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Introduction: The tumor microenvironment and IRGs are highly correlated with
tumor occurrence, progression, and prognosis. However, their roles in grade II
and III gliomas, termed LGGs in this study, remain to be fully elucidated. Our
research aims to develop immune-related features for risk stratification and
prognosis prediction in LGG.

Methods: Using the ssGSEA method, we assessed the immune characteristics of
the LGG population. We conducted differential analysis using LGG samples from
the TCGA database and normal samples from GTEx, identifying 412 differentially
expressed immune-related genes (DEIRGs). Subsequently, we utilized univariate
Cox, LASSO, and multivariate Cox regression analyses to establish both a gene
predictive model and a nomogram predictive model.

Results: Here, we found that the ESTIMATE score, immune score and stromal
score of high-immunity, high-grade and isocitrate dehydrogenase (IDH) wild-type
glioma were higher than those of the corresponding group, and the tumor purity
was lower. Higher ESTIMATE scores, stromal scores and immune scores indicated a
poor prognosis in patients with LGG. Our four-gene prognostic model
demonstrated superior accuracy compared to other molecular features.
Validation using the CGGA as a testing set and the combined TCGA and CGGA
cohort confirmed its robust prognostic value. Additionally, a nomogram integrating
the prognosticmodel and clinical variables showed enhanced predictive capability.

Discussion: Our study highlights the prognostic significance of the identified four
DEIRGs (KLRC3, MR1, PDIA2, and RFXAP) in LGG patients. The predictive model and
nomogramdevelopedhereinoffer valuable tools for personalized treatment strategies
in LGG. Future research should focus on further validating these findings and exploring
the functional roles of these DEIRGs within the LGG tumor microenvironment.
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1 Introduction

Gliomas, including astrocytomas, oligodendrogliomas, and oligoastrocytomas, are the
predominant malignant primary tumors that occur within the central nervous system of
adults (Osuka and VanMeir, 2017; Jang and Kim, 2018). As per the 2021 fifth edition of the
WHO Classification of Tumors of the Central Nervous System, adult diffuse gliomas are
categorized as “astrocytoma, IDH-mutant,” “oligodendroglioma, IDH-mutant, 1p19q-
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codeletion,” or “glioblastoma, IDH-wildtype” (Louis et al., 2021).
Typically, the aforementioned first two categories, “astrocytoma,
IDH-mutant,” and “oligodendroglioma, IDH-mutant, 1p19q-
codeletion,” are classified as “low-grade gliomas,” whereas
glioblastomas are categorized as “high-grade gliomas” (Louis
et al., 2021; Li et al., 2022). Importantly, The Cancer Genome
Atlas (TCGA) program recognized the significantly higher
malignancy of glioblastoma (grade IV glioma) and defined grade
II and grade III gliomas as lower-grade gliomas (LGGs). This
distinction diverged from the conventional definition of low-
grade glioma based on the WHO classification.

LGGs account for approximately fifteen percent of all primary
brain tumors in adults (Rasmussen et al., 2017; Berntsson et al.,
2018; Li and Meng, 2019). In comparison to patients with
glioblastomas, patients with LGGs generally have a more
favorable prognosis (Claus et al., 2015). Nonetheless, importantly,
the majority of individuals diagnosed with LGGs will eventually
experience disease progression, transitioning to higher-grade
gliomas, which ultimately result in mortality (Kiran et al., 2019).
By conducting extensive long-term monitoring and collecting
comprehensive demographic and clinical information, it becomes
feasible to meticulously investigate the prognostic and predictive
importance of pertinent genetic biomarkers. Significant attention
has been directed toward IDH1/2 mutations because these markers
play a fundamental role in the classification of gliomas according to
the revised 2016 WHO CNS guidelines (Eckel-Passow et al., 2015;
Louis et al., 2016). In recent years, there has been growing
importance placed on molecular biomarkers, which serve as
valuable adjuncts in providing diagnostic information and
guiding treatment decisions. The World Health Organization
(WHO) Classification of CNS tumors, specifically CNS5, has
even directly incorporated genetic modifiers, such as IDH
mutations and 1p/19q codeletion, into the nomenclature of
gliomas, highlighting their crucial role in the diagnosis and
classification of these tumors (Louis et al., 2021).

Significant advancements have been achieved in the
management of LGGs, such as employing extensive surgical
resection, radiotherapy, and chemotherapy. However, it remains
common for these tumors to recur and develop drug resistance
(Osuka and Van Meir, 2017). Thus, there is an urgent need to
discover innovative biomarkers that can elucidate the underlying
pathological mechanisms of LGG and facilitate the development of
targeted therapeutic approaches for its treatment.

The role of the immune system in influencing cancer
progression has been a research hotspot of research for over a
century. Immunotherapy and immune checkpoint inhibitors have
emerged as groundbreaking approaches to impede tumor growth by
mitigating the immune evasion mechanisms employed by cancer
cells (Harris and Kranz, 2016; Banchereau and Palucka, 2018).
Notably, immune checkpoint inhibitors have garnered significant
interest as a comprehensive and potent form of immunotherapy.
These inhibitors function by obstructing inhibitory immune
checkpoint pathways, thereby reactivating the antitumor immune
response. For example, inhibitors targeting the PD-1/PD-
L1 pathway have demonstrated remarkable efficacy in the
treatment of melanoma (Long et al., 2018; Wan and Ming, 2018).
However, the outcomes of immunotherapy for glioma have thus far
been unsatisfactory (McGranahan et al., 2019). Therefore, it is

crucial to comprehend the immune mechanisms specific to LGGs
and explore novel immune checkpoints that could offer a new
avenue for immunotherapy.

Although previous studies have examined the relationship
between immune-related genes (IRGs) and the prognosis of
patients with LGGs, most of them have focused on the individual
functions of single genes. Few studies have utilized high-throughput
sequencing to explore the correlations between multiple immune
genes and the prognosis of LGG. In this study, we aimed to address
this gap by employing the single-sample gene set enrichment
analysis (ssGSEA) method to classify LGG patients from TCGA
and CGGA databases into two distinct clusters: the immune-high
and immune-low clusters. To validate the molecular and immune
patterns of these clusters, we employed the ESTIMATE algorithm.
Furthermore, a combination of least absolute shrinkage and
selection operator (LASSO) regression and Cox regression
analysis was applied to construct an IRG prognostic model.
Finally, we combined clinical information with the prognostic
model to create a nomogram to improve the prediction of the 1-
year, 3-year, and 5-year overall survival rates of LGG patients.

