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Colon cancer (CC) is the second most common cause of cancer deaths and the
fourth most prevalent cancer in the United States. Recently cholesterol
metabolism has been identified as a potential therapeutic avenue due to its
consistent association with tumor treatment effects and overall prognosis. We
conducted differential gene analysis and KEGG pathway analysis on paired tumor
and adjacent-normal samples from the TCGA Colon Adenocarcinoma project,
identifying that bile secretion was the only significantly downregulated pathway.
To evaluate the relationship between cholesterol metabolism and CC prognosis,
we used the genes from this pathway in several statistical models like Cox
proportional Hazard (CPH), Random Forest (RF), Lasso Regression (LR), and
the eXtreme Gradient Boosting (XGBoost) to identify the genes which
contributed highly to the predictive ability of all models, ADCY5, and SLC2A1.
We demonstrate that using cholesterol metabolism genes with XGBoost models
improves stratification of CC patients into low and high-risk groups compared
with traditional CPH, RF and LR models. Spatial transcriptomics (ST) revealed that
SLC2A1 (glucose transporter 1, GLUT1) colocalized with small blood vessels.
ADCY5 localized to stromal regions in both the ST and protein
immunohistochemistry. Interestingly, both these significant genes are
expressed in tissues other than the tumor itself, highlighting the complex
interplay between the tumor and microenvironment, and that druggable
targets may be found in the ability to modify how “normal” tissue interacts
with tumors.
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1 Introduction

With an estimated 106,970 new cases and 52,550 deaths in the United States in 2022,
colon cancer (CC) is the fourth most common cancer and second leading cause of cancer
death (Siegel et al., 2023). CC staging is strongly tied to prognosis, where earlier stages have
a much higher chance of long-term survival (Haggar and Boushey, 2009). However,
symptoms such as bowel obstruction and the presence of bloody stools (hematochezia)
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are infrequently observed in the early stages of colorectal cancer
(CC), resulting in many patients being overlooked until the disease
has advanced to later stages (Zhang et al., 2021). Ultimately this
makes it challenging to diagnose colon cancer at an early stage
(Brenner et al., 2015; Wong et al., 2016). Despite recent advances in
testing and treatment, the overall prognosis for patients with CC
remains poor due to the lack of biomarkers for early detection and
risk stratification of patients (Keum and Giovannucci, 2019). High
molecular heterogeneity is a hallmark of CC, and studies have shown
that this heterogeneity is associated with differences in survival and
response to therapy among patients with the disease (Burrell and
Swanton, 2014; Dienstmann et al., 2017).

Thus, to address the heterogeneity in patients that drive their
differences in survival and response to therapy, it is important to
explore valuable and unifying diagnostic and prognostic factors to
guide the development therapeutics that would be effective for this
broad and varied patient population (Schork, 2015). Recent evidence
has shown that a high-cholesterol diets are strongly associated with
an increased risk for CC (Wu et al., 2022), and it has been shown that
a diet-responsive phospholipid-cholesterol axis regulates intestinal
stem cell (ISC) proliferation and tumorigenesis (Wang et al., 2018).
CC with high levels of cholesterol synthesis may have a high chance
of cancer recurrence and worse progression or relapse-free survival
(Xie et al., 2022). Recent studies have revealed that cholesterol plays
a more prominent role in the advanced stages of colorectal cancer,
rather than during the early stages of the disease (Wu et al., 2022).
The goal of our research was to determine whether these clinico-
molecular associations can be leveraged to predict prognosis,
determine where in the tumor and microenvironment these
genes are expressed, and the implications for developing
therapeutic targets.

Multi-omics sequencing data has begun to change the
traditional methods used to stratify cancer patients and identified
promising therapeutic avenues (Cancer Genome Atlas Network,
2012; Zhao et al., 2014). However, the inherent characteristics of
omics data, such as high dimensionality, small sample size, and
category imbalance, usually pose significant computational
challenges (Boulesteix and Strimmer, 2007). Fortunately, the
rapid development of machine learning (ML) algorithms has
occurred in parallel, and these algorithms have been widely
applied in the diagnostic classification and prognosis of disease
(Camacho et al., 2018). ML complements traditional statistical
methods for improving cancer diagnosis, detection, prediction,
and prognosis by including more complex interactions and
frequently improving performance at the cost of interpretability
and potentially, external validity (Hijazi and Chan, 2013). Many ML
approaches are applied to deal with biological multi-omics data of
high-dimensional samples (Arjmand et al., 2022). One such
algorithm called gradient boosting decision trees (i.e., XGBoost),
is often more accurate in cancer research than other machine
learning algorithms, like RF, SVM, and logistic regression (Islam
et al., 2020).

