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In recent years, burgeoning research has underscored the pivotal role of non-
coding RNA in orchestrating the growth, development, and pathogenesis of
various diseases across organisms. However, despite these advances, our
understanding of the specific contributions of long non-coding RNAs
(lncRNAs) and circular RNAs (circRNAs) to lens development remains notably
limited. Clarifying the intricate gene regulatory networks is imperative for
unraveling the molecular underpinnings of lens-related disorders. In this study,
we aimed to address this gap by conducting a comprehensive analysis of the
expression profiles of messenger RNAs (mRNAs), lncRNAs, and circRNAs at
critical developmental time points of the mouse lens, encompassing both
embryonic (E10.5, E12.5, and E16.5) and postnatal stages (P0.5, P10.5, and
P60). Leveraging RNA-sequencing technology, we identified key transcripts
pivotal to lens development. Our analysis revealed differentially expressed (DE)
mRNAs, lncRNAs, and circRNAs across various developmental stages. Particularly
noteworthy, there were 1831 co-differentially expressed (CO-DE) mRNAs,
150 CO-DE lncRNAs, and 13 CO-DE circRNAs identified during embryonic
stages. Gene Ontology (GO) enrichment analysis unveiled associations
primarily related to lens development, DNA conformational changes, and
angiogenesis among DE mRNAs and lncRNAs. Furthermore, employing
protein–protein interaction networks, mRNA–lncRNA co-expression networks,
and circRNA–microRNA–mRNA networks, we predicted candidate key
molecules implicated in lens development. Our findings underscore the
pivotal roles of lncRNAs and circRNAs in this process, offering fresh insights
into the pathogenesis of lens-related disorders and paving the way for future
exploration in this field.
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1 Introduction

The vertebrate lens is characterized by its symmetrical,
transparent, and refractive cells (Greiling and Clark, 2012;
Cvekl and Zhang, 2017). Originating from the surface
ectoderm, lens formation is initiated through mutual
induction between the optic vesicle and surface ectoderm.
Initially, ectodermal tissue adjacent to the optic vesicle
thickens to form a lens plate, followed by the formation of a
lens vesicle through invagination. Subsequently, cells in the
anterior wall of the lens vesicle differentiate into a single layer
of the vertical lens epithelium, while cells in the posterior wall
elongate to form primary lens fibers, arranged akin to concentric
circles within the crystalline cavity (Bassnett and Šikić, 2017;
Cvekl and Zhang, 2017). The intricate interplay of signaling and
regulatory networks guides cell division and the differentiation of
common progenitor cells toward lens development (Gunhaga,
2011). A series of signaling pathways, including BMP,
FGF–MAPK, and FGF–PI3K, have been shown to participate
in lens development (Cvekl and Zhang, 2017).

Non-coding RNAs (ncRNAs), including microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs), constitute the majority of RNA transcripts
and play indispensable roles in regulating gene expression at
translational and post-translational levels. LncRNAs, in
particular, are recognized as critical regulators of cellular
differentiation and organogenesis, exerting their functions
through various mechanisms, including cis or trans
pathways (Schmitz et al., 2016; Statello et al., 2021).
Numerous lncRNAs have been identified as contributors to
lens development; for instance, the lncRNA ALB regulates
autophagy during human lens development (Fu et al., 2017).
Additionally, circRNAs have been implicated in lens-related
diseases, such as circRNAs HIPK3 and KMT2E have also been
linked to lens epithelial cell proliferation and the pathogenesis
of diabetic cataracts, respectively (Liu et al., 2018; Fan
et al., 2019).

Several previous studies have conducted mRNA, lncRNAs,
and miRNAs transcriptional comparisons of the developing
murine lens (Khan et al., 2015; Khan et al., 2016; Anand
et al., 2018; Zhao et al., 2018). However, comprehensive
expression profiling of different developmental stages of the
mouse lens remains scarce. Notably, prior investigations
primarily focused on mRNA, miRNA, and lncRNA
expression profiles during the embryonic stage of lens
development or later stages, post-birth. Furthermore, limited
sequencing depth has constrained the discovery of numerous
key genes involved in lens development. To comprehensively
uncover the key regulatory factors involved in lens
development, we conducted a comparative analysis of
transcriptome data from various developmental time points
of the lens, spanning embryonic (E) days 10.5, 12.5, and
16.5 as well as postnatal (P) days 0.5, 10.5, and 60. Through
this analysis, we identified key mRNAs, lncRNAs, circRNAs,
and miRNAs potentially involved in lens development. Our
study offers novel insights into the developmental processes of
lenses and provides valuable clues for understanding the
pathogenesis of lens-related diseases.