2 Materials and methods

2.1 Cell line

This study utilized two distinct cell lines, SVGp12 and U-373
MG, purchased from YaJi Biological (Shanghai, China). SVGp12 cell
line, derived from normal human astrocytes obtained from the
human brain, was used as the control group to represent normal
cellular characteristics. SVGp12 cells were cultured in complete
DMEM medium composed of 89% DMEM, 10% fetal bovine
serum (FBS), and 1% penicillin-streptomycin (PS).

On the other hand, the U-373 MG cell line, derived from human
glioblastoma multiforme, served as the experimental group,
representing glioma cell characteristics. U-373 MG cells were
maintained under the same standard cell culture conditions,
using complete DMEM medium composed of 89% DMEM, 10%
FBS, and 1% PS. Both cell lines were cultured in a sterile
environment at 37°C with 5% CO2 incubation.

2.2 Databases

The transcriptomic data and clinical information for LGG and
glioblastoma (GBM) patients were downloaded from the TCGA
portal (https://portal.gdc.cancer.gov/). The molecular data, along
with clustering and subtyping information of TCGA samples, were
extracted from the Supplementary Material of previous studies
(Ceccarelli et al., 2016). To obtain a reference for normal
samples, the transcriptomic data of 1,152 normal samples were
downloaded from GTEx (https://gtexportal.org/home/datasets).
The RNA-seq data from the CGGA database (https://www.cgga.
org.cn), along with corresponding clinical information, were utilized
to validate the risk model. A comprehensive list of IRGs was
obtained from the ImmPort database (https://www.immport.org/
home), which serves as a valuable resource for immunology
research. The ID numbers of the patient transcriptomic data
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were matched with the patient OS data, age data, IDH mutation
data, and grading data. Any data entries that did not have matching
ID numbers were removed from the dataset. Consequently, we
obtained transcriptomic and clinical information from 500 LGG
patients in the TCGA database and 552 LGG patients in the CGGA
database, ensuring that the dataset was complete. Information
regarding immune infiltrates of six types of immune cells
(B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages,
and dendritic cells) was acquired from the TIMER database (http://
www.cistrome.org/). Our access to all databases was concentrated in
November 2022.

To process the data, R software (https://www.r-project.org/) was
used. To mitigate the impact of batch effects, we employed the
“limma” package embedded within R to normalize the combined
transcriptomic data from different databases.

For the benefit of a broader audience with varying backgrounds,
we have created a graphical abstract (Supplementary Figure
Graphical Abstract).

2.3 Clustering of the LGG patients

The ssGSEAmethod is a recently introduced algorithm designed
to quantify immune cell subsets using RNA samples obtained from
diverse tissue types, including solid tumors (Bindea et al., 2013). In
this particular study, the ssGSEA method was employed to
determine the absolute enrichment fraction of 29 immune cells,
along with their immune-related functions and pathway marker
genes, in patients with LGG. To further analyze the LGG samples
from the TCGA and CGGA databases, the R package “GSVA” was
utilized for computing the ssGSEA score levels for gene sets in LGG
samples. Following, we utilized the SPARCL algorithm provided by
the “sparcl” package to conduct clustering analysis, thereby
clustering the samples into two distinct groups: immune-high
and immune-low. These approach enabled the classification of
samples based on their levels of immune activity and allowed for
a deeper understanding of their immune characteristics within the
context of LGG.

2.4 Survival analysis

Kaplan-Meier analysis coupled with the log-rank test
was performed to identify IRGs with prognostic significance.
The “Survival” and “Survminer” packages in R were utilized
to visualize the associations between gene expression levels
and the outcomes of patients with LGG by plotting
survival curves.

2.5 Evaluating the efficacy of immune
clustering, IDH mutations and grade

To evaluate the effectiveness of ssGSEA clustering, IDH
mutations, and grade, the ESTIMATE algorithm was employed.
The R package “ESTIMATE” was used to calculate the ESTIMATE
scores, immune scores, stromal scores, and tumor purity for each
sample of LGG in different groups.

2.6 Identification of differentially expressed
immune-related genes (DEIRGs)

The differential expression gene profile between normal samples
in the GTEx database and LGG samples in the TCGA database was
determined by the R package “limma” (FDR<0.05 and |log2 [FC]| >
1). The IRGs obtained from the ImmPort database were intersected
with the IRGs to obtain DEIRGs. The “pheatmap” package is
employed to generate heatmaps, where the default clustering
coefficient is set to 0.75. This implies that elements with a
similarity exceeding 0.75 are grouped into the same cluster.

2.7 Risk model construction

The clinical data of LGG samples from the TCGA dataset were
analyzed using the “Survival” package in R through univariate Cox
regression analysis. This analysis aimed to identify IRGs that
exhibited a significant association with the survival of LGG patients.

To further refine the selection of prognostic genes, a LASSO
analysis was performed using the “glmnet” package in R. Based on
the training set, the optimal penalty coefficient (log(λ) = −3.4) was
determined.This analysis helped identify candidate risk genes with
the potential to predict patient outcomes in LGG.

The selected risk genes were then assessed for their role in
prognosis using multivariate Cox regression analysis. Multivariate
Cox regression considers multiple factors to determine the impact of
each factor on survival time after adjusting for other factors.

To integrate the expression levels of the identified risk genes, a
risk score for each patient was calculated. The risk score was
calculated by summing the products of the gene expression level
and its corresponding regression coefficient. This score provided a
quantitative measure of the patient’s risk and could be used to
stratify patients into different risk groups based on their predicted
prognosis. The specific formula was as follows:

Risk score = 12.4241 × exp (−0.4939 × expression of KLRC3 +
0.2125 × expression of MR1 + −0.1655 × expression of PDIA2
+ −0.4283 × expression of RFXAP).

2.8 Quantitative real-time PCR (qRT-PCR)

One microgram of RNA was reverse transcribed using HiScript
II Q Select RT SuperMix for reverse transcriptase PCR, which
includes a gDNA wiper (Vazyme, R323, China). The qRT-PCR
was then conducted using the CFX96 Touch Real-Time PCR
Detection System (Bio-Rad), employing ChamQTMSYBRqPCR
Master Mix (Vazyme, Q711, China) along with the specified
primers. The analysis of gene expression was carried out by the
relative quantification 2−ΔΔCT method, using 18S rRNA as the
normalization control.

