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Background: Accurate differentiation between lung adenocarcinoma (AC) and
lung squamous cell carcinoma (SCC) is crucial owing to their distinct therapeutic
approaches. MicroRNAs (miRNAs) exhibit variable expression across subtypes,
making them promising biomarkers for discrimination. This study aimed to
identify miRNAs with robust discriminatory potential between AC and SCC
and elucidate their clinical significance.

Methods:MiRNA expression profiles for AC and SCC patients were obtained from
The Cancer Genome Atlas (TCGA) database. Differential expression analysis and
supervised machine learning methods (Support Vector Machine, Decision trees
and Naïve Bayes) were employed. Clinical significance was assessed through
receiver operating characteristic (ROC) curve analysis, survival analysis, and
correlation with clinicopathological features. Validation was conducted using
reverse transcription quantitative polymerase chain reaction (RT-qPCR).
Furthermore, signaling pathway and gene ontology enrichment analyses were
conducted to unveil biological functions.

Results: Five miRNAs (miR-205-3p, miR-205-5p, miR-944, miR-375 and miR-
326) emerged as potential discriminative markers. The combination of miR-944
and miR-326 yielded an impressive area under the curve of 0.985. RT-qPCR
validation confirmed their biomarker potential. miR-326 and miR-375 were
identified as prognostic factors in AC, while miR-326 and miR-944 correlated
significantly with survival outcomes in SCC. Additionally, exploration of signaling
pathways implicated their involvement in key pathways including PI3K-Akt,
MAPK, FoxO, and Ras.

Conclusion: This study enhances our understanding of miRNAs as discriminative
markers between AC and SCC, shedding light on their role as prognostic
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indicators and their association with clinicopathological characteristics. Moreover,
it highlights their potential involvement in signaling pathways crucial in non-small
cell lung cancer pathogenesis.
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1 Introduction

As the second most frequently diagnosed cancer worldwide,
lung cancer (LC) ranks as the deadliest among malignant tumors,
contributing to one-fifth of total cancer deaths (Sung et al., 2021). LC
is broadly classified into two main subtypes: non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLCs make
up approximately 80% of all lung cancer cases, with adenocarcinoma
(AC) and squamous cell carcinoma (SCC) emerging as the two most
prevalent subtypes, accounting for around 40% and 20% of lung
cancers, respectively (Zheng, 2016).

The heterogeneity of NSCLC subtypes results in distinct
therapeutic approaches for each specific histological type.
Therefore, to individualize treatment strategies for each patient, it
is crucial to establish a precise histological classification for NSCLC
(Charkiewicz et al., 2016). While conventional morphological
assessment of tissue sections persists as the established gold
standard for diagnosing LC, it is accompanied by inherent
challenges and limitations. Furthermore, immunohistochemistry
techniques have provided only partial assistance in improving the
accuracy of NSCLC subtyping, occasionally leading to potential
difficulties in distinguishing between AC and SCC (Tane et al., 2014;
Charkiewicz et al., 2016; Patnaik et al., 2015). Hence, there is a
pressing requirement for identifying and validating biomarkers
facilitating precise subclassification of NSCLC and ultimately
contributing to enhanced clinical outcomes.

MicroRNAs (miRNAs), as a class of conserved small non-coding
RNA molecules, are responsible for regulating the expression of
genes involved in a vast variety of biological processes (Hill and
Tran, 2021). The aberrant expression of miRNAs has been revealed
to make a substantial contribution to the development and
progression of various cancers including NSCLCs (Hill and Tran,
2021; Florczuk et al., 2017). Owing to the correlation between
expression levels of different miRNAs and histological subtypes
of NSCLC and high stability of these small non-protein-coding
RNAs in formalin-fixed tissues and biological fluids, miRNAs can be
considered to have potential biomarker value for differentiating
between AC and SCC patients (Du et al., 2017; Landi et al., 2010;
Mlcochova et al., 2014; Kosaka et al., 2010; Xi et al., 2007).

Over the past few years, several studies have been conducted to
unveil the usefulness of miRNAs for determination of NSCLC
subtypes. For instance, Hamamoto et al. proposed a combination
of three miRNAs (miR-196b, miR-205 and miR-375) for the
classification of AC and SCC subtypes (Hamamoto et al., 2013).
Sun et al. demonstrated that, while miR-29b-3p was upregulated in
AC, the higher expression of miR-105-5p was evident in SCC
samples (Sun et al., 2017). All members of the let-7 family were
also reported to be downregulated in SCC histology (Landi et al.,
2010). Zhang et al. revealed that miR-205, miR-221, and miR-30e
had lower expression in AC, whereas the expression levels of miR-

29b, let-7e, and miR-125a-5p were shown to be higher in patients
with AC compared with SCC (Zhang et al., 2012).

In this study, we conducted a comprehensive analysis by
employing both differential expression analysis and supervised
machine learning feature selection methods. This combined
approach led to the identification of miRNAs demonstrating high
discriminatory value for distinguishing between AC and SCC.
Subsequently, we performed receiver operating characteristic
(ROC) curve analysis to assess the diagnostic power and survival
analysis to evaluate the prognostic value of the identified miRNAs.
We also explored the correlation between miRNA expression levels
and clinicopathological characteristics. Furthermore, we detected
the expression levels of the two candidate miRNAs (miR-944 and
miR-326) in formalin-fixed paraffin-embedded (FFPE) tissue
samples from AC and SCC patients using reverse transcription
quantitative polymerase chain reaction (RT-qPCR). Finally, we
revealed the biological functions and signaling pathways
associated with the identified miRNAs through functional
enrichment analysis. The diagram illustrating the process of this
study is presented in Figure 1.

2 Materials and methods

2.1 Data acquisition and identification of
differentially expressed miRNAs

We obtainedmature miRNA expression data and corresponding
clinical information from the lung adenocarcinoma (LUAD) project,
including 518 tumor and 49 adjacent normal samples, and lung
squamous cell carcinoma (LUSC) project, including 478 tumor and
45 adjacent normal tissues, from The Cancer Genome Atlas (TCGA)
data portal (https://portal.gdc.cancer.gov/). We utilized the
TCGAbiolinks R package (RRID: SCR_017683) for data
acquisition (Colaprico et al., 2016). To address potential inter-
project library size biases, we performed count per million
(CPM) normalization on the acquired datasets for further analysis.

The “limma” R package (RRID:SCR_010943) was then applied
to compare the miRNA expressions between AC tumors and SCC
group, identifying differentially expressed miRNAs (DEMs) (Ritchie
et al., 2015). |log2FC|>2 and false discovery rate (FDR) adjusted
p-value < 0.001 were considered as screening criteria for
determining the DEMs.

2.2 Feature selection and classification

Three distinct supervised machine learning approaches,
including Support Vector Machine (SVM), Decision trees and
Naïve Bayes, were carried out to identify candidate miRNA
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biomarkers capable of distinguishing patients with AC from the SCC
group. Different classifiers were used to enhance the expectation of
generalization of biomarkers. Due to the structural differences
among these classifiers, a set of informative miRNAs with
acceptable performance across all of them has a greater chance of
generalization. The “e1071” package was used to perform SVM,
Naïve Bayes, and Rpart (Recursive Partitioning and Regression
Trees) (Dimitriadou et al., 2006). The Robust Rank Aggregation
(RRA) method was implemented using the “RobustRankAggreg”
package (RRID:SCR_024299) in R to merge feature sets ranked by
different methods based on their performance (Kolde et al., 2012).

2.3 ROC curve analysis

The ability of miRNAs to distinguish patients with AC from
those with SCC was assessed by generating ROC curves and
calculating the area under the curve (AUC) with a 95%
confidence interval (CI). To construct the ROC curve, which
detects the optimal threshold to handle the trade-off between

specificity and sensitivity, a linear classifier in the original feature
space is commonly used. In our study, SVM was utilized to enhance
the efficiency and facilitate the handling of multiple features
simultaneously. For ROC analysis, the “pROC” package (RRID:
SCR_024286) was employed, and for SVM implementation, the
“e1071” package was used (Robin et al., 2011). The input dataset was
randomly split into two sets, with 3/5 for training and 2/5 for testing.
To address the unbalanced class situation, the training set
was resampled.

2.4 Correlation with clinical characteristics

To explore the association between miRNA expression and
clinicopathological features, we classified labels into numerical
and categorical variables. We used Pearson correlation for
numerical variables, the nonparametric Wilcoxon rank-sum test
(Mann–Whitney U test) for two-group categorical variables, and the
nonparametric Kruskal–Wallis test for scenarios involving more
than two groups.

FIGURE 1
The workflow of this study. miRNA expression data and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA).
Differential expression analysis and supervised machine learning using three distinct methods were conducted. The top-ranked miRNAs from both
approaches were selected for further analyses, including receiver operating characteristic (ROC) curve analysis, survival analysis, correlation analysis, and
functional enrichment analysis. miRNAs demonstrating high sensitivity and specificity in the ROC analysis were subsequently chosen for
experimental validation via reverse transcription quantitative polymerase chain reaction (RT-qPCR). SVM: Support Vector Machine.
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2.5 Survival analysis

Survival curves, generated using Kaplan-Meier analysis, were
plotted to assess the prognostic potential of miRNAs. To explore the
correlation between miRNA expression and overall survival of patients,
the Cox proportional hazardsmodel was applied. Subsequently, the log-
rank test was employed to evaluate the significance of differences in
survival patterns. For plotting Kaplan-Meier curves and measuring the
significance of hazard ratios between high-expression and low-
expression groups, we utilized the “survival” (RRID:SCR_021137)
and “survminer” (RRID:SCR_021094) packages in R (Therneau and
Lumley, 2015; Kassambara et al., 2017).

2.6 Target genes identification and
functional enrichment analysis

The experimentally validated target genes of the top 25 DEMs
were obtained from miRTarBase using the multiMiR package in R
(Ru et al., 2014). Next, Pearson correlation analysis was employed to
assess the correlations between gene and miRNA expression levels.
Genes showing significant negative correlation (p-value <0.05) were
subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and gene ontology (GO) enrichment analysis using Enrichr
(Xie et al., 2021; Kuleshov et al., 2016; Chen et al., 2013).

2.7 Clinical specimens

This study was conducted with the approval of the Research
Ethics Committee of Tarbiat Modares University (ID:
IR.MODARES.REC.1400.081). FFPE tissue samples from
50 NSCLC patients were obtained from the archives of Masih
Daneshvari Hospital (Tehran, Iran). This study involved the
collection of human tissue specimens without conducting any
experiments on human subjects. Among these 50 FFPE samples,
29 were AC, and the remaining 21 were SCC. All specimens were
examined and classified by pathologists according to the World
Health Organization classification of lung tumors.

2.8 RNA extraction and RT-qPCR

To extract RNA, paraffin was first removed from four 10 µm FFPE
tissue sections using Xylene. Subsequently, the dewaxed tissues were
washed with absolute ethanol, followed by digestion with Proteinase K.
After the deparaffinization process, total RNA isolation was carried out
using TRIzol reagent (Thermo Fisher Scientific, USA). DNA
contamination was then eliminated using Turbo DNase (Thermo
Fisher Scientific, USA). The quality and quantity of purified RNAs
were measured using NanoDrop (Thermo Fisher Scientific, USA). The
purified RNAs were polyadenylated with E.coli poly (A) polymerase
(NewEngland Biolabs, USA), and the reverse transcription reactionwas
conducted using anchored oligo (dT) primers and AddScript cDNA
Synthesis Kit (AddBio, Korea) to determine the expression levels of
miR-944 and miR-326.

For amplification and quantification of miRNAs, a StepOne Plus
System (Applied Biosystems, USA) was used with RealQ Plus 2x

Master Mix Green, High ROX™ (Ampliqon, Denmark). Expression
levels of miR-944 and miR-326 were normalized to that of U48,
selected as an endogenous control, and their relative expressions
were determined using the 2−ΔΔCT method. The sequence of primers
and oligonucleotides used in reverse transcription and qPCR are
provided in Supplementary Table S1.

3 Results

3.1 Identification of DEMs

According to the cutoff criteria of |log2FC|>2 and adjusted
p-value < 0.001, the miRNA mature expression profiles between
518 AC and 478 SCC samples uncovered 25 significantly DEMs,
with nineteen upregulated and six downregulated in SCC tissues
compared to AC ones. Among these, miR-205-3p, miR-205-5p,
miR-944, and miR-767-5p, exhibiting fold change values greater
than 6, emerged as the top four DEMs. The miRNAs with the most
significant expression differences are presented in Figure 2.
Additionally, the expression levels of the top six upregulated and
downregulated miRNAs are provided in Supplementary
Figures S1–S2.

3.2 Identification of significant miRNAs by
supervised machine learning approaches

Three different machine learning methods (SVM, Naïve Bayes and
Rpart) were employed to determine the potential diagnostic miRNA
biomarkers. All methods underwent a 5-fold cross-validation process.
The sets of miRNAs selected by each method were almost identical and
merged using RRA. The miRNAs with the highest accuracy in
discriminating between AC and SCC patients are listed in Table 1.

3.3 Evaluation of the diagnostic values of
selected miRNAs

Five miRNAs (miR-205-3p, miR-205-5p, miR-944, miR-375 and
miR-326) were identified as common candidates through both
differential expression analysis and feature selection methods. Given
the extensively studied expression profiles of miR-205 and miR-375 in
NSCLC, we selected miR-944 and miR-326 for experimental validation
(Patnaik et al., 2015; Charkiewicz et al., 2016; Lebanony et al., 2009; Del
Vescovo et al., 2011; Jin et al., 2015; Chen et al., 2017; Hamamoto et al.,
2013). Subsequently, ROC curve analysis was performed to assess the
diagnostic value of the combination of these two miRNAs in
differentiating between AC and SCC patients. The results revealed
that the integration of miR-944 with miR-326 yielded an AUC of 0.985
(95% CI = 0.973-0.996, p-value = 0) (Figure 3).

3.4 Correlation between miRNA expression
and clinicopathological features

To evaluate the relationship between the expression levels of the
mentioned miRNAs and clinicopathological characteristics,
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including sex, age, smoking history, tumor location, pathologic
stage, and tumor node metastasis (TNM) stage, correlation
analysis was conducted. As indicated in Table 2, among patients
with AC, the expression of miR-944 showed significant correlations

with smoking history (p-value = 0.0098), tumor (T) stage (p-value =
0.0162) and lymph node (N) stage (p-value = 0.0015). Notably, miR-
326 also exhibited correlations with smoking history (p-value =
0.0069) and tumor location (p-value = 0.0064) in AC patients. In the
same cohort, miR-205-5p demonstrated a significant correlation
with smoking history (p-value = 0.0080), while miR-205-3p was
associated with tumor location (p-value = 0.0091). For patients
diagnosed with SCC, miR-944 expression was significantly
associated with sex (p-value = 0.0471) and smoking history
(p-value = 0.0425). However, no significant association was
observed with miR-326 in SCC patients. Moreover, both 205-5p
and 205-3p were found to be correlated with sex (p-value =
0.0079 and p-value = 0.0016, respectively) and miR-375 exhibited
correlations with tumor location (p-value = 0.0263) and N stage
(p-value = 0.0327) in SCC patients (Table 3).

3.5 Evaluation of the prognostic values of
selected miRNAs

To investigate the prognostic power of the five miRNAs
identified through both differential expression analysis and
feature selection methods, separate Kaplan-Meier analyses were
conducted for both AC and SCC subtypes. This involved
dividing samples into two groups based on high and low levels of

FIGURE 2
Top-ranked DEMs between AC and SCC samples. (A) The bar plot visualizes the top six upregulated and downregulated DEMs, (B) The volcano plot
represents all significant DEMs with an adjusted p-value <0.001 and |log2FC|>2, (C) The heatmap shows the expression patterns of miRNAs in 518 AC and
478 SCC samples. The expression levels of miRNAs were log2-transformed. FC: Fold change.

TABLE 1 Ranking of the top 10 miRNAs selected by machine learning
methods. SVM: Support Vector Machine. Rpart: Recursive Partitioning and
Regression Trees.

miRNA Aggregate
Score

SVM Rpart Naïve
Bayes

miR-205-3p 7e-12 1 2 2

miR-205-5p 7e-12 3 1 1

miR-944 2.6e-11 2 3 3

miR-6499-3p 6.4e-11 4 4 4

miR-375 1.25e-10 5 5 5

miR-6499-5p 2.16e-10 6 6 6

miR-196b-5p 3.43e-10 7 7 7

miR-326 5.12e-10 8 8 8

miR-149-5p 1.323e-9 11 9 11

miR-6512-3p 1.6e-9 10 12 10
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miRNA expression. The results indicate that miR-326 (Hazard Ratio
(HR) = 0.7056, p-value = 0.038) and miR-375 (HR = 0.5093,
p-value = 0.0057) demonstrated statistically significant
associations with the overall survival of patients with AC.
Meanwhile, miR-326 (HR = 1.451, p-value = 0.0096) and miR-
944 (HR = 0.5512, p-value = 0.015) showed associations with the
overall survival of patients diagnosed with SCC. The overall survival
plots for the five mentioned miRNAs in AC are presented in
Figure 4, while the corresponding plots for SCC are shown
in Figure 5.

3.6 RT-qPCR validation of the
candidate miRNAs

To confirm the differential expression of miR-944 and miR-326
in SCC samples compared to AC tissues, RT-qPCR was performed
to assess the relative expression of these miRNAs in 29 AC and
21 SCC FFPE tissue specimens. The results of RT-qPCR were
consistent with the findings from our bioinformatic analysis. We
observed that, in comparison to AC samples, the relative expression
level of miR-944 was significantly higher in SCC specimens
(p-value = 0.0056), whereas miR-326 exhibited a lower
expression level in SCC compared to AC tissues (p-value =
0.028) (Figure 6).

3.7 Diagnostic value of the candidate
miRNAs in distinguishing between SCC and
AC based on RT-qPCR

ROC curves based on the RT-qPCR data were constructed to
evaluate the diagnostic power of miR-944 and miR-326 for
differentiating between AC and SCC. The ROC curve of miR-944
showed an AUC of 0.756, with a sensitivity of 75% and specificity of
72.2%, while miR-326 exhibited an AUC value of 0.713, with a
sensitivity of 65.2% and specificity of 66.7%. In addition, the

combination of the two miRNAs obtained an AUC of 0.801 with
a sensitivity of 78.9% and specificity of 78.9%, indicating an
improvement in diagnostic performance (Figure 7).

3.8 Target genes and functional
enrichment analysis

To enhance the reliability of subsequent analyses, we
investigated the target genes of the top 25 DEMs using
miRTarBase, a database renowned for providing experimentally
validated miRNA-target interactions (Huang et al., 2022). We
specifically limited the selection of target genes to those
supported by strong experimental evidence, resulting in the
identification of 483 genes. Following this, we assessed the
negative correlation between these miRNAs and their target
genes by employing NSCLC samples obtained from TCGA,
revealing 130 genes with a significant negative correlation. