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Preventing, diagnosing, and treating diseases requires accurate clinical
biomarkers, which remains challenging. Recently, advanced computational
approaches have accelerated the discovery of promising biomarkers from
high-dimensional multimodal data. Although machine-learning methods have
greatly contributed to the research fields, handling data sparseness, which is not
unusual in research settings, is still an issue as it leads to limited interpretability and
performance in the presence of missing information. Here, we propose a novel
pipeline integrating joint non-negative matrix factorization (JNMF), identifying
key featureswithin sparse high-dimensional heterogeneous data, and a biological
pathway analysis, interpreting the functionality of features by detecting activated
signaling pathways. By applying our pipeline to large-scale public cancer
datasets, we identified sets of genomic features relevant to specific cancer
types as common pattern modules (CPMs) of JNMF. We further detected
COPS5 as a potential upstream regulator of pathways associated with diffuse
large B-cell lymphoma (DLBCL). COPS5 exhibited co-overexpression with MYC,
TP53, and BCL2, known DLBCL marker genes, and its high expression was
correlated with a lower survival probability of DLBCL patients. Using the
CRISPR-Cas9 system, we confirmed the tumor growth effect of COPS5,
which suggests it as a novel prognostic biomarker for DLBCL. Our results
highlight that integrating multiple high-dimensional data and effectively
decomposing them to interpretable dimensions unravels hidden biological
importance, which enhances the discovery of clinical biomarkers.
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1 Introduction

The era of precision medicine has witnessed a prosperous shift from one-size-fits-all
medicine to personalized medicine (Collins and Varmus, 2015). In general, precision
medicine aiming for personalized prevention, diagnosis, and treatment requires high-
quality biomarkers, which remains challenging (Tsimberidou et al., 2020). Recently,
accessible large-scale multimodal data has accelerated the discovery of clinical
biomarkers where diverse computational approaches, particularly those integrating
multi-omics data, have gained widespread adoption (Bersanelli et al., 2016). On the
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other hand, the intrinsic nature of biomedical datasets that includes
sparse and unlabeled information hinders the practical application
of computational methods and limits interpretability and
performance (Cho et al., 2023).

Several unsupervised clustering methods have been developed to
address these issues and discover potential biological patterns (Reel
et al., 2021). For example, the sparse multiple canonical correlation
analysis successfully recognized relationships between copy number
variations in genomic regions on different chromosomes. Yet, it is
infeasible to fully consider the correlation of information across
different omics data (Witten and Tibshirani, 2010). Similar Network
Fusion (Chiu et al., 2018) identified novel subtypes of triple-negative
breast cancer patients but limited applicability to diverse multi-
omics scenarios due to its inability to accept multiple data types,
such as continuum and binary types. In contrast, joint non-negative
matrix factorization (JNMF), an unsupervised algorithm,
complements the bottlenecks in those methods and affords to
extract underlying features from sparse high-dimensional
heterogeneous data (Zhang et al., 2012; Yang andMichailidis, 2016).

In this study, we aim to develop a method to discover
interpretable biomarkers from intricate multimodal data. To this
end, we designed a novel pipeline that integrates JNMF and a
biological pathway analysis; the functionality of JNMF-detected
genetic features is implicated through detecting signaling
pathways specifically activated by the features. We demonstrate
the ability to find reliable biomarkers from the large-scale cancer
datasets of the Cancer Cell Line Encyclopedia (CCLE) and The
Cancer Genome Atlas (TCGA). In particular, we identified COPS5
as a novel biomarker for diffuse large B-cell lymphoma (DLBCL)
and experimentally validated by the CRISPR-Cas9 knockout, which
supports the feasibility of our approach.

2 Materials and methods

2.1 Data preparation and processing

The raw dataset of the CCLE project (DepMap release 23Q4)
was downloaded via the DepMap portal (https://depmap.org/portal/).
The dataset consisted of six matrices including gene expression, CNV
(copy number variation) amplification, CNV loss, DNA mutation of
somatic point mutations and indels, pharmacologic sensitivity, and
metadata of cell lines. For correlation analysis and survival analysis, the
expression profiles of DLBCL patients were downloaded from TCGA
(https://www.cancer.gov/tcga) and NCBI Gene Expression Omnibus
(GEO) GSE69049.