Human KLRC3 qPCR Primer Pair (Beyotime, QH17145S),
Human PDIA2 qPCR Primer Pair (Beyotime, QH50201S),
Human RFXAP qPCR Primer Pair (Beyotime, QH21601S),
Human RNA18SN5 qPCR Primer Pair (Beyotime, QH00093S),
Human MR1 qPCR Primer Pair (Forward Primer - TGGGGT
CCCTGAATTTATTTCG, Reverse Primer - TTCCACCTTGAA
CATCTGCTG).
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FIGURE 1
Construction and verification of LGG clustering. (A) The heatmap showed that the 29 immune-related cell types had high expression in the high-
immune cell infiltration group (Immunity-high), and low expression in the low immune cell infiltration group (Immunity-low). The Tumor purity and
ESTIMATE, Immune, and Stromal Scores of each patient are shownwith clustering information using the ESTIMATE algorithm. (B–E) The violin plot shows
the difference in the ESTIMATE, Immune, Stromal Scores and Tumor purity between the two clusters. (F–I) The violin plot shows the difference in the
ESTIMATE, Immune, Stromal Scores and Tumor purity between the IDH mutant group and the IDH wild-type group. (J–M) The violin plot shows the
difference in the ESTIMATE, Immune, Stromal Scores and Tumor purity between the grade II and III gliomas. (N) Kaplan–Meier curves for overall survival in
the high and low immune cell infiltration groups. (O) Kaplan–Meier curves for overall survival in the IDH mutant and IDH wild type groups. (P)
Kaplan–Meier curves for overall survival in the grade II and grade III gliomas. (Q) Kaplan–Meier curves for overall survival in the high and low immune-
score groups. Data are represented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.0001.
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2.9 Immune cell infiltration analysis

The estimation of immune infiltration in LGG samples was
performed using the TIMER and ssGSEA algorithms. These
algorithms were utilized to assess the presence and abundance of
immune cells within the tumor microenvironment. The TIMER
algorithm, which incorporates six major types of immune cells,
including B cells, CD4+ T cells, CD8+ T cells, dendritic cells,
neutrophils, and macrophages, was employed to evaluate the
relative abundance of each immune cell type.

2.10 Construction of the nomogram

A nomogram is a useful tool for predicting survival rates in LGG
patients. In this study, the R packages “rms” (root mean square) and
“survival” were utilized to develop a nomogram based on IRG
prognostic markers. The risk score, age, IDH mutation status,
and tumor grade were considered predictors in the
nomogram model.

2.11 Statistical analyses

All statistical analyses were conducted using R software (version
4.0.2). A p-value <0.05 was considered to indicate statistical
significance. The Pearson correlation coefficient test was
employed to assess the rank correlation among variables. To
determine the differences between variables, the independent
t-test was utilized. For differential analysis and normalization, the
“limma” package in R was employed. We utilized the “survival”
package in R to conduct either Cox regression modeling or Kaplan-
Meier analysis accompanied by a log-rank test. These analyses were
employed to evaluate the associations between the identified
prognostic risk factors and the survival outcomes of LGG patients.

To assess the accuracy of the prognostic risk model, time-
dependent receiver operating characteristic (ROC) analysis was
performed. Additionally, the concordance index (C-index) was
calculated. These metrics were used to evaluate the predictive
performance of the model.

In terms of the prediction values, an area under the curve (AUC)
greater than 0.60 was considered acceptable, while an AUC greater
than 0.70 was considered favorable. Similarly, a C-index greater than
0.60 was considered acceptable in evaluating the performance of the
prognostic risk model.

3 Results

3.1 Construction and validation of LGG
clustering

The data from a cohort of 1152 LGG patients was collected from
both the TCGA database and the CGGA database. The ssGSEA
score was calculated for each LGG sample, and based on this score,
the samples were divided into two clusters using an unsupervised
hierarchical clustering algorithm (Figure 1A). To assess the
reliability of the clustering results, we employed the ESTIMATE

algorithm to calculate the tumor purity, stromal score, immune
score, and ESTIMATE score based on the expression profiles of each
LGG sample. The analysis revealed that the immune-high cluster
group had significantly higher stromal, immune, and ESTIMATE
scores and lower tumor purity scores than the immune-low cluster
group (p < 0.05) (Figures 1B–E). Furthermore, through Kaplan-
Meier analysis, we observed a significant correlation between
immune clustering and the survival outcomes of LGG patients
(p < 0.05) (Figure 1N).

We also found that IDH wild-type gliomas had significantly
higher stromal, immune, and ESTIMATE scores and lower tumor
purity scores than IDH mutant gliomas (p < 0.05) (Figures 1F–I).
Additionally, grade III gliomas exhibited significantly higher
stromal, immune, and ESTIMATE scores and lower tumor purity
scores than grade II gliomas (p < 0.05) (Figures 1J–M).

Subsequently, we categorized the LGG patients into high- and
low-score groups based on their immune scores, using the mean
score as the cutoff value. Kaplan‒Meier survival analysis
demonstrated a significant association between the immune
score, IDH mutation status, and glioma grade and the survival of
LGG patients (p < 0.05) (Figures 1O–Q). These findings suggest that
the patient’s immune microenvironment may have comparable
prognostic significance to IDH mutation status and tumor grade
in LGG patients.

3.2 Identification of DEIRGs

To compare differences in gene expression patterns between
normal brain samples from the GTEx database and LGG samples
from the TCGA database, a significance threshold of [FDR] <
0.05 and |log2[FC]| > 1 was applied. This resulted in the
identification of 8832 differentially expressed genes (DEGs),
including 4358 upregulated genes and 4474 downregulated genes
(Supplementary Figures S1A, B). Furthermore, we obtained
1793 IRGs from the ImmPort database. By integrating these
IRGs with the DEGs, we selected 412 DEIRGs for further
analysis using the criteria of [FDR] < 0.05, |log2[FC]| > 1
(Supplementary Figures S1C, D). These DEIRGs represent genes
that are both differentially expressed and relevant to the immune
response in LGG samples.

3.3 Identification of prognostic DEIRGs

In our study, we utilized a training set comprising 500 LGG
patients with complete clinical data for further analysis. As the
immune-related signatures demonstrated differential levels between
tumor and normal samples, we aimed to identify prognostic genes
among them. To accomplish this, we performed univariate Cox
regression analysis on all DEIRGs in the TCGA training set to
identify potential prognostic DEIRGs (PDEIRGs). Our analysis
revealed that 29 DEIRGs significantly influenced OS in LGG (p <
0.05) (Figure 2A).

