
LGC-DBP: the method of
DNA-binding protein
identification based on PSSM and
deep learning

Yiqi Zhu* and Ailun Sun

Department of Computer Science and Technology, College of Computer and Control Engineering,
Northeast Forestry University, Harbin, China

The recognition of DNA Binding Proteins (DBPs) plays a crucial role in
understanding biological functions such as replication, transcription, and
repair. Although current sequence-based methods have shown some
effectiveness, they often fail to fully utilize the potential of deep learning in
capturing complex patterns. This study introduces a novel model, LGC-DBP,
which integrates Long Short-Term Memory (LSTM), Gated Inception
Convolution, and Improved Channel Attention mechanisms to enhance the
prediction of DBPs. Initially, the model transforms protein sequences into
Position Specific Scoring Matrices (PSSM), then processed through our deep
learning framework. Within this framework, Gated Inception Convolutionmerges
the concepts of gating units with the advantages of GraphConvolutional Network
(GCN) and Dilated Convolution, significantly surpassing traditional convolution
methods. The Improved Channel Attention mechanism substantially enhances
the model’s responsiveness and accuracy by shifting from a single input to three
inputs and integrating three sigmoid functions along with an additional layer
output. These innovative combinations have significantly improved model
performance, enabling LGC-DBP to recognize and interpret the complex
relationships within DBP features more accurately. The evaluation results
show that LGC-DBP achieves an accuracy of 88.26% and a Matthews
correlation coefficient of 0.701, both surpassing existing methods. These
achievements demonstrate the model’s strong capability in integrating and
analyzing multi-dimensional data and mark a significant advancement over
traditional methods by capturing deeper, nonlinear interactions within the data.
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1 Introduction

The interaction between DNA and proteins plays an indispensable role in many
biological processes such as DNA replication Kornberg (2000), Jones et al. (1987),
transcription Sobell (1985), and repair Wood et al. (2001). Understanding the
underlying mechanisms of DNA-protein interactions can help elucidate these biological
processes.DNA Binding Proteins (DBPs) are crucial components in steroids, antibiotics,
anticancer drugs, and treatments for genetic diseases. Accurately identifying DBPs is a
critical step in understanding their interactions. In the early stages, researchers inferred the
presence of DBPs through wet lab experiments such as microarray chromatin
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immunoprecipitation (ChIP-chip), genetic analysis Buck and Lieb
(2004), and X-ray crystallography Chou et al. (2003), all of which
have achieved considerable success. However, these efforts depend
on their sources of features: methods based on three-dimensional
(3D) structures and sequence-driven methods. The performance of
structure-based methods is considered accurate in identifying and
characterizing protein activity from 3D structures. The precise
identification of protein 3D structures still relies on expensive
and time-consuming wet lab experiments, often resulting in
unclear 3D structural information for many proteins. Although
the field of protein structure prediction has made significant
advances with methods such as I-TASSER Yang and Zhang
(2015), AlphaFold Senior et al. (2020), and AlphaFold2 Rahman
et al. (2018), the accuracy of these protein structure predictions
cannot be guaranteed.

Sequence-based methods proposed and implemented over the past
few decades consistently frameDBP prediction as a binary classification
task. The classification of DNA-binding proteins involves various
techniques and strategies. Traditional methods include models based
on machine learning and feature engineering, such as the Support
Vector Machine (SVM), which trains on features derived from
sequence, structure, and functional domains. In recent years, the
development of deep learning has introduced new recognition
models such as Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and models incorporating attention
mechanisms. For example, Liu et al. (2015a). Developed an
iDNAPro-PseAAC method, which constructs a predictive model for
DNA-binding proteins by combining SVM Lin et al. (2011). Integrated
amino acid distance-pair coupling information and simplified amino
acid alphabet profiles into a general pseudo amino acid composition
(PseAAC) vector, establishing a novel predictor named “iDNA-
Prot—dis.” Wei et al. (2017). Proposed a novel method for
identifying DNA binding proteins to establish a new predictor called
Local-DPP by combining local Pse-PSSM features with a random forest
classifier. Liu et al. (2015b). They proposed PseDNA-Pro, which creates
a vector of characteristics composed of three sequence-based features,
including the overall amino acid composition, the pseudo amino acid
composition (PseAAC) proposed by Zhou et al., and the
physicochemical distance transformation. These features consider the
sequence composition of proteins and integrate the sequence-order
information of amino acids in proteins. These feature vectors were input
into an SVM for DNA-binding protein identification. Hu et al. (2019),
Hu et al. (2021). Also, the TargetDBP and TargetDBP +methods made
feature extraction and selection innovations Zhang et al. (2021). ADBPs
prediction method was introduced based on a stacked ensemble
classifier, StackPDB. Firstly, protein sequence features were extracted
using pseudo amino acid composition (PseAAC), pseudo-position-
specific scoring matrix (PsePSSM), position-specific scoring matrix-
transition probability composition (PSSM-TPC), evolutionary distance
transformation (EDT), and residue probing transformation (RPT).
Secondly, extreme gradient boosting-recursive feature elimination
(XGB-RFE) was employed to obtain an excellent feature subset.
Finally, the best features were applied to construct StackPDB using a
stacked ensemble classifier composed of XGBoost, LightGBM, and an
SVM. The MsDBP predictor proposed by Du et al. (2019). Employs a
deep neural network framework incorporating multi-scale sequence
features. The DBPboost method proposed by Sun et al. (2024). Using
eight feature extraction methods, improve the feature selection step by