2 Materials and methods

2.1 Tissue collection

C57BL/6N mice were provided by Zhejiang Vital River
Laboratory Animal Technology Co., Ltd. (Zhejiang, China). All
animal experiments were conducted strictly following the
guidelines of the Association for Research in Vision and
Ophthalmology (ARVO) statement for the care and use of
animals and were approved by China Technology Industry
Holding (Shenzhen) Co., Ltd. (no.20220086). The mouse
embryos were graded by specifying the date of vaginal plug
detection as embryonic (E) day 0.5. The microanatomy of the
crystalline lenses of mice was performed at the embryonic (E10.5,
E12.5, and E16.5) and postnatal stages (P0.5, P10.5, and P60). Each
lens development stage contained three biological repeats, each of
which comprised multiple lenses (E10.5, n = 15; E12.5, n = 20; E16.5,
n = 10; P0.5, n = 5; P10.5, n = 5; and P60, n = 5). At the same time,
whole mouse embryos at each developmental stage were obtained
and photographed under a microscope to record the complete
developmental state of the whole body and eyes of the mice.

2.2 RNA extraction, library construction, and
RNA sequencing

Total RNA of samples was extracted using the TRIzol reagent
(Invitrogen). The purity of RNA was measured using the
NanoPhotometer spectrophotometer, and the concentration was
detected using a Qubit® RNA Assay Kit with a Qubit®
2.0 Fluorometer. RNA integrity was determined using the
Bioanalyzer 2100 System. In this study, a total of
18 complementary DNA (cDNA) libraries were constructed using
the NEBNext® Ultra™ RNA Library Prep Kit for Illumina®. The
quality of the cDNA library was evaluated using Qubit 2.0 and
quantitative real-time PCR (qRT-PCR). The library was sequenced
on an Illumina NovaSeq 6,000 instrument. Transcriptome data were
uploaded to the NCBI database (https://account.ncbi.nlm.nih.gov/)
with the accession number PRJNA929701.

2.3 Quality analysis, mapping, and
transcriptome assembly

Clean reads were obtained by removing reads containing
adapters, poly-N, and low-quality reads from raw data. The Q20,
Q30, and GC contents of the clean data were calculated to assess their
quality. Clean reads were mapped to the mouse genome sequence
(downloaded from the UCSC genome browser on 05/2019) using
HISAT2 software (Kim et al., 2015). Themapped reads of each sample
were assembled using StringTie software (Pertea et al., 2015).

2.4 LncRNA and circRNA identification

Processes for identifying candidate lncRNAs: (1) transcripts
with exons <2 and lengths <200 bp were removed; (2) the known
transcripts, including mRNAs and other types of RNAs (tRNA,
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rRNA, snoRNA, snRNA, pre-miRNA, and pseudogenes), were
filtered by comparison with annotation files using gffcompare
(Pertea and Pertea, 2020). The qualified lncRNAs were classified
as known lncRNAs; and (3) the coding potential of the transcripts
was assessed using the coding potential calculator 2, coding–non-
coding index, and Pfam (Mistry et al., 2007; Sun et al., 2013; Kang
et al., 2017). The rest of transcripts without coding potential were
defined as final novel lncRNAs.

The identification of circRNAs was based on a conjoint analysis
using CIRI and find_circ software (Memczak et al., 2013; Gao
et al., 2015).

2.5 Expression analysis

Fragments per kilobase of transcript sequence per Millions base
pairs sequenced (FPKM) was used to evaluate the expression levels
of mRNAs and lncRNAs. Transcripts per million (TPM) was used to
evaluate the circRNA expression levels. edgeR software was used to
analyze the significance of gene expression difference (Robinson
et al., 2010). Differentially expressed (DE) mRNAs and lncRNAs
were defined according to the corrected p-value (padj) < 0.05 and
log2 (fold change) > 1.0, but the identification of mRNAs was based
on their gene expression levels; DE circRNAs were identified based
on the criteria of p-value <0.05 and log2 (fold change) > 1.0.

2.6 Cluster analysis and gene expression
pattern analysis

Cluster and gene expression pattern analyses of DE mRNAs,
lncRNAs, and circRNAs were performed using the OmicShare tools
(www.omicshare.com/tools).

2.7 GO enrichment analyses

The biological functions of DE lncRNAs were predicted based
on the co-localization and co-expression correlation between
lncRNAs and mRNAs. The cis-target mRNAs predicted the co-
localization threshold to 100 kb upstream and downstream of
lncRNAs, and the trans-target mRNAs were identified based on
the co-expression correlation with Pearson correlation
coefficient ≥0.9 between lncRNAs and mRNAs. The functions of
the DE circRNAs were revealed by functional analysis of their
parental genes. The clusterProfiler software package was used for
GO functional enrichment analysis (Yu et al., 2012). The GO terms
with p-value <0.05 were considered significantly enriched.

2.8 Construction of the protein–protein
interaction network

The protein–protein interaction (PPI) network was built to clarify
the interaction relationship of DE mRNAs using the STRING
database (https://string-db.org/), and its comprehensive score >0.
4 was selected as the acquisition criterion. Cytoscape software
(version 3.5.1) was used to visualize the PPI network (Su et al., 2014).