Since the PDEIRGs had a significant impact on patient
outcomes, we constructed a Cox regression hazards model by
further refining the selection of PDEIRGs. To reduce the
complexity of the prognostic signature, we employed Lasso
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FIGURE 2
Risk genes in the prognostic risk model. (A) Using univariable Cox regression analysis, the HR and p-value for the chosen genes in the immune-
related prognostic genes. (B,C) PDEIRGs selected through Lasso regression. (D) Multivariate Cox analysis identified four immune-related genes. (E) The
Schoenfeld residual that assessed what factors can be incorporated into the model. (F) Kaplan-Meier curve analysis of the high-risk and low-risk groups.
(G) Expression trend of risk genes in the prognostic model. (H) Risk score distribution of patients in the prognostic model. (I) Survival status scatter
plots for patients in the prognostic model. (J) Time-dependent ROC curve analysis of the prognostic model. (K) Concordance index of the indicated
prognostic model in the training set.
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regression to eliminate PDEIRGs that exhibited high correlation
with each other. Following the assessment, the optimal penalty
coefficient [log(λ)] was determined to be −3.4, corresponding to
a scenario where 11 genes exhibited non-zero Coef values
(Figures 2B, C).

Subsequently, we employed multivariate Cox regression model
to calculate the regression coefficient for each gene. Through this
rigorous selection process, we identified four optimal PDEIRGs,
referred to as risk genes, for the prognostic risk model. These genes
included KLRC3, MR1, PDIA2, and RFXAP. Among them,
MR1 was found to be associated with a higher risk of death,
predicting a poor prognosis. However, KLRC3, PDIA2, and
RFXAP were associated with a lower risk of death, acting as
protective factors (p < 0.05) (Figure 2D).

Furthermore, we plotted the Schoenfeld model residuals
against the expression levels of KLRC3, MR1, PDIA2, and
RFXAP. Based on this assessment, we preliminarily concluded
that these predictive factors should be incorporated into the
model (Figure 2E).

By comparing the normal and LGG samples from the
database, we identified the expression trends of these four
genes (Figure 3A). Subsequently, to ensure the reliability of
risk genes, we referenced existing studies (Wu et al., 2023) and
validated the expression of each risk gene through qRT-PCR
experiments (Figures 3B–E). This suggests a significant
association between immune-related risk genes and the onset
of gliomas. Importantly, these risk genes serve as reliable
biomarkers with potential clinical applicability.

3.4 Construction of the prognostic risk
model of the four-gene signature

The regression coefficients of the selected PDEIRGs were
utilized to construct a risk model, which allowed us to calculate a
risk score for each patient. The formula was as follows:

Risk score = 12.4241 × exp (−0.4939 × expression of KLRC3 +
0.2125 × expression of MR1 + −0.1655 × expression of PDIA2
+ −0.4283 × expression of RFXAP).

Utilizing the aforementioned equation, we calculated the risk
score for each patient in the training set and arranged them in
ascending order. Based on the median risk score (risk score =
0.9130), we divided the training set into two groups: a high-risk
group (risk score >0.9130) consisting of 250 patients and a low-risk
group (risk score <0.9130) consisting of 250 patients. To assess the
associations between risk scores and OS, we performed Kaplan-
Meier analysis with the log-rank test. This analysis revealed that
patients with high-risk scores had significantly poorer OS than those
with low-risk scores (p < 0.05) (Figure 2F).

Further examination of the high-risk training set revealed that
the 3-year and 5-year OS rates were approximately 65.9% and
47.35%, respectively. In contrast, the corresponding OS rates in
the low-risk training set were approximately 86.4% and 75.5%,
respectively. To determine the expression patterns of the four
genes used in the risk model, we generated a heatmap comparing
their expression levels between the high-risk and low-risk groups.
The high-risk group exhibited higher expression levels of the high-
risk gene (MR1) and lower expression levels of the protective genes

FIGURE 3
Quantitative analysis of risk genes using qRT-PCR: (A). Expression of four risk genes in GTEx-CON and TCGA-LGG. (B–E). Relative differences in
gene expression of risk genes between normal and astrocytic glioma cell lines. In this figure, p< 0.05 was presented with “*”, p< 0.01 was presented with
“**”, p< 0.001 was presented with “***”.
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(KLRC3, PDIA2, and RFXAPP) (Figure 2G). Conversely, the
expression pattern in the low-risk group showed the opposite trend.

Figures 2H, I present the distribution of survival risk scores and
the dot plot of survival status for each patient in the training set,
respectively. To evaluate the prognostic accuracy of the risk score,
we employed time-dependent receiver operating characteristic
(ROC) curves and calculated the corresponding area under the
curve (AUC) values. The AUC values for the 1-year, 3-year, and
5-year predictions were approximately 0.879, 0.771, and 0.709,
respectively (Figure 2J).

To assess the performance of our risk score model, we computed
the C-index in the training set for each year from the first to the 10th.
The C-index values obtained were greater than 0.6, indicating a
reasonable discriminatory capacity of the risk score
model (Figure 2K).

By examining the relationship between the proportion of
immune cell types within tumor samples from the TCGA dataset
and the risk scores, we identified a significant correlation.
Specifically, we found that patients with higher risk scores tended
to exhibit increased levels of immune cell infiltration, including
those of B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells (p < 0.05). This correlation is
illustrated in Figures 4A–F.

3.5 Assessment of the reliability of the
risk model

Previous studies have demonstrated that clinically relevant
molecular subtypes, such as IDH mutation, 1p/19q co-deletion
status, and DNA methylation profiles, provide valuable

prognostic indications for LGG (Ceccarelli et al., 2016). We
observed extensive molecular profile heterogeneity between these
two subtypes in our risk model, which has significant implications
for assessing its reliability (Figure 5A). The vast majority of
molecular subtypes exhibited significant differences between the
two risk subtypes, indicating that our risk model provides valuable
prognostic insights for LGG. To further demonstrate the superiority
of our model, we assessed the performance of various molecular
subtype classifications using ROC curves (Figures 5B–O). Overall,
only the classification models for IDH status, IDH/codel subtypes,
pan-glioma RNA expression cluster, and pan-glioma DNA
methylation cluster demonstrated excellent performance
(AUC>0.7) (Figures 5F, G, M, N). However, in terms of
predicting accuracy for 1-year, 3-year, and 5-year outcomes, they
still lagged behind our risk score model (Figure 2J).

3.6 The performance of the
prognostic model

In the CGGA database, we utilized a cohort of 552 eligible LGG
patients as the external testing set to evaluate the validity and
accuracy of our prognostic risk model. Additionally, we
combined the TCGA and CGGA datasets to create an expanded
cohort with a total of 1052 patients and applied batch correction to
ensure robust validation. Based on the median value of risk scores
calculated from the training set, both the testing set and the entire set
of LGG patients were divided into high-risk (n = 349 and n = 599,
respectively) and low-risk (n = 203 and n = 453, respectively) groups.

The Kaplan‒Meier survival analysis conducted in both the
testing set and the entire set revealed a significant improvement

FIGURE 4
Relationships between the risk score and the abundance of immune cell infiltration. (A) B cells. (B) CD4 T cells. (C) CD8 T cells. (D)Macrophages. (E)
Neutrophils. (F) Dendritic cells.
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FIGURE 5
Assessment of the reliability of the risk model (A) A overall review of the differential distribution of molecular spectra between two risk subtypes.
(B–O) 1-, 3- and 5-year OS-dependent ROC curves for various molecular subtypes in the TCGA cohort. Histology ROC (B), Grade ROC (C), Age (years at
diagnosis) ROC (D), Gender ROC (E), IDH status (F), IDH/codel subtype ROC (G), 1p/19q codeletion ROC (H), MGMT promoter status ROC (I), Chr 7 gain/
Chr 10 loss ROC (J), TERT promoter status ROC (K), ATRX status ROC (L), Pan-Glioma RNA Expression Cluster ROC (M), Pan-Glioma DNA
Methylation Cluster ROC (N), Supervised DNA Methylation Cluster ROC (O).
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FIGURE 6
Validation of the immune-related gene prognostic signature in the testing and entire sets. (A,B) The survival status of patients in the high-risk and
low-risk groups in the testing and entire sets. (C) The prognostic signature’s time-independent ROC curve at 1-, 3-, and 5-year in the testing. (D)
Concordance index of the indicated prognosticmodel in the testing set. (E) The prognostic signature’s time-independent ROC curve at 1-, 3-, and 5-year
in the entire set. (F)Concordance index of the indicated prognosticmodel in the entire set. (G–H) Expression patterns of risk genes in the testing and
entire sets. (I,J) A scatter plot depicts the survival of LGG samples in the testing and entire sets. (K,L) Each LGG sample’s risk curve is reordered by the risk
score in the testing and entire sets.
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in OS in the low-risk group compared to the high-risk group (p <
0.05) (Figures 6A, B). Specifically, in the testing set, the 3-year and 5-
year survival rates were 58.3% and 46.6% in the high-risk group,
while those in the low-risk group were higher at 78.8% and 70.7%,
respectively (Figure 6A). These findings were further supported by
the area under the curve (AUC) analysis, where the 1-year, 3-year,
and 5-year AUCs were 0.690, 0.641, and 0.634, respectively,
indicating a high sensitivity and specificity of our proposed risk
model (Figure 6C).

Similarly, in the entire set, the 3-year and 5-year survival
rates were 61.3% and 48.0% in the high-risk group, while those
in the low-risk group were higher at 82.8% and 73.9%, respectively
(Figure 6B). The AUC values at 1 year, 3 years, and 5 years were
0.732, 0.680, and 0.662, respectively, further confirming
the accuracy of our risk model in predicting patient
outcomes (Figure 6E).

To assess the performance of our risk score model over time, we
calculated the C-index from the first year to the 10th year in both the
testing set and the entire set, with values exceeding 0.6 (Figures 6D,
F). These results demonstrate that our risk model, based on four
specific genes, exhibits high sensitivity and specificity, making it a
reliable predictor of OS in LGG patients.

Figures 6G–L present the distribution of risk scores, survival
status, and gene expression levels in the testing set and the entire set.
The findings were consistent with the training set, where the low-
risk group exhibited higher expression levels of protective genes and
lower expression levels of risk genes than the high-risk group.

Furthermore, the four genes included in the risk model (KLRC3,
PDIA2, RFXAP, and MR1) showed a significant correlation with the
OS rate of LGG patients (p < 0.05) (Figures 7A–D). Specifically,
higher expression levels of KLRC3, PDIA2, and RFXAP and lower
expression levels of MR1 were associated with a relatively favorable
prognosis in LGG patients.

3.7 Evaluation of IRG prognostic markers as
independent prognostic factors

In the subsequent analysis, univariate Cox analysis and
multivariate Cox analysis were performed to evaluate whether the
risk score could serve as an independent prognostic indicator in
addition to other clinical parameters such as age, sex, grade, and
IDH mutation status for LGG patients. Both univariate and
multivariate Cox analyses revealed significant associations
between age, grade, IDH mutation status, risk score, and OS (p <
0.05) (Figures 8A, B). Since IDH mutation status is a crucial
prognostic indicator designated by the World Health
Organization (WHO) for LGG, the entire dataset was further
divided into mutant and wild-type IDH groups. Subsequently,
the risk model was utilized to assess whether the risk prediction
could be made independent of IDH status (Supplementary Figure
S2). The results indicated that the risk model could indeed be
employed as an independent predictor for predicting the
prognosis of LGG patients, regardless of their IDH mutation status.

FIGURE 7
Kaplan-Meier analysis of risk model genes in the entire set. (A–D) Kaplan-Meier analysis of KLRC3 value (A), MR1 value (B), PDIA2 value (C) and
PLEKHA4 value (D) in patients with LGG.
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FIGURE 8
Construction of a nomogram and verification that the immune-related gene prognostic signature is an independent prognostic factor. (A,B)
Univariate and multivariate Cox regression analysis of the immune-related gene prognostic signature in LGG patients to determine independent risk
variables. (C–E) The combined ROC for age, grade and IDHmutation at 1-, 3-, and 5-years. (F) The development of a nomogram based on the immune-
related gene prognostic signature in the entire set. (G) The Schoenfeld residual that assessed what factors can be incorporated into the nomogram
model. (H) The combined ROC for nomogram at 1-, 3-, and 5-years. (I) Concordance index of the indicated nomogram prognostic model in the entire
set. (J) Kaplan-Meier curve analysis of the high-risk and low-risk groups. (K) Expression patterns of risk factors in the nomogram prognostic model. (L)
Survival status scatter plots for patients in the nomogram prognostic model. (M) Risk score distribution of patients in the nomogram prognostic model.
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The accurate grading of LGG is pivotal for precise diagnosis,
treatment decisions, and prognosis assessment. Notably, there exist
several phenotypical and genotypical differences between Grade II
and Grade III gliomas. In this study, we partitioned the entire dataset
into two distinct groups based on tumor grades G2 and G3.
Subsequently, we conducted a comprehensive analysis of our risk
model for each group independently. It’s noteworthy that our study
results revealed that the risk models demonstrated good accuracy in
both G2 group and G3 group, as shown in Supplementary Figure S3.
Specifically, G2 group exhibited higher accuracy in short-term
predictions compared to G3 group. Furthermore, there is a
consistent expression of risk genes across both groups. This
analytical approach has provided a robust framework for
evaluating the effectiveness and precision of our risk model in
differentiating between the prognoses associated with these two
tumor grades.

In the multivariate analysis (p < 0.05), we confirmed that three
clinical variables, age, grade, and IDH mutations, were significant
prognostic factors for LGG (Figure 8B). However, we wanted to
determine whether our risk score model was more accurate than
these clinical parameters alone in predicting the survival outcomes
at 1-year, 3-year, and 5-year intervals. For this purpose, we
conducted further validation of the risk model. Upon validation,
we obtained AUC (area under the curve) values for age of 0.572,
0.627, and 0.606 at 1 year, 3 years, and 5 years, respectively
(Figure 8C). The AUC values for grade were 0.670, 0.691, and
0.684 at 1 year, 3 years, and 5 years, respectively (Figure 8D).
Similarly, for IDH mutations, the AUC values were 0.693, 0.679,
and 0.633 at 1 year, 3 years, and 5 years, respectively (Figure 8E).
These results indicate that our risk model demonstrated higher AUC
values across all time intervals. Based on this comprehensive
evaluation, we conclude that the risk score derived from our
model is a suitable and independent predictor of prognosis in
LGG patients, exhibiting better accuracy than individual clinical
parameters such as age, grade, and IDH mutation status.

To predict the survival of LGG patients from a clinical
perspective, we utilized the entire dataset to construct a
nomogram. The nomogram incorporated age, grade, IDH
mutation status, and risk score as variables to predict
prognosis (Figure 8F).

Furthermore, we examined the Schoenfeld model residuals
plotted against age, grade, IDH mutations, and risk score. These
plots suggested that these predictive factors should be incorporated
into the model (Figure 8G). As shown in Figure 8H, we observed
AUC values of 0.765, 0.798, and 0.760 at one, three, and 5 years,
respectively, indicating a strong correlation between the nomogram
and observed survival probability.

We also calculated the C-index of our risk score model in the
testing set and the entire set, spanning from the first year to the 10th
year, yielding C-index values above 0.6 (Figure 8I).

Based on the nomogram scores, we divided the entire set into a
high-risk group (n = 526) and a low-risk group (n = 526).
Throughout the follow-up period, we performed Kaplan‒Meier
survival analysis on the entire set. The results demonstrated a
significantly increased OS in the low-risk group compared to that
in the high-risk group (p < 0.05) (Figure 8J). To visualize the
distribution of each factor in the sample, we assigned values to
dichotomous variables (e.g., grade II = 1, grade III = 2, IDHwt = 2,

and IDHmut = 3). Figures 8K–M display the distribution of risk
factors in a heatmap and the survival status and nomogram scores in
the entire set.

These findings underscore the reliability and effectiveness of our
immune-related gene prognostic model as well as the
trustworthiness of our nomogram model.

3.8 Clinical utility of the prognostic
risk model

To further evaluate the predictive power of the risk model in
LGG patients, we examined the association between the risk factors
(risk score and risk genes) from the risk model and the clinical
parameters, including age, grade, and IDH mutations.
Supplementary Figures S4A–D illustrates that in the wild-type
group, the levels of specific factors (KLRC3 and RFXAP) were
lower compared to those in the IDH mutant group, whereas
MR1 levels and the risk score were higher (p < 0.05).

Furthermore, we observed significant correlations between the
values of certain factors (MR1 level and risk score) and age
(Supplementary Figures S4E, F). As age decreased, the values of
these particular factors decreased (p < 0.05). Additionally, in grade
III, the values of certain factors (MR1 level and risk score) were
higher than those in grade II (p < 0.05) (Supplementary
Figures S4G, H).

These findings highlight the relationships between the risk
factors (risk score and risk genes) in the risk model and the
clinical parameters, providing further insights into the prognostic
value of these factors in LGG patients.

4 Discussion

LGG is the most common type of malignant primary tumor in
the central nervous system among adults. Despite the effectiveness
of various treatments, such as postoperative chemotherapy,
radiotherapy, immunotherapy, and targeted therapy, the current
management of LGG remains unsatisfactory in many cases.
Consequently, there has been a growing interest in identifying
reliable prognostic biomarkers for LGG, especially with
advancements in gene sequencing technology. The exploration of
prognostic biomarkers has revealed several significant factors
associated with glioma prognosis. Among these factors, the
identification of IDH mutations, O-6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation, and 1p/19q
codeletions have emerged as crucial indicators. These biomarkers
have been found to be closely related to the prognosis and clinical
outcomes of gliomas, including LGG. Their identification not only
aids in prognostic evaluation but also provides crucial insights into
potential therapeutic strategies and precision medicine approaches
(Chen et al., 2019). Numerous studies have shown that the immune
system is key in the progression and initiation of cancer (Angell and
Galon, 2013; Gentles et al., 2015). The immune system, via immune
cells, up- or downregulates IRGs to kill cancer cells at certain
immune checkpoints (Rooney et al., 2015; Sayour and Mitchell,
2017). IRGs can also be mimicked to help some cancer cells elude
destruction (Schreiber et al., 2011; Friedrich et al., 2019). Given its
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role in cancer progression and prognosis, IRGs are believed to be an
important predictor of cancer prognosis. Thus, in combination with
ESTIMATE algorithms, we performed a joint analysis of TCGA and
CGGA databases to provide novel insights into the role of IRGs in
the risk stratification and prognosis of LGG. We also calculated
immune scores for each patient and found them to be significantly
associated with grade, IDH mutation status and prognosis, which
was consistent with the results of a previous study (Xu et al., 2021).
IDH mutation status, designated as a biomarker by the World
Health Organization (WHO), was assessed using the ESTIMATE
method, revealing that it is associated with a comparatively better
prognosis in LGG patients. Furthermore, through multivariate Cox
regression analysis, we confirmed that IDHmutation status serves as
an independent risk factor. Recognizing the impact of ssGSEA
immune grouping and immune score on tumor development and
prognosis, it is reasonable to consider the immune gene signature as
a significant predictor. To predict the prognosis of LGG, we
identified prognostic IRGs and utilized them to construct a
risk model.