We prepared the CCLE datasets only for 504 cell lines presented in
the pharmacologic sensitivity matrix and built the input matrices of
JNMF as follows. The TPMs (transcripts per million) on a log-2 scale
quantifying gene expressions were converted ranging from 0 to 1 by a
min-max normalization. TheDNAmutation profile was converted into
a binary matrix where 1 for mutated and 0 for normal. Two binary
matrices for CNV gain and loss were constructed by the GISTIC scores
in the CNV data; +2 for amplification and −2 for deletion. The
pharmacologic sensitivity was also converted into values ranging
from 0 (insensitive) to 1 (sensitive) as follows:

max X( ) –x /max X( ) –min X( ),

where x is an IC50 (half maximal inhibitory concentration) value
and max(X) and min(X) are the maximum and minimum values in
the pharmacologic sensitivity profile. A cancer-type matrix in binary
format was prepared from the metadata of cell lines.

2.2 Plasmids and viral infection

To generate single-guide RNA (sgRNA) expression vectors
targeting COPS5 (COPS5-sgRNA-1 and COPS5-sgRNA-2) or a
non-targeting (NT) control, annealed oligonucleotides were
cloned into the pLKO5.sgRNA.EFS.tRFP657 vector (Addgene
plasmid # 57824; http://n2t.net/addgene:57824), which was a gift
from Benjamin Ebert. The Cas9 expression in the cell lines Raji
(Burkitt lymphoma cell line) and SLVL (Splenic marginal zone
lymphoma cell line) was induced by FUCas9Cherry plasmid, which
was a gift fromMarco Herold (Addgene plasmid # 70182, http://n2t.
net/addgene:70182). Lentiviruses were produced by transient
transfection of 293T cells with viral plasmids, along with gag-,
pol-, and env-expressing plasmids (pMD2.G and psPAX2) using
the calcium-phosphate method (Goyama et al., 2016). pMD2.G
(Addgene plasmid #12259; http://n2t.net/addgene:12259) and
psPAX2 (Addgene plasmid #12260; http://n2t.net/addgene:12260)
were gifts from Didier Trono. The sequences for the sgRNAs are as
follows: NT: 5′-cgcttccgcggcccgttcaa-3′, COPS5-sgRNA-1: 5′-gtgatg
catgccagatcggg-3′, COPS5-sgRNA-2: 5′-caacaagaacaatatccgca-3′.

2.3 Cell culture and CRISPR/Cas9-mediated
gene knockout

The lymphoma cell lines Raji and SLVL were cultured in
RPMI1640 medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin. 293T cells (CRL-11268, ATCC,
Manassas, VA, United States) were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% FBS and 1%
penicillin. These cells were first transduced with the
FUCas9Cherry, followed by sorting of mCherry+ cells using
BD FACSAriaIII (BD Biosciences, San Jose, CA,
United States). The Cas9-expressing (mCherry+) Raji and
SLVL cells were then transduced with the sgRNAs co-
expressing tRFP657. The frequency of tRFP657+ cells in the
cultures was evaluated on Day3, Day6, Day10, Day17 and Day24.

Cells were sorted by FACS Aria (BD Biosciences, San Jose, CA,
United States), and the expression of mCherry and tRFP657 was
analyzed with FACS CytoFLEX (Beckman Coulter, Brea, California,
United States). The cytometry data were analyzed by BD FlowJo
software (TREESTAR, Inc., San Carlos, CA. ver.10.8.1).