2.9 Construction of the mRNA–lncRNA co-
expression network

To screen the key lncRNAs involved in lens development, a co-
expression network between common differentially expressed (CO-
DE) lncRNAs and their target CO-DE mRNAs was constructed
using Cytoscape software (version 3.5.1).

2.10 Construction of the
circRNA–miRNA–mRNA network

miRanda database (version 1.0, analysis parameters: score ≥150, and
energy threshold ≤ −10) was used to predict miRNAs that interacted
with CO-DE circRNAs (Enright et al., 2003). The intersection of
RNAhybrid (analysis parameters: energy threshold ≤ −10 and p ≤
0.05), TargetScan (http://www.targetscan.org, default parameters), and
miRanda database was used to predictmiRNAs that interactedwith CO-
DE mRNAs in the embryonic period (Enright et al., 2003; Krüger and
Rehmsmeier, 2006; Ma et al., 2023). Finally, an endogenous competitive
ceRNA (circRNA–miRNA–mRNA) network was visualized using
Cytoscape software (version 3.5.1).

2.11 qRT-PCR validation

A total of six mRNAs and six ncRNAs (three lncRNAs and three
circRNAs) with differences in at least one control group were randomly
selected for qRT-PCR analysis, and the primers used in this study are
listed in Supplementary Table S1. Total RNA was extracted from lens
tissue at different developmental stages using the TRIzol reagent
(Invitrogen, United States), according to the manufacturer’s protocol.
Total RNA after the removal of genomic DNA was used to synthesize
the first strand cDNAs using the PrimeScript™ Master Mix (TaKaRa,
Dalian, China). qRT-PCR was performed using Hieff® qPCR SYBR
Green Master Mix (Yeasen, Shanghai, China) on the StepOnePlus™
real-time PCR system (Applied Biosystems, Foster City, CA,
United States). The reaction conditions are as follows: denaturation
for 5 min at 95°C, 40 cycles consisting of 10 s at 95°C, and 30 s at 60°C.
Each qRT-PCR assay was performed in triplicate, and GAPDH was
used as an internal reference gene. The relative gene expression level was
calculated using the 2−ΔΔCT method.

2.12 Statistical analysis

Statistical analyses were performed using SPSS v29.0.2 software
(SPSS, Inc.). The results are shown as means ± standard deviation.
Statistical differences between any two groups were determined
using one-way ANOVA. p-value <0.05 was determined to be the
criterion for statistically significant differences.

3 Results

3.1 Overview of mouse lens development

The lens placed invagination to form lens pit and the optic vesicle
invaginates to form an optic cup at E10.5. Later, the lens pit is converted
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into the lens vesicle, and the primary lens fibers began to differentiate,
filling the lens vesicle almost completely at E12.5. At E16.5, the
secondary lens fiber cells formed and differentiate, and many blood
vessels were visible on the lens surface. At neonatal stages (P0.5), the
blood vessels on the lens surface decrease and become smooth and
round. After birth, as the individual grows and develops, the eyeballs
and lens of the mice both gradually become larger (Figure 1).

3.2 Summary of the quality of RNA-seq

The quality evaluation of the sequencing data is shown in Table 1.
The average clean base number and mapped rate in 18 samples were
more than 13.74G and 95.08%, respectively, and the base error rate of
more than 90.70% fragments was less than 1‰ (Q30).

3.3 Transcriptome analysis of crystalline lens
in different developmental stages

Transcriptional analysis screened a total of 59,145 mRNAs
(representing 21,933 genes), 53,195 lncRNAs, and 3,595 circRNAs
(Figure 2A; Supplementary Table S2) in six lens developmental stages.
Moreover, we identified 3,972, 3,597, 1,484, 979, and
2,042 differentially expressed (DE) mRNAs, 1,416, 800, 209, 149,
and 287 DE lncRNAs, and 58, 62, 6, 14, and 42 DE circRNAs in
E12.5_E10.5, E16.5_E12.5, P0.5_E16.5, P10.5_P0.5, and P60_
P10.5 groups, respectively (Figure 2B; Supplementary Table

S3–S5). In summary, a total of 7,123 mRNAs, 2,497 lncRNAs, and
162 circRNAs were identified in all five comparison groups (Figures
2C–E). Moreover, three significantly enriched expression trends,
including up-, down-, and up–down, were all observed in mRNAs,
lncRNAs, and circRNAs during lens development (Figures 2F–H).
Particularly, a significant up–down–up expression trend was only
identified in lncRNAs (Figure 2G). Recognizing the critical role of the
embryonic development, we performed a comparative analysis of DE
genes, identifying 1,831 common differentially expressed (CO-DE)
genes, 150 CO-DE lncRNAs, and 13 CO-DE circRNAs shared
between the E12.5_E10.5 and E16.5_E12.5 groups (referred to as
E16.5_E12.5_E10.5) (Figures 2I–K; Supplementary Table S6).

3.4 GO analysis of DE mRNAs and
DE circRNAs

To clarify the function of the DE mRNAs and circRNAs, we
analyzed their main enriched biological processes in the five
comparative groups (Figure 3; Supplementary Tables S7, S8). In
the E12.5_E10.5 group, DE mRNAs exhibited significant
enrichment in cell fate commitment and epithelial morphogenesis,
while DE circRNAs were enriched in response to cyclic compounds
and negative regulation of biosynthetic processes (Figure 3A). In the
E16.5_E12.5 group, DEmRNAswere notably associated with camera-
type eye development and epithelial morphogenesis, while DE
circRNAs showed enrichment in animal organ development and
protein hydrolysis (Figure 3B). In the P0.5_E16.5 group, DE

FIGURE 1
Overview of lens development inmice at different stages (embryonic stages: E10.5, E12.5, and E16.5, and postnatal stages: P0.5, P10.5, and P60). The
red arrows indicate the lens pit.
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mRNAs were enriched in DNA conformational changes and
chromosome segregation, while DE circRNAs were linked to the
regulation of RNA metabolism and apoptotic processes (Figure 3C).
In the P10.5_P0.5 group, significantly enrichedGO terms weremainly
associated with angiogenesis and epithelial migration for DE mRNAs
and morphogenesis and regulation of protein secretion for DE
circRNAs (Figure 3D). In the P60_P10.5 group, the significantly
enriched GO terms were mainly enriched in angiogenesis and
visual perception of DE mRNAs, regulation of secretion, and cell
response to oxidative stress ofDE circRNAs (Figure 3E). Furthermore,
we analyzed the biological processes involving the CO-DE mRNAs
and CO-DE circRNAs in E16.5_E12.5_E10.5. Our findings revealed
that CO-DE mRNAs were predominantly enriched in camera-type
eye development and epithelial tube morphogenesis, while CO-DE
circRNAs were linked to the regulation of peptidyl-threonine
phosphorylation and dendrite morphogenesis (Figure 3F;
Supplementary Table S5).

3.5 GO analysis of DE lncRNAs

Based on the cis-targeting (co-localization) and trans-targeting
(co-expression) assays, we further investigated the functions of DE
lncRNAs in each comparison group by analyzing their target genes
(Figure 4; Supplementary Table S9, S10). In the E12.5_E10.5 group,
significantly enriched GO terms were mainly related to organ
morphogenesis and camera-type eye development for DE
lncRNA cis-targeted genes and embryonic organ morphogenesis

and morphogenesis of an epithelium for DE lncRNA trans-targeted
genes (Figure 4A). In the E16.5_E12.5 group, significant enriched
GO terms were primarily involved in cell–cell adhesion via plasma-
membrane adhesion molecules and camera-type eye development
for DE lncRNA cis-targeted genes and DNA conformation changes
and embryonic organ morphogenesis for DE lncRNA trans-targeted
genes (Figure 4B). In the P0.5_E16.5 group, significant enriched GO
terms were primarily related to the chromatin assembly and protein-
DNA complex assembly for DE lncRNA cis-targeted genes and ion
transmembrane transport and eye photoreceptor cell development
for DE lncRNA trans-targeted genes (Figure 4C). In the P10.5_
P0.5 group, significantly enriched GO terms were mainly enriched
in the positive regulation of RNA splicing and lens development in
camera-type eyes for DE lncRNA cis-targeted genes and ion
transmembrane transport and regulation of insulin secretion for
DE lncRNA trans-targeted genes (Figure 4D). In the P60_
P10.5 group, significant enriched GO terms were closely relevant
to interleukin-7 and sensory perception of light stimulus for DE
lncRNA cis-targeted genes and sensory perception of light stimulus
and phototransduction for DE lncRNA trans-targeted genes
(Figure 4E). In addition, we analyzed the biological processes
involving the CO_DE lncRNAs in the E16.5_E12.5_
E10.5 group. Cis-targeted analysis identified significantly enriched
biological processes for the CO_DE lncRNAs, such as lens
development in camera-type eyes and visual perception.
Moreover, trans-targeted analysis showed that DE lncRNAs were
mainly involved in histone modification and lens development in
camera-type eyes (Figure 4F).

TABLE 1 Basic sequencing data on six stages of mouse lens development.

Sample raw_reads raw_bases (G) clean_reads clean_bases (G) Q30 total_mapped mapped_rate (%)

E10.5_1 108,066,478 16.21 103,197,594 15.48 91.24 96,980,742 93.98

E10.5_2 95,011,054 14.25 91,012,984 13.65 90.7 85,681,434 94.14

E10.5_3 86,354,354 12.95 85,235,782 12.79 91.73 80,406,226 94.33

E12.5_1 83,330,486 12.5 81,903,970 12.29 91.32 77,058,997 94.08

E12.5_2 84,936,530 12.74 83,708,652 12.56 91.67 80,436,786 96.09

E12.5_3 111,675,766 16.75 109,652,902 16.45 91.32 104,874,534 95.64

E16.5_1 94,320,466 14.15 91,042,866 13.66 91.27 87,359,435 95.95

E16.5_2 95,922,176 14.39 93,142,882 13.97 94.29 89,747,957 96.36

E16.5_3 100,782,342 15.12 97,441,482 14.62 91.68 93,546,868 96.00

P0.5_1 86,613,520 12.99 84,339,492 12.65 94.53 80,698,644 95.68

P0.5_2 92,688,210 13.9 91,185,580 13.68 92.86 86,666,590 95.04

P0.5_3 105,731,364 15.86 102,767,656 15.42 91.5 98,672,941 96.02

P10.5_1 91,317,286 13.7 87,832,442 13.17 94.78 84,709,097 96.44

P10.5_2 95,772,410 14.37 93,856,046 14.08 94.71 90,078,070 95.97

P10.5_3 92,463,608 13.87 90,553,592 13.58 94.42 86,839,679 95.90

P60_1 88,781,608 13.32 86,730,492 13.01 93.56 79,249,183 91.37

P60_2 90,654,686 13.6 88,329,098 13.25 94.25 84,438,108 95.59

P60_3 88,624,054 13.29 86,440,008 12.97 93.92 80,208,694 92.79
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FIGURE 2
Identification and characteristics of differentially expressed (DE) transcripts in different lens developmental stages (E10.5, E12.5, E16.5, P0.5, P10.5,
and P60). (A) Counts of mRNAs_gene level, mRNA_transcript level, lncRNAs, and circRNAs in all six stages. (B) Counts of DE mRNAs_gene level, DE
lncRNAs, and DE circRNAs in five comparison groups (E12.5_E10.5, E16.5_E12.5, P0.5_E16.5, P10.5_P0.5, and P60_P10.5). (C–E) Hierarchical clustering
analysis of all DE mRNAs (C), DE lncRNAs (D), and DE circRNAs (E) among five comparison groups. (F–H) Expression trend of DE mRNAs (F), DE
lncRNAs (G), and DE circRNAs (H) during lens development. Black lines indicate the expression trend. The counts under black lines indicate the number of
DE mRNAs, DE lncRNAs, or DE circRNAs with the same expression trend. (I–K) Venn plots of co-differentially expressed (CO-DE) mRNAs (I), CO-DE
lncRNAs (J), and CO-DE circRNAs (K) in E16.5_E12.5 and E12.5_E10.5 groups.
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3.6 GO analysis of significantly enriched
dynamical trends of mRNAs, lncRNAs,
and circRNAs

In addition, we conducted GO analysis on the significantly
enriched dynamical trends observed in Figures 2F–H (Figure 5;
Supplementary Table S11). During the whole stage of lens
development, the downregulated mRNAs were mainly enriched
in the developmental process and anatomical structure
morphogenesis, the upregulated mRNAs were closely relevant to
lens development in camera-type eye and ion transport, the
up–down-regulated mRNAs were mainly associated with metal

ion transport and biological adhesion (Figure 5A). The
downregulated circRNAs were mainly enriched in the regulation
of RNA export from the nucleus and regulation of gene expression,
epigenetic; the upregulated circRNAs were primarily related to lens
development in camera-type eye and phosphatidylserine metabolic
processes; and the up-down-regulated circRNAs were mainly
associated with membrane biogenesis and macromolecule
metabolic processes (Figure 5B). Moreover, downregulated
lncRNA cis-target genes were mainly enriched in cellular
localization and the metabolic process, the upregulated lncRNAs
cis-target mRNAs were mainly associated with embryonic skeletal
system morphogenesis and embryonic organ morphogenesis, the

FIGURE 3
Top 10 enriched biological processes of DE mRNAs and DE circRNAs in six comparison groups (E12.5_E10.5 (A), E16.5_E12.5 (B), P0.5_E16.5 (C),
P10.5_P0.5 (D), and P60_P10.5 (E), E16.5_E12.5_E10.5 (F)). Blue and green represent circRNAs and mRNAs, respectively.
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up–down-regulated lncRNAs cis-target mRNAs were mainly related
to the metabolic process and cellular component biogenesis, and the
up–down–up-regulated lncRNAs cis-target mRNAs were mainly
involved in methionyl-tRNA aminoacylation and the telomeric
heterochromatin assembly (Figure 5C). The downregulated or
upregulated lncRNAs trans-target mRNAs were both mainly
enriched in the cellular metabolic process, the up–down-
regulated lncRNAs trans-target mRNAs were mainly associated
with cation transport and oxidation–reduction process, and the
up–down–up-regulated lncRNAs trans-target mRNAs were
primarily relevant to visual perception and photoreceptor cell
development (Figure 5D).

3.7 Heat map clusters and protein–protein
interaction (PPI) network construction of DE
genes related to eye development

In the E16.5_E12.5_E10.5 group, we identified 92 CO-DE
mRNAs associated with eye development and 59 CO-DE mRNAs
linked to the morphogenesis of a branching epithelium. As
depicted in Figure 6A, the majority of genes implicated in eye
development exhibited lower expression levels at E10.5 and
E12.5. Among them, 79 genes demonstrated interaction
relationships within the protein–protein interaction (PPI)
network, with the top 10 hub genes, crucial for lens

FIGURE 4
Top 10 enriched biological processes of DE lncRNAs cis- or trans-targetedmRNAs in six comparison groups (E12.5_E10.5 (A), E16.5_E12.5 (B), P0.5_
E16.5 (C), P10.5_P0.5 (D), and P60_P10.5 (E), E16.5_E12.5_E10.5 (F)). Purple and yellow represent cis-targeted and trans-targeted mRNAs, respectively.
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development, identified through the cytoHubba plugin in
Cytoscape software using the degree method. These hub genes
include BFSP2, BFSP1, five crystalline proteins (CRYAA, CRYAB,
CRYBB1, CRYGD, and CRYBB2), HSF4, GJA8, and MIP
(Figure 6B). Conversely, the mRNAs associated with the
morphogenesis of a branching epithelium displayed higher
expression levels at E10.5 and E12.5, as illustrated in
Figure 7A. Among these genes, 54 genes demonstrated
interaction relationships in the PPI network (Figure 7B).
Employing the same analytical approach, we identified the top
10 hub genes crucial for lens development, including SOX9,
WNT4, WNT2, FGF10, FGF8, MYC, IGF1, WNT9b, HGF, and
SNAI2 (Figure 7B).

3.8 Regulatory networks of CO-DE lncRNAs
and target mRNAs

To better reflect the interactive relationship between
lncRNAs and mRNAs, we structured a regulatory network

on the basis of these CO-DE lncRNAs and their target genes
related to the eye development process. The regulatory
networks included 19 CO-DE lncRNAs and 20 CO-DE
genes, forming 86 interaction relationships, including 27 cis-
targeted relationships, 5 trans-targeted relationships, and
54 protein–protein interaction relationships (Figure 8;
Supplementary Table S12).

3.9 Construction of the
circRNA–miRNA–mRNA regulatory network

Based on the relationships between CO-DE circRNAs and
mRNAs and the role of miRNA as a middle regulatory
molecule, we obtained the pairs of miRNA–mRNA and
miRNA–circRNA. In order to screen miRNAs and circRNAs
related to lens development, we selected the co-expression
relationships, which involved in genes related to lens
development, and constructed a circRNA–miRNA–mRNA
ceRNA network. The co-expression network was composed

FIGURE 5
GO analysis of significantly enriched dynamical trends of mRNAs (A), circRNAs (B), lncRNA cis-target genes (C), and lncRNA trans-target genes (D).
Trend 1, trend 2, trend 3, and trend 4 represent downregulated, upregulated, up–down-regulated, and up–down–up-regulated dynamical trends in the
whole stage of lens development, respectively.

Frontiers in Genetics frontiersin.org09

Zhang et al. 10.3389/fgene.2024.1405715

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1405715


of 10 circRNAs, 17 miRNAs, and 36 mRNAs (Figure 9;
Supplementary Table S13).

3.10 Validation of DE genes by qRT-PCR

A total of 12 genes, including 6 mRNAs (CRYGB,MIP, PROX1,
FZD5, FOXC2, and HSF4), 3 lncRNAs (ENSMUST00000110279,
ENSMUST00000172812, and ENSMUST00000183013), and
3 circRNAs (circ_0001066, novel_circ_0002163, and novel_circ_
0003209), were selected for qRT-PCR verification. Results showed
that the expression patterns of these genes in qRT-PCR were
consistent with the data from RNA-seq, indicating that the
results of RNA-seq are reliable (Figure 10).

4 Discussion

Embryonic lens formation is a critical step in eye organ
development, and the continuous division and differentiation of
epithelial cells at the equator forms the human lens. Despite this

constant remodeling process occurring within a confined
environment, the lens maintains its transparency through the
intricate regulation of cell signaling pathways within the lens
epithelial cells (Bron et al., 2000; Danysh and Duncan, 2009). In
this study, we profiled mRNAs, lncRNAs, and circRNAs in the
developing mouse lens and focused on key ncRNAs and mRNAs
related to lens development.