The XGBoost model has been shown to be highly effective in
predicting cancer outcomes, outperforming other machine learning
algorithms and achieving high accuracy and specificity. This model
allows researchers to identify complex relationships between
phenotypes, gene expression, and predict patient outcomes more
accurately. This study aimed to investigate genes associated with

cholesterol metabolism and their association with CC risk and
clinical outcomes. First, we trained a novel XGBoost model that
can be used for patient risk stratification and performs well
compared to other established methods. Then, we used spatial
transcriptomic and proteomic data to visualize the gene
expression of prognostic genes from the XGBoost model to study
the distribution of these genes in tumor tissue, identifying the
cellular and spatial context of these genes within the tumor
microenvironment, such as the expression levels in tumor cells,
stromal cells, as well as their location within different regions of the
tumor tissue.

2 Materials and methods

2.1 Data preparation

RNA-seq raw counts were retrieved from The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/projects) to study the
relationship between cholesterol and CC prognosis. TCGA-COAD
(N = 512) (Cancer Genome Atlas Network, 2012) read counts were
normalized with the transcripts per million (TPM) method. After
the data filtering process by removing the duplicates for each patient,
456 CC samples and 41 adjacent-normal tissues with survival
information, age, gender, and stage were included for further
analysis. The three Gene Expression Omnibus microarray
datasets (https://www.ncbi.nlm.nih.gov/geo/) were used for
external validation cohorts: GSE17538 (N = 232) (Smith et al.,
2010), GSE33113 (N = 90) (Felipe de Sousa et al., 2011), and
GSE39582 (N = 566) (Marisa et al., 2013). The workflow for
processing and analysing the data is shown in Figure 1A.

2.2 Differential gene expression analysis

DEG analysis between primary CC samples and normal tissues
was performed using the Wilcoxon rank-sum test (Li et al., 2022).
We used TCGA identifiers in the sample name to delineate tumor or
adjacent-normal samples (primary tumor: 01A, adjacent normal:
11A). DEG significance was defined by an FDR adjusted
p-value <0.05, and |log2FC| > 2. The upregulated and
downregulated genes were visualized in volcano plots with
EnhancedVolcano (Blighe et al., 2019). Heatmaps were generated
with the pheatmaps package to show the expression profiles of DEGs
(Kolde, 2012). DEGs were mapped to terms in the Kyoto
Encyclopedia of Genes and Genomes database (KEGG) database
and the Gene Ontology (GO) for functional enrichment and
pathway analysis. The KEGG pathway enrichment analysis was
performed with clusterProfiler (Yu et al., 2012). Enrichment
results with a false discovery rate (FDR) < 0.05 were classified as
significant functional categories.

2.3 CPH model construction and
survival analysis

Univariate Cox regression was applied to examine the
prognostic value of cholesterol-related DEGs in CC patients
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using the package survival (Therneau and Lumley, 2015).
P-values <0.05 were considered significant. Genes with hazard
ratios (HR) > 1 were called high-risk genes, while HR < 1 were
called low-risk genes. Next, using the same survival R package, we
constructed a multivariate Cox proportional hazard (CPH) model
for cholesterol metabolism using the prognostic cholesterol-related
genes of CC with log-rank p-value <0.05 from the univariate cox, to
better understand the interactions between the significant univariate

genes. The risk score for patient j was calculated from our Coxmodel
described below:

risk scorej � sigmoid ∑n
i�1
βi × Xi,j

⎛⎝ ⎞⎠
Where, βi represents the coefficient for each gene in the

multivariate cox regression model, and Xi,j represents the

FIGURE 1
The workflow for analysis and differentially expressed analysis between tumor and adjacent normal tissue. (A) The workflow of processing and
analyzing the data; (B) Volcano plot of Differentially expressed genes (FDR <0.05, |log2FC|>2); (C) Heatmap of differentially expressed genes between
tumor and adjacent normal tissues; (D) GSEA plot of bile secretion pathway.
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expression of gene i in patient j. The survival data were obtained
from the clinical metadata files. The median risk score was the cutoff
to classify the CC patients into low-risk and high-risk groups. The
evaluation indicator of the survival analysis was disease-free survival
(DFS), also known as relapse-free survival (RFS), which refers to the
length of time after the end of primary cancer treatment that the
patient survives without any signs or symptoms of the tumor
recurrence.

Themodel was used to evaluate the association between RFS and
cholesterol-related genes. The model provided risk scores (hazard
ratios) and subsequently patients were divided into a low-risk group
and high-risk group, stratified by the median risk score. Kaplan-
Meier log-rank analyses were performed using the survival package
to understand the significance of relapse-free survival differences
between these two groups generated by the CPH model.

2.4 Machine learning model

Several ML models were applied to our study of cholesterol
pathway-based CC prognosis for comparison purposes: LR, RF, and
XGBoost. These were implemented using the following packages:
glmnet (Friedman et al., 2010), randomForest (Liaw and Wiener,
2002), and xgboost (Chen and Guestrin, 2016). Five-fold cross-
validation was performed for each model to select the
hyperparameters for the optimal ML model.

For each algorithm, ML-based models representing all
combinations of identified biomarkers were built. We curated
75 cholesterol biosynthesis (KEGG bile secretion pathway,
hsa04976) gene with available transcriptomics data in both
TCGA and GEO datasets. Further SLC22A8 was excluded from
downstream analysis since it was not expressed in more than 85% of
samples in the TCGA-COAD dataset. Next, we used feature
importance ranking to pick the top 20% features, and fifteen
genes were selected based on the importance of the features in
the ML models. This novel fifteen-gene signature was selected by
feature importance ranking, and a series of external validations were
performed using the previously mentioned microarray data. For
XGBoost model, the primary hyperparameters for XGBoost include
the number of trees (nrounds), maximum depth of each tree,
subsample ratio, and gamma value. These hyperparameters play a
pivotal role in determining the model’s behavior and performance.
We conducted a five-fold cross-validation using the default
hyperparameters of the XGBoost model on our training dataset.
These default parameters are maximum depth = 6, subsample = 0.5,
gamma = 0, and nrounds = 60. Then,we performed spatial
visualization of the fifteen genes from XGBoost modelling using
Seurat (Satija et al., 2015) and the 10X Genomics Visium platform to
identify specific regions within the tumor that are associated with
different biological processes or clinical outcomes. The spatial
transcriptomics data is colon adenocarcinoma available from 10X
Genomics (Ståhl et al., 2016) (https://www.10xgenomics.com/
resources/datasets/human-intestine-cancer-1-standard). Histologic
correlates in the transcriptomic data were identified.
Immunohistochemistry data from the Human Protein Atlas
(Uhlén et al., 2015) (https://www.proteinatlas.org/) was used to
understand whether protein expression distribution matched
aligned with findings from the spatial transcriptomics.

2.5 Model comparison

We compared our model with a published model, which uses eight
immune-related genes to predict relapse-free survival in CC (Wen et al.,
2020). We compared both models in the TCGA-COAD (training),
GSE17538 (testing), GSE39582 (testing), and GSE33113 (testing)
datasets, evaluated using the log-rank p-value based on the risk scores
from each model. In our study, we evaluated and then compared the
performance of the traditional CPHmodel with MLmodels in predicting
RFS or DFS in CC. Our results showed that a more complex gradient
boosting ensemblemodel, like XGBoost, can improve patient stratification
and highlights the prognostic potential of cholesterol pathways in CC.

Furthermore, since our results showed superior performance of
XGBoost model and compared to the other models for the various
validation datasets, we included age and cancer stage as covariates.
Age at diagnosis was directly extracted from the dataset and
incorporated as a continuous variable. Cancer stages were
simplified into four broad categories: Stage I (including IA, IB),
Stage II (including IIA, IIB, IIC), Stage III (including IIIA, IIIB,
IIIC), and Stage IV (including IVA, IVB). This allowed for clearer
stage groupings in the analysis, facilitating more robust comparisons
across the validation datasets.

2.6 Statistical analyses

All the statistical analyses were conducted with R software
(version 4.2.1). Significance was determined at the following
levels p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Unless
otherwise noted, statistical testing was conducted using base R
implementations (Ihaka and Gentleman, 1996).

3 Results

3.1 Differential gene expression analysis
reveals enrichment of the bile
section pathway

TCGA-COAD identified a total of 1,164 DEGs, of which
733 were upregulated and 431 were downregulated in CC tissues
compared with adjacent normal tissues. There were numerous
DEGs with high fold changes and low p-values (Figure 1B), the
expression changes of DEGs clearly distinguished CC tissues and
adjacent-normal tissues (Figure 1C). Among GO and KEGG
pathway analyses for downregulated genes, only Bile Secretion
was enriched (Figure 1D, GSEA adjusted nominal p-value =
0.0173; hypergeometric test adjusted p-value = 0.0063). Bile
secretion plays a key role in cholesterol homeostasis. We
extracted 75 genes from the Bile secretion pathway using KEGG/
GO methods for downstream prognostic model construction.

3.2 Construction of cholesterol related
prognostic model for colon cancer

From the univariate CPH analysis, ten genes were found to be
statistically significant, including ADCY5, FXYD2, CA2, ABCB4,
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FIGURE 2
CPH model construction. (A) Forest plot of univariate CPH model with significant genes; (B) Forest plot of multivariate CPH model; (C)
boxplot of genes in multivariate CPH model; (D) Left panel: Spatial visualization of SLC2A1 gene expression; Right panel: The histological biopsy
with blood vessels for ST data; (E) Survival analysis of multivariate CPH model in TCGA-COAD dataset; (F) Survival analysis of multivariate CPH
model in GSE17538 dataset; (G) Survival analysis of multivariate CPH model in GSE39582 dataset; (H) Survival analysis of multivariate CPH
model in GSE33113 dataset.
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SLC2A1, SLC10A2, UGT2B15, UGT2A3, SLC51B, and ADCY4
(Figure 2A). Meanwhile, we performed the Benjamini-Hochberg
FDR correction and Bonferroni method to get the corresponding
adjusted p-value for multiple comparison testing (Supplementary
Table S1). Then, we constructed a multivariate prognostic CPH
model using these ten genes (Figure 2B). Eight out of these ten genes
were statistically significant between tumor and adjacent normal
samples (Figure 2C). Of the genes that were significant, only
SLC2A1 had a higher gene expression in the tumor samples than
in adjacent-normal samples. The genes that were significant in the
multivariate CPH model but were downregulated in the tumor
compared to adjacent-normal tissues in the bulk RNA-seq were:
ADCY5, FXYD2, CA2, ABCB4, SLC10A2, UGT2615, UGT2A3,
SLC51B, ADCY4. The spatial visualization of SLC2A1 gene
expression in intestine cancer spatial transcriptomics data showed
a non-uniform distribution in the tissue and SLC2A1 (GLUT1)
expression tended to colocalize with regions that had small blood
vessels penetrating the tumor (Figure 2D). The final CPH model
consisted of:

risk scoreCPH � sigmoid (0.173*ADCY5 + 0.294*FXYD2

− 0.039*CA2 + 0.476*ABCB4 + 0.131*SLC2A1

+ 0.529*SLC10A2 − 0.045*UGT2B15

− 0.11*UGT2A3 − 0.052*SLC51B + 0.054*ADCY4)

The total of 456 CC patients were divided into a high-risk group
(n = 228) and a low-risk group (n = 228) based on the median risk
score of 0.842. The Kaplan-Meier analysis in the TCGA-COAD
dataset confirmed that the RFS stratification performance of CC
patients had shown statistically significant in the high-risk group
and the low-risk group (log-rank p-value <0.001), and the high-risk
group had a worse overall RFS compared to those in the low-risk
group (Figure 2E). To further explore the performance of the
multivariate CPH model using external GEO datasets, we applied
it to GSE17538 (log-rank p-value = 0.030), and RFS performance of
CC patients showed a significant difference between the low and
high-risk group (Figure 2F). The CPH model was also evaluated in
GSE39582 (log-rank p-value = 0.086) and GSE33113 (log-rank
p-value = 0.205), but neither dataset showed a statistical
difference between the low and high-risk groups (Figures 2G, H).