initially selecting some features and performing feature selection after
feature fusion. Furthermore, it optimizes the application of the
differential evolution algorithm in feature fusion to enhance its
performance.

Although many effective DNA-binding protein identification
methods have been developed, their performance has room for
improvement. Firstly, although machine learning-based methods for
classifying DNA-binding proteins, such as TargetDBP+, offer good
interpretability, their performance is still not as good as deep learning
frameworks. Secondly, while models based on deep learning
frameworks, such as MSDBP and AlphaFold, have been successful
in protein prediction, they also have their respective shortcomings: the
MSDBP model is not complex enough to effectively capture the
characteristics of DNA-binding proteins. Although AlphaFold excels
in structural prediction, it is primarily designed for structure prediction
rather than classification or functional identification. Therefore, it has
yet to be optimized to enhance the performance in recognizing DBPs.
This indicates that developing a high-accuracy deep learning prediction
model tailored explicitly for DBPs is feasible and necessary.This study
introduces a DNA-binding protein recognition method named LGC-
DBP, which aims to enhance recognition performance by combining
various neural network architectures. Long Short-Term Memory
(LSTM) initially captures long-term dependencies and sequence
features within protein sequences. The output of the LSTM is then
fed into a module comprising a Graph Convolutional Network (GCN)
and dilated convolution layers, whose outputs are weighted and
summed using a sigmoid function. These layers extract features at
different scales and provide contextual information fused through
weighted summation to enhance model performance further.
Subsequently, the weighted summation result is passed through an
improved channel attentionmodule to strengthen critical features in the
protein sequence. This channel attention mechanism automatically
learns and highlights significant features, enhancing model
performance and robustness. It employs three inputs and calculates
weights through a fully connected layer. This method seamlessly
integrates multiple neural network structures, leveraging their feature
extraction and sequence modeling advantages to improve the accuracy
and generalization ability in DNA-binding protein recognition.
Through experimental validation, this method has achieved
significant performance improvements in protein identification tasks,
achieving a prediction accuracy of 88.01% and a Matthews correlation
coefficient of 0.738, significantly higher than most existing state-of-the-
art DBP prediction methods. This provides new insights and
approaches for further research and application in DNA-
binding proteins.

The remainder of this study is as follows: The second section
describes the structure of the method used in this paper. In the third
section, we provide details of the datasets used in the experiments
and investigate, compare, and interpret the experimental results.
Finally, in the fourth section, we discuss and summarize our work.

2 Propose method

2.1 Benchmark data sets

To assess LGC-DBP’s performance, we utilized the UniSwiss
dataset, previously used in our group’s previous investigation. This
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dataset encompasses proteins from various species, such as humans,
mice, and Arabidopsis thaliana (A. thaliana), comprising
9,762 proteins from the UniProtKB/Swiss-Prot database. Each
protein within the dataset contains more than 50 residues, and
the sequence identity between any two DBPs (or non-DBPs) is less
than 25%. The UniSwiss dataset is partitioned into two subsets:
UniSwiss-Tr, serving as the training set, which comprises
4,500 DBPs and an equal number of non-DBPs, and UniSwiss-
Tst, acting as the independent test set, consisting of 381 DBPs and
381 non-DBPs. Access to the UniSwiss dataset is provided at https://
github.com/jun-csbio/TargetDBPplus/.

2.2 Data preprocessing

The benchmark dataset comprises FASTA sequences, which
require their conversion into PSSM(Position Specific Scoring
Matrices) Jones (1999), Jeong et al. (2010) for subsequent
analysis. PSSM is a commonly used matrix representation
method in bioinformatics, reflecting the conservation of each
amino acid at specific positions within a set of sequences. Using
data from multiple sequence alignment (MSA), PSSM provides
valuable information on proteins’ evolutionary relationships and
functional features. Each row of the PSSM matrix corresponds to an
amino acid residue, and each column is placed in a specific position
in the protein sequence. The elements in the matrix represent the
logarithmic odds scores of each amino acid observed at a given
position based on the frequencies observed in the sequence
alignment. PSSM is typically used as input features for various
bioinformatics tasks, including protein structure prediction,
function prediction, and protein-ligand binding site prediction.

Many protein classification methods based on PSSM often
perform additional feature extraction on top of the PSSM,
overlooking the inherent feature information contained within
the PSSM itself. Therefore, in this study, the information directly
extracted from the PSSM matrix is selected as the input tensor and
then fed into the model for training.

2.3 Structure of LGC-DBP

Our model adopts a fully supervised approach to address the
issue of data scarcity by introducing an ensemble or stack of multiple
models. The fundamental idea behind model ensembling is to
combine several different models, each tasked with handling
different aspects of the problem or providing diverse feature
representations. By synthesizing the predictions of multiple
models, we can significantly enhance overall performance, which
helps overcome challenges associated with small data volumes and
boosts the model’s generalization capability. In the practical
implementation of this study, we initially generate a PSSM using
the NCBI BLAST tool from a given DNA-binding protein sequence.
The PSSM is derived from multiple sequence alignments and
accurately reflects the probability of occurrence of different
amino acids at each position. The data set for this study includes
a training set composed of 4,500 DNA-binding and 4,500 non-
DNA-binding protein sequences, along with an independent test set
containing 381 DNA-binding and 381 non-DNA-binding protein

sequences. Each protein sequence is associated with a PSSM to
capture the frequency and conservation of amino acids at
each position.

Given that multiple PSSM matrices increase the dimensionality
and complexity of the data, we have applied dimensionality
reduction techniques to the PSSM matrices before feeding them
into an LSTM network. The dimensionality reduction utilizes
ensemble-based feature selection and Principal Component
Analysis (PCA). The LSTM network is particularly suited for
processing sequential data, as it can capture long-term
dependencies and extract time or structure-related features from
the sequence. The output from the LSTM is then passed through an
enhanced Gated Inception Convolution module. This module
combines the advantages of graph convolutional networks and
dilated convolutional networks, employing gating mechanisms
and dilated convolutions to capture and integrate deep features
of DNA-binding proteins efficiently. The output undergoes further
processing by an improved channel attention module. This module
modifies traditional channel attention to increase flexibility,
allowing it to learn valuable positional information from different
channels of the PSSM. The application of these technologies makes
the model more efficient and precise in handling complex biological
sequence data.

Finally, the features are transformed into prediction
probabilities through a fully connected layer, employing the
softmax function to distinguish between DBPs and non-DNA-
binding proteins (Non-DBPs). The model is trained on the
UniSwiss-Tr dataset, optimizing a loss function based on cross-
entropy to predict and classify DNA-binding proteins. This
integrative approach, which utilizes multiple modules and
techniques, provides an efficient and accurate solution for
precisely predicting protein functions. This study selects cross-
entropy loss as the loss function for the model, computed as
shown in Formula 3:

LOSS � −∑
20

k�1
yilog ŷi( ) (1)

Here yi and ŷi denote the actual label and the predicted
probability value, respectively. Ultimately, the Adam algorithm
optimizes this loss function Kingma and Ba (2014). For
implementation, we use Facebook’s PyTorch library, an open-
source tool Paszke et al. (2019).

2.3.1 Long short-term memory (LSTM)
LSTM is a recurrent neural network (RNN) architecture

designed to overcome the vanishing gradient problem and
capture long-term dependencies in sequential data. Hochreiter
and Schmidhuber introduced it in 1997.

At its core, an LSTM consists of memory cells that maintain an
internal state, allowing them to retain information over time. Three
gates control these cells: the input gate (i), the forget gate (f), and the
output gate (o). Each gate regulates the flow of information into and
out of the cell. In addition, the LSTM incorporates a cell state (C)
and a hidden state (h), both of which are updated at each time step.

PSSM is derived from multiple sequence alignment (MSA),
reflecting the conservation of each amino acid at specific
positions in the protein sequence. Due to the long-term
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dependencies in protein sequences, LSTM is well-suited for
capturing these dependencies in sequence data, thus better
modeling the features within PSSM. In traditional RNNs, the
gradients may vanish or explode as time steps increase during
backpropagation. However, LSTM, with its gated structures such
as input gates, forget gates, and output gates, effectively controls the
flow of gradients, thereby avoiding the vanishing gradient problem
and more effectively capturing long-term dependencies in sequence
data. Additionally, LSTM can learn and extract abstract features
from PSSM, facilitating information interaction across multiple time
steps and effectively capturing semantic and syntactic information
in sequence data, thereby improving classification performance.

2.3.2 Gated inception convolution
This module is an improvement based on Inception

Convolution. Inception Convolution, also known as GoogleNet
Inception, is a convolutional neural network (CNN) Fukushima
(1980) architecture introduced by Google Szegedy et al. (2015). It
employs multiple parallel convolutional layers with different filter
sizes to efficiently capture features at various spatial scales, thereby
avoiding gradient vanishing. The network can extract features using
parallel convolutional operations while minimizing computational
costs. Inception Convolution has been widely used in image
classification and recognition tasks due to its ability to balance
computational efficiency and model performance.

The improvements to Inception Convolution in this study are
divided into two aspects: replacing the convolutional layers and
using a sigmoid function for weighting.

First, this study replaces the convolutional layers of this module
with GCN Kipf and Welling (2016) and dilated convolution. The
advantage of replacing the two convolutional layers in Inception
Convolution with GCN and dilated convolution lies in the
comprehensive utilization of the strengths of different
convolutional layers. GCN effectively captures both local and
global information of graph-structured data and is particularly
suitable for processing such data (Wang et al., 2023a), including
protein sequences. On the other hand, dilated convolution extracts
feature at different receptive fields, increasing the network’s
sensitivity to features. This combination enables a more
comprehensive capture of spatial features and relationships in the
input data, enhancing the model’s representation ability and
classification performance on complex data. Moreover, GCN and
dilated convolution can reduce model complexity, accelerate
training speed, and improve efficiency and performance.

The graph convolutional layer can be represented as a non-
linear function, as shown in Formula 4:

Hl+1 � σ AHlWl( ) (2)

Where Wl is the weight parameter matrix for layer l. σ is the non-
linear activation function, with ReLU utilized in this study. Hl

represents the input values for this layer, while Hl+1 represents
the input values for the next layer.

Dilated Convolution Yu et al. (2017), also known as atrous
convolution or convolution with holes, injects holes into the
standard convolutional kernel to expand the model’s receptive
field. In contrast to regular convolution operations, dilated
convolution introduces an additional parameter: the dilation rate,

which refers to the number of intervals between the points of the
convolution kernel. For instance, the dilation rate is set to 1 in
standard convolution operations.

The dilated convolution layers in this module can extract
features at different scales, enabling the capture of spatial
structures and contextual information of various sizes. This
capability helps to represent features within protein sequences
more accurately. The structure diagram of the dilated
convolutional network is shown in Figure 2. Introducing dilated
convolution and GCN into the Inception Convolution module can
improve overall performance, but we aim to enhance DNA-binding
protein recognition further. Therefore, we introduce a gate fusion
mechanism here, adding a gating unit to the Inception Convolution
to receive the output of the GCN and the Dilated Convolution and to
generate a weight a, computed by the sigmoid function. Multiplying
“a” with the output of GCN and “1-a” with the output of dilated
convolution achieves the weighting of the two, enhancing their
connection. Finally, the weighted results are summed to serve as the
overall output of this module.

After the improvements to Inception Convolution described
above, we incorporated the advantages of GCN and dilated
convolution into Inception Convolution and introduced the
weighting method of gated units. We refer to the improved
Inception Convolution as Gated Inception Convolution.

2.3.3 Improved channel attention
The channel attention mechanism has several advantages in deep

learning Vaswani et al. (2017), Hu et al. (2018). Firstly, it dynamically
adjusts attention to different channels, enabling the model to learn and
utilize essential features within the input data effectively. Secondly,
channel attention can adaptively learn the weights of each channel,
making the model more flexible and adaptable to different input data
and tasks. Additionally, channel attention helps improve the model’s
generalization ability, reducing the risk of overfitting and enhancing
performance and robustness. In general, the channel attention
mechanism provides an effective way for deep learning models to
improve their understanding and representation of input data.

However, the original channel attention mechanism has some
limitations. First, it cannot adapt to different tasks and datasets
because it uses a fixed attention mechanism across all channels.
Second, it may be difficult to effectively capture and utilize spatial
and contextual information in the data. Furthermore, the original
mechanism may need to fully address the variations in the
importance of different channels in different contexts. Therefore,
there is a need for improvement to make the attention mechanism
more flexible, adaptable, and capable of capturing complex patterns
in the data, thereby enhancing the model’s performance and
generalization ability across various tasks and datasets.

First, we modified the input of the channel attention by employing
three different convolutional layers to obtain information at three
different scales, allowing for better extraction of information from
other dimensions of the input tensor. In the squeeze stage, we
added them to fuse multi-scale information and then compressed it
through global pooling. In the excitation stage, there are two fully
connected layers. Initially, in the first fully connected layer, we reduced
the number of channels, and then in the second fully connected layer,
we restored the number of channels to 3C, facilitating the subsequent
weighting of the three inputs. Then, we segmented them into three parts
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along the channel dimension, applied sigmoid functions to weight the
three inputs separately, and added the results of the three weighted
products as output Yin et al. (2017), Dey and Salem (2017).

2.3.4 Performance evaluation
To assess the performance of the prediction model Browne (2000),

six performance metrics are used: accuracy, sensitivity, specificity,

precision, F1 score, and Matthew’s correlation coefficient (MCC).
The formulas for calculating these metrics are as follows:

ACC � TP + TN

TP + FP + TN + FN
× 100% (3)

Sensitivity � TP

TP + FN
× 100% (4)

FIGURE 1
Architecture of LGC-DBP.

FIGURE 2
The structure of the dilated convolutional network.
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Specificity � TN

TN + FP
× 100% (5)

Precision � TP

TP + FP
× 100% (6)

F1 � 2 × TP

2 × TP + FN + FP
(7)

MCC � TP × TN − FP × FN�������������������������������������������
TP + FN( ) × TN + FP( ) × TP + FP( ) + TN + FN( )√

(8)

These metrics are used in protein classification because each
provides a unique perspective on assessing the performance of a
classification model in different aspects. Accuracy measures the
proportion of correctly classified samples out of the total samples
and is suitable for balanced datasets. Sensitivity or Recall focuses on
the model’s ability to correctly identify positive instances, which is
crucial when the aim is to minimize missing any positives. Specificity
measures the model’s accuracy in identifying negative instances,
ensuring that the model does not falsely label too many negatives as
positives. Precision focuses on the proportion of positive
predictions, which is suitable for scenarios where high accuracy
in predicting positives is required. The F1 score is the harmonic
mean of precision and sensitivity, ideal for balancing recall and
precision in imbalanced datasets. Lastly, MCC provides a
comprehensive metric that considers all four quadrants of the
confusion matrix, offering a balanced and robust performance
assessment, especially useful in highly imbalanced situations.
Together, these metrics help researchers thoroughly evaluate and
optimize their classification models.

3 Experimental results

3.1 Comparing performance with state-of-
the-art methods on UniSwiss-Tst

In this section, to further illustrate the effectiveness of the proposed
LGC-DBP, we will compare it with state-of-the-art methods. On the
UniSwissTst test dataset, we compared our model with TargetDBP,
iDNAProt-ES Chowdhury et al. (2017), TargetDBP+, MsDBP Du et al.
(2019), RF-SVM Zhang et al. (2022), TPSO-DBP Sikander et al. (2023),
and DBPboost. All the methods mentioned in this study utilize
UniSwiss-Tr as the training dataset and Uniswiss-test as the
independent test set. Our approach demonstrates good precision,
accuracy, and performance of the MCC.

Table 1 clearly shows that when using Uniswiss-Tr as a training
set, LGC-DBP performs exceptionally well in terms of ACC, F1, and
Spe. Specifically, the accuracy reaches 88. 26%, the specificity reaches
88. 52%, and the F1 score reaches 0.878.

To further validate the effectiveness of the proposed TPSODBP,
we plotted the ROC curves Zweig and Campbell (1993) for
TargetDBP, TargetDBP+, TPSO-DBP, and LGC-DBP in the
Uniswiss-Test data set, as shown in Figure 3. According to the
ROC curves, it is evident that the AUC value for LGC-DBP is higher
than those of TargetDBP, TargetDBP+, and TPSO-DBP. The AUC
value for LGC-DBP is 0.941, marking increases of 17.33%, 2.51%,
and 0.97% over the AUC values for TargetDBP (0.802), TargetDBP+
(0.918), and TPSO-DBP (0.932), respectively.

In addition to the ROC curves, Figure 4 shows scatter diagrams
for TargetDBP+ and LGC-DBP. LGC-DBP outperforms
TargetDBP+ with both negative and positive samples.
Specifically, compared to TargetDBP+, LGC-DBP shows better-
predicted probability values for 297 negative and
312 positive samples.

3.2 Comparing the generalization
performance of LGC-DBP with
other methods

Generalization Brennan (1992) refers to the ability of a machine
learning model to perform well on unseen data. A model that
generalizes well can make accurate predictions on the data and
new data on which it was trained. This is an essential metric for
evaluating the model’s performance because it reflects its
adaptability to real-world conditions. A generalizable model is
better equipped to handle new situations and data, enhancing its
practicality and reliability. In machine learning tasks, especially in
real-world applications, the generalization quality often determines
the actual effectiveness of the model. Therefore, ensuring a model’s
good generalization is crucial to building reliable machine
learning systems.

To test the generalization of LGC-DBP, the prediction model
was separately trained on the training data sets of other methods
(PDB424, PDB1075, and PDB2104), using parameters tuned in
UniSwiss-Tr. This training aimed to identify proteins in the
Uniswiss-Test dataset. It is important to note that PDB424 serves
as the training dataset for DNA-prot; PDB1075 for PSFM-DBT,
PseDNA-Pro, Local-DPP, iDNAProPseAAC, HMMBinder, DPP-
PseAAC, and DNA-propolis; and PDB2104 for TargetDBP. Further
details are provided in Table 2.

It can be observed that LGC-DBP demonstrates excellent
performance across three different datasets, further proving its
strong generalization capability. The consistent performance of
the model across diverse datasets indicates its adaptability and
robustness to varying data characteristics and distributions. This
outstanding generalization performance can be attributed to
carefully considering diverse data features in the design of LGC-
DBP and the effective optimization strategies employed during
model training. Such robust generalization enables LGC-DBP to
excel in specific datasets and maintain stable performance when
confronted with new and unknown data, providing a reliable
solution for DNA-binding protein classification and recognition
tasks in practical applications.

Figure 4 displays scatter plots of TargetDBP+ and LGC-DBP
alongside ROC curves. LGC-DBP exhibits performance superior to
that of TargetDBP+ in negative and positive samples. Specifically,
compared to TargetDBP+, LGC-DBP demonstrates better-predicted
probability values for 297 negative and 312 positive samples.

3.3 Ablation experiments based on LGC-DBP

Ablation experiments aim to assess the impact of individual
components or modules on the overall performance of a model. By
systematically removing or modifying specific parts of the model and
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observing changes in performance metrics, researchers can understand
the contribution of each component to the model’s effectiveness. These
experiments help elucidate the model’s robustness, identify critical
features, and optimize its architecture for improved performance. In
the context of LGC-DBP, the ablation experiments described in this
section involve removing modules such as the channel attention
mechanism, LSTM module, or specific layers in the Gated Inception
convolution to evaluate their respective contributions to the
performance of the DNA-binding protein prediction model. The
results of these ablation experiments are shown in Table 3.

FromTable 3, it is evident that initially, using a simple, unoptimized
LSTM for DNA-binding protein identification results in a decrease in
accuracy by 11.95% compared to the complete LGC-DBPmodel.When
considering only one of the components in themodel, the LSTM, Gated
Inception Conv, or Improved Channel Attention, it is observed that
Improved Channel Attention demonstrates the best identification
performance. This is attributed to its more rational weighting

mechanism and the optimization of channel attention, which align
better with the crucial features of DNA-binding proteins. In particular,
the most significant decrease in overall model performance is observed
when the improved channel attention is removed, thus confirming the
previous observation. The second most influential component is the
Gated Inception Conv, which highlights its importance. Although the
LSTM contributes relatively less to themodel, its ability to capture long-
term dependencies in protein sequences remains valuable.

3.4 The comparative experiments for gated
Inception Conv and improved
channel attention

The LGC-DBP model comprises three modules: LSTM, Gated
Inception Convolution, and Improved Channel Attention. We have
made enhancements to the latter two modules. We conducted two

TABLE 1 Performance comparison between LGC-DBP and state-of-the-art methods on UniSwiss-Tr.

Train set Method Acc Sen Spe Pre MCC F1

Uniswiss-Tr TargetDBP 73.10 66.93 79.27 76.35 0.465 0.713

iDNAProt-ES 77.30 73.75 80.84 79.38 0.547 0.765

TargetDBP+ 85.83 82.41 89.24 88.45 0.718 0.853

MsDBP 67.19 85.30 49.08 62.62 0.369 0.722

RF-SVM 84.25 87.66 80.84 82.06 0.687 0.848

TPSO-DBP 87.01 85.30 88.71 88.31 0.741 0.868

DBPboost 89.32 89.01 89.37 87.26 0.657 0.758

LGC-DBP 88.26 85.62 88.52 88.65 0.701 0.878

FIGURE 3
ROC curve comparison.
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FIGURE 4
Scatter diagrams of TargetDBP+ and LGC-DBP on UniSwiss-Tst. Blue circles represent positive samples, and red diamonds represent negative
samples. The axes represent the probabilities of being predicted as a positive sample. The diagram’s red (or blue) numbers indicate the number of negative
(or positive) samples in the upper or lower triangle.

TABLE 2 Generalization performance comparison between LGC-DBP and state-of-the-art methods on PDB424, PDB1075,PDB2104.

Train set Method Acc Sen Spe Pre MCC F1

PDB424 iDNA-Prot 50.06 48.56 51.97 50.27 0.005 0.494

TargetDBP+ 59.38 83.25 34.91 56.41 0.220 0.676

TPSO-DBP 63.11 52.75 76.06 67.91 0.285 0.594

LGC-DBP 65.51 51.35 76.28 65.95 0.332 0.591

PDB1075 PSFM-DBT 67.18 87.30 48.35 61.52 0.385 0.722

PseDNA-Pro 58.74 74.28 41.21 55.82 0.164 0.637

Local-DPP 52.37 13.53 92.89 66.38 0.106 0.224

iDNAPro-PseAAC 49.55 64.55 32.63 48.80 −0.030 0.556

HMMBinder 50.05 99.74 2.36 50.53 0.092 0.671

DPP-PseAAC 50.25 54.59 55.91 55.32 0.120 0.620

iDNA-Prot l dis 51.64 72.44 38.85 54.22 0.120 0.620

TargetDBP+ 69.82 66.40 73.23 71.27 0.397 0.688

TPSO-DBP 70.21 70.08 70.34 70.26 0.404 0.702

LGC-DBP 70.95 71.13 70.95 70.53 0.398 0.705

PDB2104 TargetDBP 73.10 66.93 79.27 73.10 0.465 0.713

TargetDBP+ 74.28 73.75 74.80 74.28 0.486 0.741

TPSO-DBP 72.31 79.52 65.09 72.31 0.470 0.742

LGC-DBP 74.52 73.13 70.58 72.19 0.473 0.745
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sets of comparative experiments to test the effectiveness of our
modifications to the Gated Inception Convolution and Improved
Channel Attention. The first set of experiments focused on Gated
Inception Convolution, where we tested the performance variations
of the Inception Conv (unmodified module), GCN Inception Conv,
Dilated Inception Conv, and Gated Inception Conv under
unchanged conditions. The second set of experiments targeted
Improved Channel Attention, where we evaluated the
performance changes before and after modifying Channel
Attention, also under unchanged conditions. Accuracy,
sensitivity, specificity, and precision were selected as metrics to
assess whether the modifications to Gated Inception Convolution
and Improved Channel Attention improved the overall model
performance. The results of the two sets of comparative
experiments are shown in Figure 4 and Figure 5.

Through comparative experiments, it can be observed that the
performance of the improved Gated Inception Convolution is
significantly better than that of the original Inception
Convolution. The incorporation of GCN and dilated
convolutions has resulted in performance improvements of 2.78%
and 1.94%, respectively, for the entire model. This improvement is
due to GCN’s suitability for handling data with complex topological
structures, such as PSSM matrices. At the same time, dilated
convolutions expand the receptive field, aiding in capturing

global features of DNA-binding proteins. Furthermore, the
weighted function of the gating units enhances the interaction
between GCN and dilated convolutions, leading to improved
performance. The modified channel attention mechanism also
performs better regarding ACC, Spe, Sen, and Pre than the
ordinary mechanism. This enhancement is attributed to multiple
inputs obtained from different convolutional layers and the
weighted mechanism at the excitation level, enabling the channel
attention mechanism to identify DNA-binding proteins better.

3.5 Case study

A case study selects a sample or dataset from actual data to test
the performance of models, algorithms, or techniques. Conducting a
case study helps evaluate the effectiveness of models on accurate
data, testing their generalization ability and applicability. Through
the analysis of case data, one can identify the strengths, weaknesses,
and areas for improvement in the model, providing practical
insights for solving specific problems. Case studies typically
involve data preprocessing, feature engineering, model training,
and evaluation, offering comprehensive insights into the model’s
real-world application and enabling corresponding improvements
and optimizations. In this study, five random samples were selected

TABLE 3 Ablation experiments based on LGC-DBP.

LSTM Gated inception Conv Improved channel attention Acc MCC F1

✓ 76.98 0.673 0.745

✓ 76.31 0.608 0.699

✓ 77.01 0.614 0.715

✓ ✓ 77.19 0.669 0.721

✓ ✓ 84.00 0.679 0.834

✓ ✓ 86.01 0.691 0.825

✓ ✓ ✓ 88.26 0.701 0.878

FIGURE 5
Comparative experiments of Gated Inception Convolution.
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from Uniswiss-Tst for the case study, and the results are shown
in Table 4.