2.4 Joint non-negative matrix
factorization (JNMF)

JNMF, an extension of traditional NMF algorithm, is designed to
facilitate the simultaneous decomposition ofN datasets (Zhang et al.,
2012). The objective function of JNMF is given by:

min∑N

i�1 Xi −WHi‖ ‖2F,
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where Xi is an input matrix with size m×ni, and F represents the
Frobenius norm. The W and Hi represent m×k and k×ni factorized
matrices, respectively. Here, k is the number of clusters to be
extracted, namely, common pattern modules (CPMs). To find the
optimalW andHiminimizing the objective function, JNMF updates
them based on the traditional multiplication update formulas
(Zhang et al., 2012) as follows:

Wia � Wia

∑N
J�1XJHT

J( )
ia

W∑N
K�1 HKHT

K( )( )
ia

HI( )aμ � HI( )aμ
WTXI( )aμ

WTWHI( )aμ, I � 1,/, N.

To handle missing values in the input matrices, we employed a
weighted NMF approach (Zhang et al., 2012): a mask matrix M
representing 1 for non-missing and 0 for missing cases is introduced
into the JNMF framework. X is accessed by the Hadamard product
with M effectively filtering the influence of missing values (Fujita
et al., 2018). The objective function and multiplicative update rules
of the weighted JNMF are given by:

min∑N

i�1 Mi+Xi −WHi‖ ‖2F

Wia � Wia

∑N
J�1 Mi+XJ( )HT

J( )
ia

∑N
K�1 Mi+ WHK( )HT

K( )( )
ia

HI( )aμ � HI( )aμ
WT Mi+XI( )( )aμ

WT Mi+WHI( )( )aμ, I � 1,/, N,

where A+B � [aijbij] is Hadamard product.

2.5 Hyperparameter optimization

Given a factorization rank k, JNMF starts with randomW and
Hs and updates the random matrices toward minimizing the
objective function for n iterations step-by-step. To tune the
hyperparameters, whether the procedure with k and n stably
convergent in repeating t times is monitored. A consensus matrix
and its cophenetic correlation coefficient (CCC) (Brunet et al.,
2004) evaluate the performance of JNMF under the setting of
k and n.

2.6 Selection of features for each CPM in
each H matrix

In analyzing the six input matrices of CCLE datasets, our JNMF
produces seven matrices: W, H1, H2, H3, H4, H5, and H6. For
normalizing the matrices, rather than using the maximum values,
z-score normalization was applied to each row and column ofW and
Hs as follows:

zij � xij − μi
σ i

,

where μi and σ i stand the average and the standard deviation for
cell line/drug/mutation/CNV/genes/cancer type feature j,
respectively. The feature j is assigned to CPMs if and only if
zij is > +1.96.

2.7 Pathway analysis

To identify the activated pathways within each CPM obtained
from JNMF, we employed IPA (Ingenuity Pathway Analysis)
(Krämer et al., 2014). IPA is a widely used tool for exploring
signaling pathways and biological networks. Specifically, IPA’s
upstream analysis and protein-protein interaction analyses were
performed to determine general regulators in CPM-
activating pathways.

2.8 Correlation analysis

For examining the correlation between candidate biomarkers
and known hub genes of DLBCL, we utilized GEPIA2 (Gene
Expression Profiling Interactive Analysis 2) (Tang et al., 2019).
GEPIA2 is a comprehensive web-based tool that integrates data
from the TCGA and GTEx databases. Specifically, we used the
“correlation analysis” module within GEPIA2, utilizing the TCGA-
DLBCL project dataset, to assess the correlation between the
candidate biomarkers and the known hub genes of DLBCL.

2.9 Survival analysis

The Kaplan-Meier method was used to investigate whether the
candidate biomarkers in GSE69049 datasets affected the overall
survival (OS) of DLBCL patients treated with chemotherapy. The
“survminer” R package was used to explore survival analysis.

3 Results

3.1 Overall workflow of the
proposed method

We designed a method to find significant sets of multimodal
factors (i.e., modules) that have the potency to characterize disease
phenotypes. Since multimodality comprises multiple high-
dimensional heterogeneous data, we adopted JNMF, a well-
proven algorithm for clustering the factors as modules, by
modifying it to handle data sparseness efficiently, referred to as
weighted JNMF. To interpret the functional importance of the
JNMF-detected modules, namely, the common pattern module
(CPM), we utilized a pathway analysis by detecting upstream
regulators in signaling pathways activated by the modules (Figure 1).