3.3 Machine learning identifies prognostic
genes with varying predictive power across
colon cancer datasets

We used 75 genes from the bile secretion pathway related to
cholesterol and several cross-validatedMLmethods to identify genes
that were consistently prognostic (Supplementary Table S2). We
used Random Forests, Lasso regression, and XGBoost feature
importance outputs to identify the most important genes for
predicting prognosis. To improve the accuracy and
interpretability of ML model by focusing on the most important
features, we identified fifteen genes as being the most important for
stratifying patients. We further identified two genes that were
common to all models as being high importance and prognostic
(SLC2A1 & ADCY5). Rather than fixing the genes used in each
predictive model, the purpose of using multiple machine learning

models is to regularize the associations between genes and
prognosis, identifying only highly consistent genes.

The RF model stratified patients with significant differences in
survival in the TCGA-COAD dataset (log-rank p-value <0.001,
Figure 3A). However, the results of RF models did not
differentiate low-risk and high-risk groups in GSE17538 (log-
rank p-value = 0.211, Figure 3B), GSE39582 (log-rank p-value =
0.511, Figure 3C), and GSE33113 (log-rank p-value = 0.348,
Figure 3D). The LR model, like the RF model, stratified patients
in the TCGA-COAD (log-rank p-value <0.001, Figure 3E).
However, the model performance was not significant in
GSE17538, GSE39582 and GSE33113 (Figures 3F–H).

We examined the feature importance for the XGBoost model
(Figure 4A). Twelve out of fifteen genes were found to be
significantly differentially expressed between adjacent-normal and
tumor tissues in the TCGA-COAD dataset (Figure 4B). The
XGBoost model stratified low-risk and high-risk groups in the
TCGA-COAD dataset (p-value <0.001, Figure 4C). Patients could
be stratified significantly in GSE17538 (log-rank p-value = 0.021,
Figure 4D), nearly significantly in GSE39582 (log-rank p-value =
0.07, Figure 4E) and significantly in GSE33113 (log-rank p-value =
0.004, Figure 4F). For the XGBoost model, we further analyzed the
patient characteristics, including stage, sex, and age (Supplementary
Table S3), and the showing differences in stage across risk groups
(p-value <0.001, Supplementary Figures S1A, B). Notably,
SLC2A1 gene expression was higher in tumors (Figure 4B), we
further investigated this gene in the spatial transcriptomics.

For the spatial visualization of RNA and gene expression, we
found that the prognostic genes from XGBoost model, especially
GNAS (Supplementary Figure S2A), ATP1A1 (Supplementary
Figure S2B), ATP1B1 (Supplementary Figure S2C), colocalized
with the densest regions of tumor. The Protein atlas IHC
staining also colocalized to tumor regions. SLC2A1 had a distinct
distribution, being less enriched in tumor regions, and instead
favoring regions with blood vessels. This aligns with SLC2A1’s
known role in transporting glucose across endothelial cells and in
red blood vessels (Zheng et al., 2010; Paikari et al., 2019)
(Supplementary Figure S2D). ADYC5 had a stromal pattern in
both the transcriptomics and IHC (Supplementary Figure S3A).
HMGCR, the rate-limiting enzyme in cholesterol synthesis, showed
a mixed tumor/stromal pattern in both the transcriptomic and
proteomic data (Supplementary Figure S3B). The spatial
distribution of KCNN2 and SCTR (Supplementary Figures S3C,
D) were difficult to discern in the transcriptomic data due to low
expression. The intensity of the proteomic data was also much more
muted compared to the other genes in this analysis.

3.4 XGBoost outperforms other models in
prognostic accuracy across multiple colon
cancer datasets

We compared our CPH, RF, LR, and XGBoost models’
performance against a previously published eight-gene panel. We
performed the survival analysis for each model to get the log-rank
p-value. From the results of the model comparison (Table 1), we can
conclude that XGBoost performed better than LR, RF, CPH and
eight-gene models in the TCGA-COAD dataset (p-value <0.001) in
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GSE17538 (p-value = 0.021), and in GSE33113 (p-value = 0.004). To
further compare the performance of ML models we built, we also
used receiver operating characteristic (ROC) curve to evaluate the

high and low risk classification tasks with CPH, RF, LR, XGBoost
and eight-gene models with 3-year survival. For validation dataset
GSE17538, the XGBoost model had the receiver operating

FIGURE 3
Random Forest model and Lasso Regression model. (A) Survival analysis of RF model in TCGA-COAD dataset; (B) Survival analysis of RF model in
GSE17538 dataset; (C) Survival analysis of RF model in GSE39582 dataset; (D) Survival analysis of RF model in GSE33113 dataset; (E) Survival analysis of
Lasso model in TACG-COAD dataset; (F) Survival analysis of lasso model in GSE17538 dataset; (G) Survival analysis of lasso model in GSE39582 dataset;
(H) Survival analysis of Lasso model in GSE33113 dataset.
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characteristic area under the curve (AUC) 0.599, which was better
than the other models (Figure 5A); and for validation dataset
GSE33113, the XGBoost model had AUC 0.664, which
performed better (Figure 5B). None of the models—XGBoost,

LR, RF, or CPH—achieved an AUC above 0.590 on the
GSE39582 dataset. The AUC for the XGBoost model on the
GSE39582 dataset was 0.565 (Figure 5C), which was comparable
to the poor performance of the other models. However, given that all

FIGURE 4
XGBoost Model. (A) Feature importance in XGBoost model; (B) Boxplot of important genes expression in XGBoost model; (C) Survival analysis of
XGBoost model in TCGA-COAD dataset; (D) Survival analysis of XGBoost model GSE17538 dataset; (E) Survival analysis of XGBoost model in
GSE39582 dataset; (F) Survival analysis of XGBoost model in GSE33113 dataset.
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models showed similarly low performance, we are cautious about
drawing conclusions from this dataset using gene expression alone.
We also used the eight genes and corresponding coefficients from
the published paper to build the comparison model. This
comparator model could not significantly stratify the TCGA-
COAD, GSE17538, or GSE39582 patients (Figures 5D–F) but
could significantly stratified patients in GSE33113 (Figure 5G,
log-rank p-value = 0.033). Other metrics for evaluation of model
performance such as sensitivity, specificity, F1-score, precision-
recall AUC (PR-AUC) and AUC are provided in
Supplementary Table S4.

Due to the superior performance of the XGBoost model in these
baseline comparisons across various validation datasets, we extended the
model to include additional covariates such as age, and disease stage. This
enhancement resulted in not only higher PR-AUC and AUC values but
also improvements in F1 scores, sensitivity, and specificity (Figure 5H;
Supplementary Tables S4, S5). For instance, after incorporating these
covariates, the XGBoost model achieved AUCs of 0.734 for GSE17538,
0.592 for GSE33113, and 0.632 for GSE39582 in predicting 3-year
survival (Supplementary Table S5). Our method performed
comparably to stage depending on the metrics and universally
performed better in PR-AUC, which better accounts for imbalanced
data. Note the lower performance in GSE33113maybe due to all patients
being Stage II. Despite the lower 3-year survival AUC in GSE33113, it
highlights a distinct advantage that our method has over stage, i.e., in
cases where cohorts lack stage heterogeneity, ourmethod can still achieve
a high 5-year AUC of 0.717 without diversity in the stage information.
These findings further demonstrate that incorporating patient-specific
information will overall boost model performance.

3.5 XGBoost-identified prognostic features
in cholesterol metabolism reveal stage-
specific survival predictions in colon cancer

The XGBoost model is used to identify key prognostic features
related to cholesterol metabolism for further mechanistic study
(Figure 4A). To demonstrate the prognostic potential and need for
further study, we have included an additional external validation cohort
from the Human Protein Atlas showing that numerous of our top
prognostic features are predictive of survival during early andmid-stage
COAD using IHC staining (Figure 6). Notably, during stage 2 COAD
bile secretion related genes such as UGTA3 (Figure 6A) and BAAT
(Figure 6B) are predictive of longer survival. In contrast, during stage
3 COAD cholesterol pathway genes such as SLC2A1 (Figure 6C) and
ADCY5 (Figure 6D) are predictive of shorter survival. This highlights

that even at the protein level these genes can be prognostic even at the
early or mid-stages of COAD.

4 Discussion

In this study, we obtained the gene expression profiles from the
TCGA-COAD and GEO datasets using multiple bioinformatics
approaches. We then performed differential gene analysis and KEGG
pathway analysis where only the bile secretion pathway was enriched in
the KEGG downregulation pathway analysis. Bile secretion is an integral
component of normal cholesterol metabolism. Several studies have
suggested that bile acids have an important impact on the
development and progression of colon cancer. One proposed
mechanism is that bile acids promote inflammation and oxidative
stress in colon cells, leading to DNA damage and mutations that may
contribute to tumorigenesis (Degirolamo et al., 2011;Nguyen et al., 2018).
Other studies have suggested that bile acids may promote cell
proliferation and survival in colon cancer cells, further contributing to
tumor growth, by altering the composition and function of cell
membranes (Liu et al., 2016;Ocvirk andO’keefe, 2017;Hegyi et al., 2018).

We trained traditional CPH and machine learning models on
the TCGA-COAD project and trained the models on three GEO
datasets. Subsequently we extracted feature importance measures,
investigated the expression of consistently prognostic genes in
spatial transcriptomics and protein IHC. The XGBoost model
performed better than the traditional CPH, LR, and RF models.
We compared our 15-gene panel with a published 8-gene signature,
and our XGBoost model performed better than other models. When
comparing our XGBoost model to recently published studies, Du
et al. (2022) reported an AUC of 0.606 for predicting 3-year survival
using the GSE39582 dataset with Lasso as their final model. In
contrast, after incorporating age and disease stage information, our
XGBoost model achieved an AUC of 0.632 (Supplementary Table
S5). Similarly, Liu X.-S. et al. (2022) reported an AUC of 0.552 for 5-
year survival prediction using Lasso on the same dataset, with their
microenvironment score (MES) high/low risk grouping yielding an
AUC of 0.618. In comparison, our XGBoost model achieved an AUC
of 0.625 for 5-year survival. Li et al. (2024) validated their Lasso
model on an external dataset, reporting an AUC of 0.66 for 3-year
survival. Our XGBoost model, however, produced AUCs as high as
0.734 on external validation datasets such as GSE17538. For 5-year
survival, our model achieves even higher AUCs, up to 0.747. The
PR-AUCs range from 0.49 to 0.63 for 3-year survival and increase
further for longer survival periods. These results indicate that our
XGBoost model demonstrates comparable or superior performance

TABLE 1 Model comparison.

Dataset Index Classification XGBoost LR RF CPH 8-gene panel

TCGA-COAD (N = 456) p-value Training <0.001*** <0.001*** <0.001*** <0.001*** 0.063

GSE 17538 (N = 232) p-value Validation 0.021* 0.845 0.210 0.030* 0.834

GSE 33113 (N = 90) p-value Validation 0.004** 0.142 0.348 0.205 0.033*

GSE 39582 (N = 566) p-value Validation 0.074 0.488 0.051 0.086 0.337

Note: XGBoost, eXtreme Gradient Boosting; LR, Lasso Regression; RF, Random Forest; CPH, Cox Proportional Hazard; TCGA, The Cancer Genome Atlas.

The symbols *, **, and *** indicate the level of statistical significance of the results, with * representing p-value <0.05, ** representing p-value <0.01, and *** representing p-value <0.001.
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across multiple datasets, highlighting the potential advantages of
using more flexible machine learning approaches like XGBoost in
survival prediction tasks. It is worth noting even in the
GSE33113 dataset of Stage II only patients we were still able to
achieve AUC as high as 0.717 for 5-year survival signifying that the
gene signature itself adds predictive value to the clinical features like
stage. Next, we investigated which genes involved in cholesterol
metabolism were most tied to CC prognosis.

Among our 15 genes panel, two (ADCY5, SLC2A1) were directly
involved in cholesterol metabolism. Some cohort studies have
associated the low expression of ADCY5 with a better prognosis
in CC (Zhang et al., 2021). In our CPH model, ADCY5 was a high-
risk feature, which aligns with these results. Moreover, several
studies showed that SLC2A1 expression was higher in CC tissues
and associated with worse overall survival. Our histological
assessment demonstrated that SLC2A1 showed a distribution

FIGURE 5
Model Comparison. (A) ROC curve analysis of models for prediction of CC patients with 3-year survival in GSE17583; (B) ROC curve analysis of
models for prediction of CC patients with 3-year survival in GSE33113; (C) ROC curve analysis of models for prediction of CC patients with 3-year survival
in GSE39582; (D) Eight-gene model validation in TCGA-COAD dataset; (E) Eight-gene model validation in GSE17538 dataset; (F) Eight-gene validation in
GSE39582 dataset; (G) Eight-gene validation in GSE33113 dataset; (H) ROC curve analysis of models including additional covariates for prediction of
CC patients with 3- and 5-year survival in all validation datasets.
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more restricted to vasculature. Thus, SLC2A1 may be a diagnostic
and prognostic biomarker in CC (Liu Y. et al., 2022) related to tumor
blood supply. Even at the protein level bile secretion and cholesterol
pathway genes can be prognostic at the early or mid-stages of
COAD. The potential role of ADCY5 in colorectal cancer
prognosis is underscored by its methylation status and expression
patterns observed in both type 2 diabetes mellitus (T2DM) (Wei
et al., 2022) and glioblastoma studies (Can et al., 2024). In T2DM
patients, elevated methylation levels of ADCY5 are associated with
an increased risk of developing colon cancer, and in glioblastoma,
ADCY5 functions as a tumor suppressor, implies that similar
mechanisms could be at play in colorectal cancer. Thus, our
model identifies important markers such as SLC2A1 and
ADCY5 which can provide valuable prognostic information for
colon cancer patients, potentially guiding treatment decisions.

However, in this study, we recognize several limitations of our
model and propose directions for future research. The
performance metrics, particularly the area under the curve
(AUC), were not as high as we had hoped. One significant
challenge we encountered was the missing patient information,
which impeded our ability to create clinically usable models. While
our primary objective was to identify genes and proteins that could
serve as potential biomarkers or therapeutic targets, enhancing
clinical utility necessitates addressing these data gaps. Future
studies should consider incorporating additional patient
information, such as epigenetic, electronic medical records
(EMR), and genetic data, to improve the accuracy and
predictive power of our model. Despite these limitations, our
model successfully identified prognostic markers for colon
cancer, particularly genes such as SLC2A1 and ADCY5, which

are also supported by existing literature. This underscores the
relevance of our findings in the broader context of colon cancer
prognosis and highlights the potential for further exploration of
these biomarkers in clinical applications. Addressing the identified
gaps in future research will be crucial for enhancing the clinical
applicability of our results and improving patient outcomes.

5 Conclusion

Our results showed that a more complex ensemble model,
XGBoost, can improve patient risk stratification and highlight the
prognostic potential of cholesterol pathways in CC. In fact,
incorporating more patient-specific information such as age,
stages of disease, etc. significantly boost model performance.
Furthermore, we demonstrated that cholesterol-related genes
might play a notable role in CC progression. ADCY5 expression
was mostly found in stromal regions, and SLC2A1 coincided with
blood vessels. Collectively, our results were consistent across several
datasets, suggesting that ADCY5 and SLC2A1 could potentially
serve as robust prognostic biomarkers for CC, and underscore a
significant role played by the microenvironment in the progression
of colon cancer.
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FIGURE 6
Prognostic values of the top model features using IHC staining. (A) UGT2A3 protein expression stratification COAD stage 2; (B) BAAT protein
expression stratification COAD stage 2; (C) SLC2A1 protein expression stratification COAD stage 3; (D) ADCY5 protein expression stratification COAD
stage 3.
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