A total of 59,145 mRNAs (21,933 genes), 53,195 lncRNAs,
and 3,595 circRNAs were identified in six lens developmental
stages. A previous study probed 9,733 mRNAs and 1,952 long
intergenic ncRNA in the developing mouse lens (Khan et al.,
2016; Anand et al., 2018). The most differentially expressed (DE)
mRNAs, lncRNAs, and circRNAs belonged to the E12.5_
E10.5 and E16.5_E12.5 groups. GO enrichment analysis
indicated that DE mRNAs and lncRNAs in the embryonic
period were mainly associated with lens development, and DE
mRNAs in the postnatal period were mainly associated with
angiogenesis. During mammalian embryonic development, the
lens is enveloped by a capillary network from the vitreous
vascular system, playing a crucial role in lens development
and maturation (Ito and Yoshioka, 1999). The lens vasculature

FIGURE 6
Hierarchical clustering analysis (A) and protein–protein interaction network (B) of co-differentially expressed (CO-DE) mRNAs in the E16.5_E12.5_
E10.5 group associated with eye development. Red, blue, and yellow represent both upregulated, both downregulated, and inconsistent trends in E12.5_
E10.5 and E16.5_E12.5, respectively.

Frontiers in Genetics frontiersin.org10

Zhang et al. 10.3389/fgene.2024.1405715

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1405715


in mice begins to degenerate after birth and is completely
regressed at about 3 weeks, consistent with the observed
phenotype of abundant blood vessels covering the lens at
E16.5 (Jack, 1972). The degeneration process of lens involves
the orderly contraction of the lumen and apoptosis of endothelial
cells (Latker and Kuwabara, 1981; Ito and Yoshioka, 1999; Zhu
et al., 2000). Vascular endothelial growth factor A (VEGFA) is
expressed at an early stage of lens development and is essential
for stimulating vascular endothelial cell proliferation (Ash and
Overbeek, 2000; Shui et al., 2003). Deletion of VEGFA can lead to
reduced vascular membrane production, resulting in smaller
lenses with mild nuclear turbidity after birth, while
overexpression can lead to excessive capillary formation and
endothelial cell proliferation and deposition (Ash and
Overbeek, 2000; Mitchell et al., 2006; Garcia et al., 2009).
Ocular ischemia or inflammation may lead to the entry of
VEGF into the lens capsule, resulting in the formation of new
blood vessels (Roy et al., 2020).

Our data revealed that key hub genes related to eye
development exhibited lower expression levels during the

embryonic stage. Mutations in these genes, such as beaded
filament structural proteins 1 and 2 (BFSP1 and BFSP2) and
lens-specific connexin proteins (GJE1 and GJA8), have been
linked to cataract formation (Song et al., 2009; Beyer et al.,
2013). Additionally, the heat shock factor 4 (HSF4) and major
intrinsic protein (MIP) play crucial roles in lens cell growth,
differentiation, and maintaining optical quality (Fujimoto et al.,
2004; Bennett et al., 2016).

Conversely, the top 10 enriched hub genes related to the
morphogenesis of a branching epithelium showed higher expression
levels during the embryonic stage. The SOX proteins, characterized by
a highly conserved DNA-binding and bending domain known as an
HMG box, play a crucial role in regulating lacrimal gland branching
and differentiation (Chen et al., 2014). SRY-box transcription factor 9
(SOX9) was initially expressed in the lens pit, and Dct-Sox9 transgenic
mice reported are accompanied with microphthalmia with cataract
(Qin et al., 2004; Chen et al., 2014). Moreover, Wnt signaling and
growth factors are also involved in lens development, which are
reported to be necessary for inducing lens formation and
ectodermal differentiation (Chen et al., 2004; Lovicu and McAvoy,

FIGURE 7
Hierarchical clustering analysis (A) and protein–protein interaction network (B) of co-differentially expressed (CO-DE) mRNAs in the E16.5_E12.5_
E10.5 group associated with the morphogenesis of a branching epithelium. Red, blue, and yellow represent both upregulated, both downregulated, and
inconsistent trends in E12.5_E10.5 and E16.5_E12.5 groups, respectively.
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2005). Previous studies have shown that during the development of the
lens during the embryonic stage, the expression level of MYC (MYC
proto-oncogene, BHLH transcription factor) and MDK (Midkine)
gradually decreases, which is consistent with our results (Cavalheiro
et al., 2014). MYC can regulate cell proliferation during lens
development, and its deletion can lead to severe lens developmental
defects (Cavalheiro et al., 2014; Cui and Lwigale, 2019). In addition, the
expression level of SNAI family transcriptional repressor 2 (SNAI2)
was highly upregulated in lens epithelial cells obtained from patients
with anterior polar cataracts, indicating that it may involve in lens
development (Choi et al., 2007). At present, there is very limited
research on SOX9, MDK, and SNAI2 in lens development, and more
work is needed to further clarify their functions.

