-Seq datasets to analyze the comprehensive
landscape of AS events in salt-treated G. uralensis. After mapping
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the high-quality reads to the reference genome of G. uralensis
(Mochida et al., 2017), we utilized the rMATS software with the
junction count-only setting to identify and quantify AS events,
and tested the quantity of the five AS types (SE, MXE, A5SS,
A3SS, and RI)
(Supplementary Table S3). After correction using one-way
ANOVA, the Bonferroni method was applied to the mean
values (Supplementary Table S4). The results showed that salt

using the Kolmogorov-Smirnov method

treatment for 2, 6, and 12 h significantly increased the amount of
SE, A3SS, A5SS, and RI AS events in the AP compared to the UP
of G. uralensis. In the UP of salt-treated G. uralensis, significant
differences (p < 0.05) in SE and MXE AS events were detected
without significant differences in A3SS, A5SS, and RI AS events
(Figure 2). When comparing the mean differences of five AS
events in AP and UP, significant differences were identified in the
mean discrepancies among the five AS events, especially in the
UP of G. uralensis. Furthermore, significant mean difference in
SE and MXE but not in RI, A3SS, and A5SS AS events were
observed in the UP of salt-treated G. uralensis (Supplementary
Figure S2). These results suggest that AS events are common
during salt stress, with the UP being the major tissue site in G.
uralensis for the response to salt.

3.3 Recognition of AS events responding to
salt-treated Glycyrrhiza uralensis AP and
UP sections

Reports indicated that AS events in wheat roots led to
Under
drought stress, the generation of variant splicing isoforms in

diverse spliced gene isoforms under salt stress.
G. uralensis genes is similar Li et al. (2022). It suggest that these

events contribute to G. uralensis’ responsiveness to salt. In this
study, a total of 1648, 1505, and 2329 AS events in AP and 2983,
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Identification and comparative analysis of the AS events in G. uralensis under salt stress. (A) Comparative analysis of the quantity of AS events in salt-
treated G. uralensis UP and AP sections. (B) IEP-based cluster examination of AS events in G. uralensis in response to salt stress. The count of AS events in
each cluster was indicated, with x-axis representing the different treatment time points in G. uralensis UP and AP sections and y-axis representing the |[EP
values. The red lines indicate the trend of IEP mean value for each AS event in different clusters.

1742, and 3086 AS events in UP were obtained in salt-treated G.
uralensis for different time points of 2, 6, and 12 h, respectively
(Figure 3A). SE was the most prevalent AS event, accounting
for 34% of AP and 29% of UP. Furthermore, following 2 h and
12 h of salt stress exposure in G. uralensis of AP tissue, the
SE events significantly tend towards the inclusion type.
In contrast, in UP leaned towards the
exclusion type (Figure 3A). Hence, the abundance of diverse

the same events

isoforms varies widely across different anatomical regions of
G. uralensis plants.

Isoform expression percentage (IEP) alterations have been
used to categorize AS events in wheat (Li et al.,, 2022) and
soybean (Song et al., 2020) under salt stress. In G. uralensis AP
and UP sections, SE-type AS events emerged as the primary
manifestation of salt-related AS in response to salt stress.
Consequently, we utilized Mfuzz software to perform the IEP
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cluster analysis in SE-type with the conditions of “FDR < 0.05”
and “change in
(Figure 3B; Supplementary Table S5). The results indicated
that eight groups were classified representing 221, 563, 271,
547, 605, 554, 506, and 642 AS events, respectively. Group
3 exemplified changes in the AS pattern at the UPSS_2 h,
UPSS_6 h, and UPSS_12h time points. Similarly, groups 1, 4,
5, and 8 showed variations in AS patterns in the salt-stressed G.

isoform expression percentage >30%"

uralensis UP section, revealing their sensitivity to salt stress.
Conversely, Groups 2, 6, and 7 exhibited minimal adjustments
in the AS pattern in the salt-stressed AP tissues of G. uralensis.
Therefore, significant alterations in AS patterns in response to
salt stress occurred mainly in G. uralensis UP tissues. These
results demonstrated that the substantial AS pattern alterations
in response to salt stress occurred predominantly in G.
uralensis UP.
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intervals during salt treatment.

3.4 Comparative evaluation of differentially
expressed and spliced genes

DSGs were generated due to AS events and exhibited significant
variation under salt stress. Overall, 4,117 DSGs in G. uralensis were
identified and distributed across various phases throughout the salt
stress (Supplementary Table S6). Of these, 1,017 genes showed clear
salt-responsive and AS regulatory expression patterns (Figure 4A). In
order to better understand the AS events in response to salt treatment,
we compared the levels of DSGs and DEGs in salt-stressed G. uralensis
UP and AP tissues at various time intervals throughout the salt stress
treatment period (Figures 4B-D; Supplementary Table S6). We
observed 68, 11, and 72 genes evident in DSGs and DEGs in AP
tissues at 2, 6, 12 h. Similarly, 120, 13, and 93 genes were identified in UP
tissues as DSGs and DEGs at 2, 6, and 12 h, respectively (Figure 4B).
These results showed that salt-responsive expression tendencies and AS
regulation were more significant in 2-h and 12-h treated tissues.
Furthermore, the newly discovered AS events were analyzed in G.
uralensis under salt stress; the results indicated that 1,746, 356, and
150 novel AS events of the SE, MXE, and RI types were identified and
had a significant response (Supplementary Table S7), highlighting the
substantial involvement of SE-type AS in G
stress response.

uralensis  salt

3.5 GO analysis of DSGs in salt-treated G.
uralensis AP and UP

In order to comprehend the impact of AS regulation on the
biological functions of G. uralensis during the process of salt stress
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response, a GO enrichment analysis was performed on all DSGs. The
results showed that numerous DSGs regulated by AS were related to
metabolic, spliceosome, and oxidase activity (Figure 5). A total of
19 GO terms were significantly enriched in underground tissues,
cellular DNA
organonitrogen compound metabolism. The AP tissues exhibited

including response to  stress, repair, and
significant enrichment of six GO terms, including metabolic
processes for nitrogen compounds, phosphatase activity, and
RNA processing. GO term enrichment in UP tissues is much
higher than in AP tissues. Salt stress-related GO terms were only
significantly enriched in UP tissues, not AP tissues, such as
protoporphyrinogen  oxidase  activity, = oxygen-dependent
protoporphyrinogen oxidase activity, and oxidoreductase activity.
It is possible that UP tissues first experience salt stress and then send
signals to ground tissues. Furthermore, DEGs from UP and AP
tissues in salt stress conditions were analyzed using GO to assess
their functional significance. There was a significant enrichment in
GO terms related to salt stress, such as oxidoreductase activity,
flavonoid glucuronidation, and oxidoreductase activity, acting on
CH-OH (Supplementary Figure S3). The enriched regulation of
intracellular metabolic, spliceosome, and oxidase activity provides a
comprehensive understanding of how AS regulates the salt stress

response in G. uralensis.

3.6 KEGG enrichment analysis of DEGs and
DSGs that encode splicing regulators

Under various stress conditions, salt stress triggers the response
of splicing regulatory factors (SPFs) and induces diverse patterns of
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FIGURE 5

GO analyses of DSGs under salt stress. (A) GO enrichment analysis of DSGs. DSGs were subject to GO terms with the condition of FDR < 0.05. (B) Top
20 GO terms of the DSGs in the category of molecular function. **denotes p < 0.01 and * represents p < 0.05.

splicing (Ding et al., 2014; Filichkin et al., 2010; Li et al., 2022; Palusa
et al., 2007; Tanabe et al., 2007). In our work, KEGG enrichment
analysis was performed on the difference splicing genes (DSGs).
Pathways associated with AS, such as RNA transport, mRNA
surveillance, and spliceosome, significantly enriched,
indicated splicing regulation of genes and resulting in AS events

under salt stress conditions. These results indicated that the SPFs-

were

encoding genes appeared to respond to salt stress in G. uralensis UP
sections and exhibited variable splicing (Figure 6A). Moreover, plant
response to salt stress pathways were also enriched, such as MAPK
signaling pathway-plant, oxidative phosphorylation, and flavonoid
biosynthesis. A total of 81 SPF-related genes and 45 genes related to
salt stress that displayed significant splicing variation at diverse salt
treatment time points were discovered (Supplementary Table S8).
After salt stress treatment for 2 and 12 h, there were more
upregulated than downregulated genes (Figure 6B). The main AS
events were SE and RI in salt-treated G. uralensis (Figure 6C). Most
SPF-related genes showed increased expressions in salt-treated G.
uralensis UP section (UPSS_2h, UPSS_6h, and UPSS_12h)
(Supplementary Figure S4). These results suggest that the SPF-
encoding genes and genes related to salt stress are regulated by
AS in G. uralensis UP under salt stress.