In our study, we observed a significant difference in survival
between normal brain samples and those with LGG. To investigate
this further, we utilized the GTEx database and TCGA database for
differential gene expression analysis. Through this analysis, we
identified 8832 DEGs between LGG and normal brain samples.
Subsequently, we compared these DEGs with the ImmPort database
and identified 412 DEIRGs.

To evaluate our model, we divided the dataset into a training
set (TCGA) and a testing set (CGGA). In the training set, we
performed univariate Cox regression analysis to identify DEIRGs
that significantly correlated with OS. We then employed LASSO
and multivariate Cox analysis to further refine the gene selection
process, resulting in the inclusion of four PDEIRGs of interest:
KLRC3, MR1, PDIA2, and RFXAP. These four candidate genes
were used to construct a Cox regression risk model for predicting
LGG prognosis.

Overall, our model demonstrated promising performance in
accurately differentiating patient survival outcomes. Our risk model
exhibited superior accuracy when compared with various molecular
subtypes classifications, such as 1p/19q codeletion and DNA
methylation. Additionally, when compared to age, grade, and
IDH mutation status, our univariate and multivariate Cox
regression analyses revealed that our model was a superior
independent prognostic factor for LGG patients. The findings
convincingly demonstrated the model’s ability to accurately
differentiate between distinct survival outcomes for patients.

The KLRC3 gene encodes the NKG2E protein, which was first
identified in natural killer (NK) cells. It belongs to the NKG2x family
and forms a heterodimeric complex with CD94, which is involved in
immune recognition and regulation (Kaiser et al., 2005; Orbelyan
et al., 2014). This interaction involves HLA-E, an MHC class Ib
protein that is known to play a role in immunosuppressive
mechanisms. HLA-E is highly expressed in various tumors,
including melanoma, colon cancer, and glioblastoma (Kaiser
et al., 2005; Wischhusen et al., 2005; Bianchini et al., 2006; Derre
et al., 2006). Cheray et al. (2017) provided evidence supporting the
crucial role of KLRC3 in glioblastoma cell invasiveness, as well as its
involvement in promoting cancer progression, including glioma
radiosensitivity, self-renewal properties, and radioresistance

mechanisms. These findings indicate that KLRC3 (NKG2E) has
the potential to serve as a novel target for the development of
therapeutic strategies against glioblastoma. Recently, a unique subset
of T cells known as mucosa-associated invariant T cells (MAIT cells)
has garnered significant attention due to their abundance in humans
and their involvement in various infectious and noninfectious
diseases. MAIT cells possess distinct specificity for microbial
riboflavin derivative antigens, which are presented by the major
histocompatibility complex (MHC) class I protein MR1. Under
normal healthy conditions, the expression of MHC class I-related
protein 1 (MR1) on the cell surface is generally low. However, it is
upregulated in various disease states or when cells are exposed to
microbial antigens, indicating its involvement in immune responses
(McWilliam and Villadangos, 2018). The presence of
MR1 transcripts detected in brain and kidney tumor foci strongly
suggests the involvement of mucosal-associated invariant T (MAIT)
cells in tumor immunity (Godfrey et al., 2019). MAIT cells are a
subset of proinflammatory innate T cells known to secrete cytotoxic
proteins and directly eliminate tumor cells. As a result, they have the
potential to serve as effective anticancer effector cells (Gold et al.,
2010; Jeffery et al., 2016). MAIT cells have been demonstrated to
play both passive and active roles in antitumor immune responses or
in conditions that can promote tumor growth (Jeffery et al., 2016;
Won et al., 2016). There is limited research on the correlation
between protein disulfide isomerase family member 2 (PDIA2) and
tumor prognosis. PDIA2 is primarily associated with protein
processing and translocation, but previous studies have also
suggested its potential involvement in antigen presentation
(Walker et al., 2013). However, regulatory factor X-associated
protein (RFXAP) is an essential transcription factor for major
histocompatibility complex (MHC) class II molecules. It has been
demonstrated to downregulate the expression of MHC class II
molecules in dendritic cells (DCs) and macrophages, thereby
inhibiting CD4+ T-cell infiltration (Surmann et al., 2015; Wu
et al., 2019). RFXAP has been associated with survival outcomes
in various solid tumors. Previous studies propose that the immune
system not only aids in fighting early-stage tumors but also
promotes tumor outgrowth by exposing the tumor to immune
effectors and preventing immunogenicity (Shankaran et al., 2001;
Dunn et al., 2002). For instance, pancreatic cancer cells can secrete
exosomal microRNA (miRNA/miR)-212-3p, which inhibits RFXAP
expression in DCs, thereby suppressing MHC class II expression
and promoting immune escape in pancreatic tumors (Ding et al.,
2015). These theories provide robust support for the model we
constructed.

In order to clarify the specificity of risk genes and risk models for
low-grade gliomas (LGG) as compared to GBM, we compared the
expression of risk genes in LGG and GBM. The results showed that
there were differences in the expression of the four risk genes in LGG
and GBM, especially KLRC3 and MR1. KLRC3 is expressed at
higher levels in LGG compared to GBM, while MR1 is relatively
downregulated in LGG compared to GBM. We believe that we
cannot consider the specificity of a single gene expression level in
LGG, but should comprehensively consider the specificity of the risk
prediction model constructed by four risk genes in LGG. After
incorporating the model into GBM data, GBM patients were
classified as high-risk groups based on their riskscore scores
(Supplementary Figure S5).
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To enhance the precision of the model, we developed a
nomogram analysis that combines the risk model with additional
clinical features (such as age, grade, and IDH mutation status) to
predict OS in patients with LGG. The area under the ROC curve
(AUC) demonstrated that the nomogram exhibited favorable
predictive performance. Consequently, our findings suggest that
the nomogram we constructed is a dependable tool for identifying
high-risk LGG patients, facilitating early interventions, and assisting
in the development of personalized treatments for LGG.