To excavate the key potential lncRNAs involved in lens
development, we obtained CO-DE lncRNAs, which are cis- or
trans-targeted CO-DE mRNAs related to lens development, and
constructed an mRNA–lncRNA co-expression network. Several
identified lncRNAs have been previously implicated in eye
development studies. For example, lncRNA Vax2os were cis-
targeted with ventral anterior homeobox 2 (VAX2), and were
highly expressed at E12.5. Previous studies have validated the
function of Vax2os, which is involved in neurotransmitter transport
during mouse retinal development and plays an important role in
regulating eye development (Alfano et al., 2005; Chen et al., 2021).
LncRNAs TCONS_00094093 were cis-targeted with BCAR3 adaptor
protein (BCAR3), the signaling mediated by which is required for the

maintenance of the structural integrity of the ocular lens (Near et al.,
2009; Kondo et al., 2016). LncRNAs Prox1os were cis-targeted with
Prospero Homeobox 1 (PROX1) and trans-target with crystallin beta
A1 (CRYBA1) and BFSP2, which has been showed is crucial for mouse
lens fiber differentiation and elongation (Wigle et al., 1999; Song et al.,
2009; Audette et al., 2016; Joseph et al., 2023).

Research has shown that mRNAs, lncRNAs, and circRNAs
regulate each other’s expression by acting as competitive
endogenous RNA (miRNA sponges). Utilizing the CO-DE mRNAs
and lncRNAs, along with predicted targeted miRNAs, we constructed
a competitive endogenous RNA (ceRNA) network to elucidate the key
factors potentially involved in lens development during
embryogenesis. For instance, miR-135a, was co-expressed with
atonal bHLH transcription factor 7 (ATOH7) and circ_0000663.
miR-135a was upregulated in the aqueous humor of patients with
cataract and primary open-angle glaucoma and may be involved in
the regulation of the pathogenesis of anterior segment diseases
(Dunmire et al., 2013; Wang et al., 2023). The ATOH7 gene
encodes a transcription factor involved in determining the fate of
retinal progenitor cells and is necessary for the development of the
optic nerve, and mutations in this gene have been reported to cause
severe eye developmental defects (Khan et al., 2012). Moreover, miR-
29b was co-expressed with novel_circ_0002092 and signal-induced
proliferation-associated 1-like 3 (SIPA1L3). Research has shown that
miR-29b is involved in the pathogenesis of myotonic dystrophy type
1 cataract and can regulate the function of lens epithelial cells by

FIGURE 8
Regulatory network of codifferentially expressed (CO-DE) lncRNAs in E16.5_E12.5 and E12.5_E10.5 groups (A) and regulatory network of CO-DE
lncRNAs and their CO-DE cis- or trans-targeted mRNAs associated with lens development (B). Circles and triangles represent mRNAs and lncRNAs,
respectively. Red, blue, and yellow represent both upregulated, both downregulated, and inconsistent trends in E12.5_E10.5 and E16.5_E12.5 groups,
respectively. Dashed, solid, and contiguous arrow lines represent cis-target, trans-target, and PPI interaction relationships, respectively.
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affecting the Ca2+ concentration (Shao et al., 2017; Gao et al., 2021).
SIPA1L3 encodes a putative GTPase-activating protein, which was
necessary for lens and eye development (Greenlees et al., 2015). Thus,
these RNAs contained in the ceRNA network may play important
roles in eye development, and further functional verification
is necessary.

We recognize there are some limitations to this study. First, due
to the limited amount of lens tissue in embryonic mice, we did not
perform miRNA profiling analysis. Second, due to the inability to
separate the lens epithelium and lens capsule during the early stages

of lens development, we did not sequence them separately. Third,
this study mainly focused on mRNA and non-coding RNA
expression profiles during lens development and lacked
functional experiments on the molecular mechanisms of non-
coding RNAs, which should be further explored in future studies.

In conclusion, our data provide a comprehensive analysis of
mRNAs, lncRNAs, and circRNAs and biological processes that
involved in lens development from embryonic to postnatal stages.
However, the mechanisms and biological functions of lncRNAs and
circRNAs in eye development remain to be further explored.

FIGURE 9
Establishment of the circRNA–miRNA–mRNA competitive endogenous RNA network. Diamonds and circles represent circRNA and mRNA,
respectively. Purple triangles represent miRNA. Red, blue, and yellow represent both upregulated, both downregulated, and inconsistent trends in E12.5_
E10.5 and E16.5_E12.5 groups, respectively. The solid lines represent miRNA–mRNA interactions, and dotted lines represent miRNA–circRNA
interactions.
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FIGURE 10
qRT-PCR validation of mRNAs, lncRNAs, and circRNAs. qRT-PCR validation of the expression levels in six stages of mouse lens development for (A)
six DE mRNAs, (B) three DE lncRNAs, and (C) three DE circRNAs. Data from RNA-seq are shown as lines labeled on the Y-axis on the left. Data from qRT-
PCR are shown as columns labeled on the Y-axis on the right; *p < 0.05, **p < 0.01, and ***p < 0.001.
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