To comprehend how stress response genes in the root tissue of
G. uralensis adapt to salt stress, we examined the expression levels of
four genes encoding SPFs. As illustrated in Supplementary Figure
S5, under salt stress at various time points, the four
genes—Glyur000002500000283  (similar to Glycine rich RNA-
binding  protein RZIB), Glyur000834s00025309 (akin to
Polyglutamine-binding ~ protein 1),  Glyur000659s00029682
(paralleling  Serine/threonine protein phosphatase PP2A),
Glyur000136500007936
protein  2)—
partial protein) and low expressions as isoform 2 (non-spliced

and

(reminding of Polyadenylate binding

exhibited high expressions as isoform 1 (spliced

intact protein) (Supplementary Figures 5A-D). These SPF-
encoding genes displayed comparable responses to salt stress,
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implying their potential functions in modulating the salt-stress
response in G. uralensis.

3.7 ldentification of potential regulators in
G. uralensis in response to salt stress

Many genes encoding the calcium ion and MAPK signal
transduction pathway proteins showed notable AS alterations
Glyur001147500029003 (MPK4)
encodes mitogen-activated protein kinase, with a significantly

(Supplementary Figure S6).

higher proportion of isoform 1 observed under salt stress 2, 6,
and 12 h treatment. Under APSS_2h, APSS_12h, UPSS_2h, UPSS_
6h, and UPSS_12h treatment conditions, there was a significant
increase in isoform 1 of Glyur000143s00011203 (RbohD).
Glyur000099s00014961(SnRK2) encodes erine/threonine—protein
kinase, in which isoform 1 was detected in higher proportions
under APSS_2h treatment conditions than control conditions.
APSS_2h  UPSS_2h, UPSS_6h, and UPSS_12h
conditions resulted in significantly higher proportions of isoform
1 than control conditions for Glyur000837s500027495 (ETR2)
(Supplementary Figures S6C,E,F,G).

treatment

The expression patterns of the four genes in the above-
mentioned MAPK pathway were also examined using qRT-PCR
under salt stress. MPK4 had a significantly higher expression level
observed under salt stress 2, 6 and 12 h treatment than control
conditions. Under APSS_2h, APSS_12h, UPSS_2h, UPSS_6h, and
UPSS_12h treatment conditions , there was a significant increase in
expression level of RbohD compared to control conditions. SnRK2
expression level was higher under APSS_2h treatment conditions
APSS_2h, UPSS_2h, UPSS_6h, and UPSS_12h
treatment conditions resulted in significantly higher proportions

than control.
of expression level than control conditions for ETR2 (Figure 7). G.

uralensis may be able to respond better to salt stress by increasing the
proportion of isoform 1 of salt-stress-related genes. These findings
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Analysis of KEGG enrichment and AS pattern of SPF-related genes during salt stress. (A) Top 20 pathways demonstrated enrichment of DSGs. (B)
Notable differential splicing was observed within SPF-related genes under salt-stress conditions. (C) Significant differential expression was recorded
within SPF-related genes under salt stress. **denotes p < 0.01 and * represents p < 0.05.

indicate that significant alternative splicing events in the MPK4,
RbohD, SnRK2, and ETR2 genes are especially generated in G.
uralensis, which lead to increased protein isoform 1 production
in response to salt stress.

4 Discussion

4.1 Salt stress significantly induced AS events
in G. uralensis

AS events are an important factor for plants to respond to stress;
RNA-seq studies-based analysis of abiotic stress-regulated AS events
in G. uralensis is still limited (Calixto et al., 2018; Ding et al., 2014; Li
etal., 2020; Liu et al., 2018; Thatcher et al., 2016). A total of 2591 and
3068 AS events were identified in the aboveground parts (AP) and
underground parts (UP) of G. uralensis under salt stress,
respectively, including SE, RI, A5SS, A3SS, and MXE. Under salt
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stress, the UP exhibited a higher occurrence of AS events related to
stress response in comparison to the AP, indicating a more vigorous
AS response. Some AS events may be gene-specific and some
species-specific, with SE and RI being the most and least
prevalent respectively in animals. The majority of AS cases are
caused by SE, while only 0.01% are caused by RI; in contrast, RI is the
most common form of AS in Arabidopsis and maize (Thatcher et al.,
2016). In recent years, however, SE and RI have been the most
prevalent AS in licorice and soybeans (Li et al., 2022; Song et al.,
2020) but MXE the least. These results are in line with our study.
This may be due to advances in sequencing technology and
detection tools that allow for more detailed detection of AS.
Among these, the SE-types of AS were the most prevalent. In AP
tissue, SE-types accounted for 30%-34% of the responsive AS events,
while in UP tissue they accounted for 28%-29% of the responsive AS
occurrences in salt-stressed G. uralensis. Under salt stress, there was
a higher occurrence of A3SS events than RI events (Figure 2), but the
count of A3SS and RI events was not significantly different
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Expression levels of BAM1 (A), cyclin-dependent kinase B2-2 (CDKB2-2) (B), DRM2 (C), and PP2C12 (D) in salt-stressed G. uralensis AP and UP
sections. Expression value was mean + SD with three independent replicates. Bonferroni test used to analyze average value. Diverse letters denote

significantly different salt stress treatments (p < 0.01).

(Figure 2). This finding aligns with a previous study that reported SE
and A3SS as the predominant AS models in soybeans and G.
uralensis under drought stress. However, RI was the notable AS
type in reaction to drought in soybeans. Under high temperatures
and drought treatments in wheat, the predominant type of AS was
found to be RI, whereas the primary model in maize of AS in coping
with stress was also RI (Iniguez et al.,, 2017; Liu et al., 2018; Shen
et al,, 2014; L; Wang et al, 2014; Y; Wang et al., 2020). These
differences in the major AS types could be attributed to variations in
SRP-related genes. Consequently, our investigation revealed many
AS events in G. uralensis under salt stress condition, underscoring
their crucial contribution to the response of G. uralensis to saline
environment pressures.

4.2 DSGs enriched in key GO terms and
KEGG pathways associated with salt stress
and AS

Global crop production is severely constrained by salt stress,
which negatively impacts the growth of G. uralensis (Xiao et al.,
2024). There are many genes that are responsive to salt stress, but the
alternative splicing patterns of these are still unclear. In this study,
we found that DEGs and DSGs mainly occurred in the root (Figures
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4B-D). To investigate what functions these DEGs and DSGs have,
we analyzed their GO enrichment separately. The results indicate
that most of these GO terms are enriched in UP tissues. In DSGs, GO
terms such as “pyruvate kinase activity”, “protoporphyrinogen
oxidase activity”, and “protoporphyrinogen oxidase activity” were
significantly enriched in UPSS_6h and UPSS_12h (Figure 5). In
DEG, GO terms such as “isoflavonoid biosynthetic process”,
“flavonoid glucuronidation”, “oxidation-reduction process”, and
“isoflavonoid metabolic process”, consistent with previous
studies, all participated in salt stress response (Kalifa et al., 2004;
Kononenko et al., 2023; Tavakkoli et al., 2011; Zhang et al., 2023).
Meanwhile, in DSGs, some GO terms such as “spliceosomal
”,“U2-type
“prespliceosome”, and “pre-mRNA 3’-splice site binding” were
significantly enriched at UPSS_2h, UPSS_6h, and UPSS_12h
especially, and “mRNA splice site selection” was enriched at
UPSS_2h, UPSS_6h, and UPSS_12h in G. uralensis (Figure 5),
which was known to be important for alternative splicing
(Clayton et al., 2011; Schindler et al., 2008). Interestingly, these

GO terms were not enriched in the DEG. These results indicate that

complex assembly spliceosomal complex”,

the alternative splicing genes played important roles in the response
to salt stress. Moreover, some previously identified stress-related
proteins were also enriched, such as enzyme activator activity (Gao
et al., 2017).
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To further investigate on which signaling pathways these DSGs
function, we performed KEGG enrichment. We observed
remarkable enrichment of DSGs in the “RNA transport”, “mRNA
surveillance”, and “spliceosome” pathways, which were significantly
enriched in UPSS_2h, UPSS_6h, and UPSS_12h, which are known
to be important for alternative splicing (Liu et al., 2018; Song et al.,
2020). The regulation of alternative splicing represents an important
means of fine-tuning gene expression that may save the time
required for changes in transcriptional activation and pre-mRNA
accumulation, thus allowing rapid plant adaptation to adverse
environmental conditions. Ultimately, the effects of alternative
splicing on mRNASs’ encoding effectors and modulators of abiotic
stress responses are determined by the levels and/or activity of the
splicing factors regulating this process. Pre-RNA undergoes
maturation to become mature mRNA through the spliceosome
process, making it an important splicing process (Syed et al,
2012). (2019) that
spliceosome component modifications were consistent with
drought-stressed ~ Arabidopsis
transcriptional profiles. We also discovered that genes encoding
SPFs proteins, which these are certain RNA-binding
(Glyur000002s00000283, Glyur000834s00025309, and
Glyur000136500007936)  were regulated by AS.
Spliceosomes have been reported in G. uralensis under drought

Marondedze et al. recently reported

changes in proteome  and

potentially

stress (Li et al., 2022), indicating their involvement in the reaction of
G. uralensis to salt stress.

The mRNA surveillance pathway detects and degrades
abnormal mRNAs and plays an important role in maintaining
accurate gene expression with salt stress in soybeans (Song et al.,
2020). In soybeans, nonsense-mediated decay (NMD) is a crucial
pathway responsible for mRNA surveillance and facilitates the
degradation of mRNAs that contain premature termination
codons (Lareau et al., 2007). According to Baena-Gonzalez et al.
(2007), approximately 17.4% of multi-exonic and protein-coding
genes in Arabidopsis are known to produce splicing variants aimed
by NMD. Salt stress modulates AS in conjunction with NMD in
Arabidopsis (Drechsel et al, 2013). In the present study, we
identified one gene (Glyur000659s00029682) that encodes the
PP2A and AS
(Supplementary Figure S4D). Hence, the salt stress response in

serine/threonine regulated by salt stress
G. wuralensis could potentially be regulated by the mRNA
surveillance pathway. Pre-mRNAs and proteins abundant in Ser/
Arg residues are key players in AS, helping maintain cellular and
tissue homeostasis (Ding et al., 2014; Laloum et al., 2018; Li et al.,
2022; Reddy et al., 2011). AS occurs in SRP-related genes in plants in
a developmental and tissue-specific manner, responding to various
hormonal and abiotic stresses (Ding et al., 2014; Li et al,, 2022;
Zhang et al, 2009; Zhu et al, 2017). BrSR45a was found by
Muthusamy et al. (2020) to increase stress-inducible genes and
influence the AS of target genes in Arabidopsis. Interestingly, our
study discovered that AS during salt stress affected specific genes
involved in encoding Ser/Arg-rich proteins, which are identified as
participants in pre-mRNA splicing (Figure 6). Therefore, SRP-
related genes in G. uralensis may play a significant role in coping
with salt stress.

Some KEEG pathways such as “Peroxisome” were significantly
enriched at APSS_2 h and APSS_6h, which was consistent with
previous studies that all participated in salt stress response (Liu et al.,
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2018). Moreover, some previously identified stress-related signaling
MAPK
pathway - plant (Yang et al., 2018). Plants have collectively

pathways were also enriched, such as signaling
evolved specific responses at both transcriptional and AS levels to

cope with salt stress.

4.3 Signaling pathways in response to
salt stress

In addition to AS, salt stress can also give rise to oxidative stress
by increasing the levels of reactive oxygen species (ROS) (Carillo,
2019). Plant antioxidant systems have been shown to effectively
reduce the effects of oxidative stress and reduce ROS formation
(Farhangi-Abriz et al., 2017). Long-term evolution has led to a
variety of adaptive physiological and biochemical strategies for
plants, including protecting against high-salt environments,
restoring ROS equilibrium, and maintaining ion and osmotic
homeostasis. Plants respond to salt stress by producing H,0,
from NADPH oxidase (Rboh) (Liu et al., 2020). RbohD under
APSS 2,12, UPSS 2,6,12 elevated the proportion of isform
1 through A5SS events and then increased its expression. The
excess H,O, was then removed to improve salt stress response
in plants.

Licorice increases antioxidant activity when exposed to salt stress
conditions and reduces lipid peroxidation due to free radical damage
(Xu et al, 2021). In response to salt stress, MAPK cascades are
triggered, such as on the SOS pathway (Yang et al., 2018c¢). Plants can
adapt to salt stress by utilizing MAPK cascades for transducing signals
(Mishra et al., 2006). Salt stress is regulated by the MPK4 cascade in
Arabidopsis. Plants with the MPK4 gene null showed hypersensitivity
to salt stress, whereas plants with overexpressed MPK4 showed
greater salt tolerance (Teige et al., 2004). There are other plants
that also rely on the MAPK cascade for salt stress signal transduction.
Alfalfa (M. sativa), for example, uses the MKK-MK cascade to trigger
its response to salt stress (Kiegerl et al., 2000). The MPK4 cascade
controls salt stress signal transduction in rice by regulating the
expression of transcription factor genes (F. Wang et al, 2014).
When Arabidopsis is dehydrated, mutants of the MKK4 cascade
are more salt sensitive and shed more water than the wild type
(Kim et al., 2012). We demonstrate that MPK 4 under salt stress
increases isform 1 through SE events, increases its expression, and
regulates downstream genes responding to salt stress to improve plant
tolerance. When Asterochloris erici is subjected to hyperosmotic
stresses such as high salt and desiccation, MAPK signaling
cascades are activated (Gasulla et al., 2016). More studies are
needed to better understand how salt/osmotic stress in plants
affects MAPK signaling pathways. As a result of osmotic stress, all
ten SnRK2 isoforms are activated except SnRK2.9. The signaling
pathway is dependent on ABA in order to activate SnRK2.2/3/6/7/
8 (Boudsocq et al.,, 2004; Nykiel et al., 2023). Osmotic stress activates
transcription of downstream effectors through ABAactivated
SnRK2.2/3/6-ABA-responsive element (ABRE)-binding protein and
ABRE-binding factor (AREB/ABF) signaling (Soma et al., 2017). The
moss Physcomitrella patens expresses an ABA-responsive Raf-like
kinase (ARK) that activates SnRK2 in response to osmotic stress
(Saruhashi et al., 2015). As part of our research, we found that SuRK2
enhanced isform 1 proportions by enhancing SE event expression,
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regulating downstream salt stress response genes, and improving salt
stress tolerance in plants. Furthermore, many studies have shown that
the ethylene (ET) synthesis genes ETRI and ETR2 also regulate the
synthesis of ABA and that ABA can interact with ET to regulate salt
tolerance in plants (Zhang et al., 2022). ETR2 at APSS _2h, UPS SS _
2, and 12h increased the proportion of isform 1 by RI events to
improve ET synthesis and then regulate downstream salt stress
response genes to improve plant tolerance to salt stress. In this
study, expression levels of MPK4, RbohD, SnRK2, and ETR2 were
markedly elevated under CK treatment compared to salt stress,
demonstrating a significant increase (Figure 7). In the root tissues
of G. uralensis, these four genes exhibited significant AS events that
produced additional proteins in response to salt stress. Furthermore,
researchers can examine plant transcriptome datasets to analyze AS
events and their variations across different species, tissues, and
developmental stages. By examining AS patterns in various
environments, researchers can uncover insights into the functions
and mechanisms of AS in reaction to abiotic stress. Enhanced
comprehension of this matter could potentially pave the way for
the identification of novel strategies to bolster plant resistance against
stress, thus advancing our knowledge of plant biology and augmenting
our capacity to cultivate more resilient crops.
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