Moreover, we conducted an analysis to explore the correlation
between our risk model and specific clinical parameters. Interestingly,
we observed that certain factors in our model significantly influenced
the progression of LGG. This further strengthens the notion that our
model holds significant predictive power in clinical applications. Prior
research has shown that alterations in immune infiltrating cells within
the tumor microenvironment may be associated with prognosis
(McGranahan et al., 2016; Sobral-Leite et al., 2019). Pan et al.
(2018) discovered that the interactions between T cells and
microglia/macrophages play a crucial role as stromal determinants
in supporting the growth of LGG. In our research, there was a positive
correlation between the risk score of patients with LGG and the
infiltration of immune cells, including B cells, CD4+ T cells, CD8+

T cells, dendritic cells, macrophages, and neutrophils. These findings
further validated our risk model, which not only aids in evaluating the
immune microenvironment but also provides guidance for
immunotherapy interventions.

Lin et al. (2020) developed a prognostic risk model comprising a
signature of five mRNA molecules that has the ability to predict the
outcome of pediatricWilms tumor (WT) patients. This has important
implications for comprehending therapeutic targets in pediatric
Wilms tumor (WT) patients. Wenli Li et al. developed a
dependable prognostic risk model consisting of six genes with the
purpose of predicting OS in hepatocellular carcinoma (HCC) patients.
The Cox regression model of IRGs constructed by Lin et al. for the
prognostic stratification of papillary thyroid cancer can differentiate
between patients at high and low risk of mortality (Lin et al., 2019).

We observed that previous research had also developed an IRGs
risk model for LGG (Zhang et al., 2020). We verified the formula
mentioned in the article and the criteria for dividing into high and
low-risk groups, with the specific verification process detailed in the
Supplementary Tables S1, S2. Our verification results did not align
with the descriptions provided in the paper, leading us to believe that
the formula might be missing a part of the calculation process
(Supplementary Figure S6). Moreover, despite the article being
published in 2020, it utilized data from 2015. Given that TCGA
continuously updates its database, including adding and removing
numerous sample data, we consider the use of this database to be
outdated. Furthermore, this study did not analyze or discuss key
prognostic factors for LGG proposed by the WHO, such as IDH
status, DNA methylation, and 1p/19q codeletion, nor did it
demonstrate the superiority of its model relative to these factors.
The expression levels of the risk genes in question were also not
experimentally validated.

Compared to previous studies, our research had several
distinguishing features. In terms of data selection, we utilized a
combination of transcriptome data from LGG tissues in the TCGA
database and normal brain tissue transcriptome data from the GTEx
database. To ensure accuracy and reliability, we employed the TCGA

database as the training set to construct the model and then validated
it using an external testing set (the CGGA database). Furthermore, we
employed various algorithms, such as univariate Cox, multivariate
Cox, and Lasso regression, to identify IRGs for inclusion in ourmodel.
Notably, our model’s predictive superiority exceeds the prognostic
factors for LGG proposed by WHO, such as IDH status, DNA
methylation, and 1p/19q codeletion. We also conducted validation
of the risk genes involved in the riskmodel in cell lines. As a result, our
model demonstrated superior predictive capabilities for the
development of LGG compared to previous models.

Biomarkers often present a balance between specificity and
sensitivity, leading to potential false positives or negatives in
certain contexts. Future research could enhance diagnostic
accuracy by increasing sample sizes, incorporating additional
validation cohorts, or employing multimarker panels. While
biomarkers may show strong predictive values in specific
ethnicities or populations, their applicability can vary across
different groups. This necessitates designing future studies to
include diversity and representativeness, validating and
improving biomarker universality through large-scale, multicenter
studies across different ethnicities and regions. Biomarker detection
generally requires specialized techniques and equipment, which may
limit their use in low-resource settings. To address this, the
development of more economical and user-friendly detection
methods, or the adaptation and optimization of existing, lower-
cost technologies, is crucial. Even if some biomarkers are statistically
associated with disease states, their biological mechanisms and
clinical relevance might remain unclear. Future research should
focus on exploring the mechanisms linking biomarkers with disease
onset and progression, and on integrating these biomarkers
effectively into clinical decision-making processes. Biomarker
research often involves sensitive personal information and
biological samples, necessitating stringent ethical review and
privacy protection for participants. Future studies must adhere to
rigorous ethical standards to ensure the security of personal
information and the protection of participant rights.

While this study has yielded some interesting findings, we must
honestly acknowledge several limitations. Firstly, all data were
sourced from public databases. Although we conducted some
validation in cell lines, the lack of in vivo experimental data
remains a significant gap. Future research endeavors should aim
to validate our findings further using clinical samples and animal
model data, expanding the sample size, particularly by incorporating
multi-center clinical data to enhance the external validity of the
study. Secondly, given the continuous evolution of bioinformatics
tools, future investigations could leverage more advanced data
integration and analysis methods to deepen our understanding of
LGG heterogeneity. Utilizing single-cell sequencing techniques may
unveil genetic variations and expression differences among different
cell subpopulations within tumors, thereby providing better insights
into the pathogenesis of LGG. Furthermore, our study only focused
on static genomic information, and the impact of dynamic
epigenetic regulation and environmental factors has not been
thoroughly investigated. Future studies could comprehensively
explore the pathogenesis of LGG by integrating epigenetics and
environmental exposure data. Research into treatment avenues is
also an important direction for future inquiry. Integrating genomic
data with clinical treatment outcomes could facilitate more in-depth
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bioinformatics analyses to identify patient subgroups that may
respond favorably to specific treatment regimens.

5 Conclusion

In summary, this study presents a four-gene model that shows
promise as a reliable tool for predicting the prognosis of patients with
LGG. The risk score generated by the model demonstrated its
potential as an independent prognostic marker. The nomogram
developed based on the model can be instrumental in guiding
personalized treatment decisions for patients with LGG in clinical
practice. Moving forward, future research efforts can focus on
employing more advanced and rational bioinformatics strategies to
further refine and enhance the predictive accuracy of the model. This
may involve incorporating additional molecular markers, genetic
variants, or other relevant factors to improve the prognostic
capacity of the model. Overall, this study represents a valuable step
toward developing a robust prognostic tool for LGG patients, opening
avenues for personalized treatment approaches. Continued research
and validation will be crucial to establish the clinical utility and
applicability of the four-gene model in routine clinical practice.
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