To perform the biomarker discovery using the proposed method,
we complied six feature matrices for 504 cancer cell lines by
processing the large-scale CCLE datasets, each of which has binary
or continuous values: gene expression, CNV amplification, CNV loss,
DNA mutation, pharmacologic sensitivity, and cancer type
(Supplementary Table S1). Using these matrices as inputs, the
weighted JNMF masks sparse elements and generates a factor
matrix W given by latent coefficients for the cancer types in the
reduced k-dimensional space (i.e., rank). Simultaneously, the six input
matrices are reduced to the k dimension generating the matrices Hi

(i = 1, . . . ,6), where each product with W approximates the original
input matrix. Given optimal W and Hs, significant feature sets
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(>+1.96 in z-score) are captured as CPMs by investigating z-score
distributions in the factorized matrices.

Subsequently, the gene expression profiles in the JNMF-
detected CPMs are analyzed by IPA to identify activated
pathways. Meanwhile, the disease subtypes corresponding to the
CPM are identified by combining characteristic drugs, DNA
mutations, and structural variants in the CPM. Moreover,
through IPA upstream analysis and IPA causal network
analysis, the upstream regulators of CPMs which are considered
candidate biomarkers are investigated. Next, the correlation and
survival analyses of candidate biomarkers using TCGA and GEO
data examine the clinical significance of the candidate biomarkers.
Ultimately, the candidate biomarkers are experimentally validated
by the CRISPR-Cas9 system.

3.2 Assessing the robustness of JNMF

To interrogate the ability of our JNMF, we prepared three
artificial datasets as used in a previous study (Fujita et al., 2018).
We first constructed three matrices with random values imprecating
noise: a binary matrix for mutation and continuous matrices for
pharmacologic sensitivity and gene expression. Then, we inserted
missing values into randomly selected 10% of the entries of each
matrix: the missing rates in CCLE datasets were 2.6%–10.5%. Next,
we embedded three or four predefined CPMs into the matrices and
randomly shuffled the entries in each matrix. Thereby, three
artificial input data that are noisy and sparse but include
modules were generated (Supplementary Table S2, Figure 2).

Since the embedded CPMs that our JNMF has to detect were
three or four, we set the rank k = 4. As shown in Figure 2, our JNMF

successfully identified the CPMs by decomposing the input matrices
into W, H1, H2, and H3. In addition, the products WH1, WH2, and
WH3 accurately restored the input matrices. This result
demonstrates that our JNMF can uncover hidden relationships
within high-dimensional multimodal datasets by reducing the
influence of noise and missing values.

3.3 Identifying CPMs corresponding to
cancer types

To optimize the hyperparameters of JNMF for the six input
matrices prepared from CCLE gene expression, CNV amplification,
CNV loss, DNAmutation, pharmacologic sensitivity, and cancer cell
line type, we investigated the convergence of JNMF during
2000 iterations updating W and Hs (Figure 3A). We noticed that
the outputs of JNMF are stable (CCC = 0.72) when k = 40 and
manifest substantial consistency across 10 repeats (Figure 3B). Using
these hyperparameters, we finally retrieved 40 CPMs corresponding
to specific cancer types, such as CPM #1 for hematopoietic and
lymphoid malignancies, CPM #7 for breast cancer, CPM #10 for
malignant melanoma, and CPM #28 for endometrial cancer
(Table1; Figure 3C).