From Table 4, we can observe that LGC-DBP successfully
predicted these five proteins.The failure of other models in
predicting certain protein samples can be attributed to several
key limitations, including inadequate feature extraction, structural
constraints of the models, insufficient generalization capabilities,
and the inability to handle complex data, as well as optimization and
parameter tuning issues. Particularly when dealing with proteins
with complex structures or specific functional regions, these models
fail to effectively capture complex patterns within the sequences or
properly manage long-term dependencies between sequences. In
contrast, the LGC-DBP model, by integrating advanced deep
learning technologies and architectures, has significantly
enhanced the comprehensiveness of feature extraction and the
generalization ability of the model, thereby demonstrating
exceptional performance across a broad range of samples. The
LGC-DBP model excels in protein classification, especially in
identifying DNA-binding proteins, due to its unique composite
architecture, including LSTM, improved Gated Inception
Convolution, and an enhanced Channel Attention mechanism.
The LSTM component excels at capturing long-term
dependencies in sequence data, which is crucial to accurately
understanding the order and context of protein sequences. The
improved Gated Inception Convolution delves deeper into
capturing spatial features and relationships within the input data,
thus boosting the model’s capability to handle complex data and
enhancing its classification performance. Furthermore, the
enhanced Channel Attention mechanism adaptively highlights

important features, significantly improving the model’s precision
and efficiency. This advanced integrated network structure provides
LGC-DBP with a distinct advantage in handling the complexity and
diversity of protein sequences, leading to higher precision and
superior performance in tasks involving the prediction of DNA-
binding proteins.

4 Discussion

Studying DNA-binding proteins is crucial for deepening our
understanding of gene regulation, cellular functions, and disease
mechanisms. Using deep learning (Wang et al., 2023b) to classify
DNA-binding proteins enhances our understanding of protein
functions and interactions and offers efficient, accurate, and
automated analytical advantages. Despite various protein
classification methods, these approaches are constrained by
limitations such as being confined to known protein structures
and functions, lacking completeness, and struggling to capture
dynamic changes.

Given these limitations of existing models, we developed a novel
protein classification model named LGC-DBP. The LGC-DBP
model significantly improves the accuracy of DNA-binding
protein classification through several vital enhancements. Firstly,
we improved the Inception Convolution module by incorporating
GCN and dilated convolutions to replace the original convolutional
layers. This enhancement enhances the model’s data representation
and classification performance, reducing model complexity and
training time. Secondly, we optimized the attention mechanism

FIGURE 6
Comparative experiments of Improved Channel Attention.

TABLE 4 Case Study of LGC-DBP.

O43058 P32607 Q872F4 Q54C37 F4JGZ1

TargetDBP+ × × × ✓ ×

DBPboost × × ✓ × ×

LGC-DBP ✓ ✓ ✓ ✓ ✓

Frontiers in Genetics frontiersin.org10

Zhu and Sun 10.3389/fgene.2024.1411847

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1411847


by integrating inputs from three different scales of convolutional
layers and applying sigmoid weighting to these inputs in the fully
connected layer. This enhances the model’s ability to recognize
complex patterns, improving its performance and generalization
across multiple tasks and datasets. Experimental results demonstrate
that LGC-DBP outperforms most existing models on numerous
datasets, validating the rationale and practicality of the
improvements made to various components of the model.

The multi-module fusion strategy employed by LGC-DBP
significantly enhances its ability to capture the spatial and
temporal characteristics of protein sequences, thereby improving
classification accuracy and model generalization. This
comprehensive approach makes the model more efficient in
handling long sequences and complex protein structures.
However, the high complexity of the model increases
computational costs, potentially requiring more computational
resources and time, especially when dealing with large-scale
datasets. We are optimizing algorithms and adopting efficient
hardware acceleration techniques to address this issue.
Additionally, the complexity of model tuning and maintenance
has also increased. So, we plan to use automated machine
learning techniques such as automatic hyperparameter
optimization to help reduce the burden of manual parameter
tuning and further enhance model performance. Despite its
limitations, LGC-DBP has achieved promising results in
predicting DNA-binding proteins and represents a reliable choice
for protein prediction experiments.

5 Conclusion

Identifying DBPs is crucial for uncovering information about
DNA-protein interactions, significantly contributing to our
understanding of biological processes. This paper proposes an
LGC-DBP method for identifying DNA-binding proteins to
enhance DBP recognition performance. In LGC-DBP, three
modules are sequentially connected: LSTM, Gated Inception
Convolution, which incorporates gating units for feature
modulation, and Improved Channel Attention. Experimental
results demonstrate that the LGC-DBP prediction method
outperforms most state-of-the-art DBP prediction methods.
While LGC-DBP achieves favorable predictive performance,
several aspects require further improvement in future research: 1)
Enhancing the quality of DBP datasets to better suit model training,
2) Exploring connections between DNA-binding proteins and other

protein data to discover novel identification methods, and 3)
Continuously refining network architectures to address overfitting
issues as training batch sizes increase.
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