The CPM #1 contained TP53 mutation and the malignant
translocations of MYC, BCL2, and BCL6, which are relevant to
DLBCL (Chapuy et al., 2018). The CPM #7 included the
pharmaceutical agent Lapatinib, HER2 overexpression, and
BRCA2 amplification, which is supported by the clinical
application of Lapatinib for treating HER2-positive metastatic
breast cancer (Xu et al., 2021). The CPM #10 covering almost
the entire skin cancer cell lines included the pharmaceutical

FIGURE 1
Overall workflow of our analysis. The figure outlines a systematic approach for identifying candidate biomarkers in cancer research, starting with the
collection of multimodal data. These data were analyzed using joint non-negative matrix factorization to identify common pattern modules and
combined with pathway analysis to highlight potential biomarkers at the intersection of different data types. Then, these biomarkers were clinically
validated by correlation and survival analyses using TCGA andGEOdata, and lastly, experimentally validated using CRISPR/Cas9 system to determine
their promising applications in cancer cells.
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agent PLX4720 (vemurafenib) and BRAF mutation; the efficacy of
vemurafenib has been tested in several clinical trials for treating
unresectable or metastatic melanoma with BRAF V600E mutation
(Chapman et al., 2011). The CPM #28 confined several known
diagnostic and prognostic biomarkers of endometrial cancer, such as
the mismatch repair mutation, and the overexpression of MLH1,
MSH2, MSH6, and PMS2. In addition, this module included the
overexpression andmutation of PTEN and TP53, which significantly
contribute to the diagnosis of endometrial cancer (Crosbie
et al., 2022).

Collectively, we confirmed that the CPMs are in high
concordance with known relationships among variants,
medications, and cancers, which suggests the potency of our
approach to the discovery of novel biomarkers from
multimodal data.

3.4 Analyzing biological pathways activated
by DLBCL-related CPM

To interpret the functionality of JNMF-detected CPMs, we
focused on the CPM #1 that includes DLBCL biomarkers

(Table 1). Notably, this module also contained several gene
mutations, each of which is known to be involved in pathogenic
pathways:MYD88 and CARD11 functioning in the NF-κB pathway,
SPEN involved in the NOTCH signaling, and STAT3 which is a
pivotal member of the JAK/STAT signaling pathway (Chapman
et al., 2011).

Next, we performed a pathway analysis of IPA with the gene
expression profile of CPM #1. Consistent with the pathways in
which the mutated genes are involved, we found the activation of
several signaling pathways of DLBCL (p < 0.05). For example,
the activation of the NF-κB pathway causing DLBCL (Odqvist
et al., 2014), the deregulation of the JAK-STAT pathway and
PI3K-mediated signaling pathway which is the essential
contributor to the pathogenesis and poor prognosis of
DLBCL (Chapuy et al., 2018) (Supplementary Figure S1). In
addition, the sub-networks centered on MYC, TP53, and NF-κB
indicated the activation of downstream pathways potentially
relevant to DLBCL development (Supplementary Figure S2).
Lastly, by performing the IPA upstream analysis and IPA
causal network analysis, we investigated upstream regulators
(p < 0.05) likely controlling the gene expression of CPM
#1 (Tables 2).

FIGURE 2
JNMF clustering results of simulated data. JNMF was utilized to identify CPMs embedded in simulated pharmacologic sensitivity, mutation, and
expression matrix. The continuous simulated pharmacologic sensitivity matrix X1 comprises four modules alongside missing values. The continuous
simulated expression matrix X2 comprises three modules alongside missing rows. The binary simulated mutation matrix X3 comprises three modules
alongside missing rows. The Gaussian noise is introduced into X1 and X2 matrix. The value in X3 is partially reverse as the noise. The grey parts
represent the missing value.
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FIGURE 3
JNMF identifies biological features in multimodal data (A) Convergence curve showing the trajectory of JNMF objective function convergence
under 2000 iterations (B)Consensusmatrix ofW showing the reproducibility of JNMF result in 10 repeated trials. The blue rectangles represent clusters of
the cell lines highly reproduced. (C) The distribution of cancer types in CPMs. The blue rectangles represent the specificity of each cancer in the CPMs.
Darker blue corresponds to stronger specificity. CPM #1 shows high specificity for hematopoietic and lymphoid malignancies.

TABLE 1 Summary of key features in CPMs.

CPM Drug in CPM Genetic features in CPM Cell lines in CPM

CPM #1 AEW541 Mutation (BCL2, BCL6, IGF1R, MTOR, MYC, MYD88, PI3KR1, PTEN, SPEN, STAT3, TP53) Lymphoma

CPM #7 Lapatinib BRACA2 mutation, HER2 amplification, HER2 overexpression Breast Cancer

CPM #10 PLX4720 BRAF mutation, MITF amplification Skin Cancer

CPM #28 TP53 mutation, PTEN mutation, Overexpression (MLH1, MSH2, MSH6, and PMS2) Endometrium cancer
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Interestingly, COPS5, a subunit of the COP9 signalosome
complex, was identified from both analyses and showed
regulatory interactions with the overexpressed genes in the CPM
#1 including knownDLBCLmarkers (Figure 4). This result supports
that COPS5 overexpression affects tumor-negative regulators in
diverse cancers (Wang et al., 2016). For example, COPS5
activates MYC by mediating the SKP1-CUL1-F-box protein
complex (Lyapina et al., 2001). Also, COPS5 alters cytoplasmic
localizations of TP53 and induces the degradation of TP53 (Li
et al., 2013). Moreover, COPS5 is co-expressed with STAT3 in
cancers (Nishimoto et al., 2013), and MYC mediates this co-
regulation associated with poor prognosis (Ok et al., 2014).

Taken together, despite the considerable heterogeneity among
DLBCL subtypes (Schmitz et al., 2018), the CPM #1 collectively
retained the distinctive characteristics of DLBCL, which emphasizes
the importance of understanding the orchestration of multiple
oncogenic factors. Moreover, we identified COPS5 using the
information of this module as a potential upstream regulator of
DLBCL, requiring further validations.

3.5 Inferring the impact of COPS5 in DLBCL

Using the gene expression profiles of 47 DLBCL patients
available at TCGA, we sought to confirm the importance of
COPS5 in DLBCL patients. Consistent with the results of CCLE
data analysis, we observed the positive expression correlation
between COPS5 and the marker genes, as well as between TP53
and MYC (Figure 5A). It is noteworthy to mention that all the
positive correlations have been reported by previous in vitro studies
(Adler et al., 2006; Sitte et al., 2012; Li et al., 2013; Nishimoto et al.,
2013; Luo et al., 2022). Interestingly, even BCL6, MYC, and
TP53 were grouped in the CPM #1, their expression correlations
in the patients were relatively less as shown in Figure 5A, E.g., R =
0.22 between BCL6 and TP53, R = 0.24 between BCL6 and MYC.
This result might reflect the high heterogeneity of DLBCL.
Therefore, COPS5 may be a key hub gene that efficiently
characterizes heterogeneous DLBCL by co-expressing with the
marker genes.

Next, we performed the survival analysis to inspect the
relationship of COPS5 with the prognosis of DLBCL patients. As
shown in Figure 5B, the Kaplan-Meier curve exhibited that the high
expression of COPS5 is associated with poor prognosis in the overall
survival of the patients treated with chemotherapy alone (p =
0.0168). This result supports that the over expression of COPS5
promotes malignancy.

Finally, Since COPS5 has been shown to be associated with the
proliferation of DLBCL in several cell lines derived from subtypes of
DLBCL (Pulvino et al., 2015), to further determine the role of
COPS5 in B cell lymphoma, we depleted COPS5 in the B cell
lymphoma cell lines Raji and SLVL using the CRISPR/
Cas9 system. Raji and SLVL cells were transduced with
Cas9 together with tRFP657-coexpressing non-targeting (NT) or
COPS5-targeting sgRNAs. As shown in Figure 5C, COPS5 depletion
showed a strong growth-inhibitory effect in Raji and SLVL cells.
These results confirm the key role of COPS5 in the proliferation of
malignant B cells (Supplementary Figure S3).

4 Discussion

In this study, we proposed a JNMF-based method that integrates
sparse multimodal data and reduces their higher dimensionality into
interpretable lower dimensions. Our method captures CPMs
grouping potentially relevant heterogeneous modalities and
utilizes IPA for interpreting the biological importance of CPMs.

TABLE 2 Top five genes in IPA upstream regulators and causal network analyses.

IPA upstream regulators analysis IPA causal network analysis

Gene p-value Gene p-value

COPS5 2.58E-25 COPS5 1.06E-25

E2F4 1.38E-20 TFEB 4.23E-16

UQCC3 7.53E-18 NUPR1 3.80E-14

TFEB 4.23E-16 BCR 4.31E-11

NUPR1 2.57E-14 RPL11 3.09E-10

FIGURE 4
COPS5-targetting genes in the CPM #1. Arrows indicate that
COPS5 directly regulates the expression of connected genes.
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Hence, contrary to traditional correlation-based predictions, our
approach combines machine learning results with biological
knowledge for rigorous inference, designed to uncover hidden
relationships within intricate multimodality.

We applied the method to speculate key factors responsible
for drug sensitivity in various cancers using CCLE datasets
which provide plenty of genotype and phenotype annotations.
Consequently, we successfully retrieved CPMs comprising
CNVs, genomic mutations, and medications, characterizing
the cancer types: for example, a metastatic breast cancer-
related module showing the known relationship among the
drug Lapatinib and gene mutations on HER2, and BRCA2,
and a skin cancer-related module containing the BRAF-
inhibitor PLX4720 and BRAF mutation. Unexpectedly, the
CPM related to lymphoma contained COPS5 co-
overexpressing with DLBCL marker genes, e.g., MYC, TP53,
and STAT3, and located upstream of the relevant pathways. The
functional importance of COPS5 was also confirmed in DLBCL
patients and knockout experiments, revealing the significant

contribution to poor prognosis and cancer cell proliferation.
Constrained by the number of patients in the database, this
result may need to be further validated in a larger scale of
patient data.

It has been reported that the expression of COPS5 is a
prerequisite for the MYC activity in breast cancer (Hou et al.,
2017). On the other hand, COPS5 or MYC alone is insufficient to
activate genes crucial for tumor growth and invasion fully (Adler
et al., 2006), indicating their cooperativity is indispensable in cancer
development. Regarding the tumor suppressor TP53 co-
overexpressing with COPS5 in the DLBCL-related CPM, since the
CPM contained MYC and TP53 mutations also, our results suggest
the importance of understanding the orchestration of multimodal
features. Indeed, it has been reported that patients with
overexpression of TP53 in the presence of TP53 mutations
display chemotherapy resistance and poor prognosis (Li et al.,
2013). We expect that our CPM, particularly COPS5, collectively
explains this gain-of-function mutation, which needs further
investigation.

FIGURE 5
(A) The correlation scatter plots between CPM#1 overexpression genes in DLBCL patients. (B) Kaplan-Meier curve indicating the effect of high (red)
and low (blue) expression of COPS5 on the overall survival (OS) of DLBCL patients. (C) Changes in the frequency of Raji and SLVL cells cultured with
COPS5 depletions compared to controls (NT). The cells were transduced with Cas9 together with non-targeting (NT) or COPS5-targeting sgRNAs
(COPS5-KO#1 and COPS5-KO #2) co-expressing tRFP657. The frequency of tRFP657+ cells was normalized to the frequency of tRFP657+ cells at
day 3.
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We recognize that our current model input matrices do not
include delicate genomic features, including various structural
variants, mutation zygosity, and gene colocalization analysis.
Enhancing our model by incorporating these additional patterns
and refining preprocessing steps might improve the JNMF
outcomes, allowing us to reveal more intricate biological
relationships. Such improvements would expand the depth and
breadth of our methodology. Despite these limitations, the
features currently included have successfully identified
biologically meaningful biomarkers, demonstrating our
approach’s robust scalability. This validation underscores the
reliability of our model and underscores its potential for
adaptation and growth with the integration of new data and
advanced techniques.

In conclusion, our integrative analysis handled the sparsity of
large-scale multimodal datasets by effectively decomposing them
and offers the functional relationships among the high-
dimensional features in disease phenotypes. Our findings
highlight that integrating complementary data will facilitate
clinical biomarker discovery, greatly advancing
precision oncology.
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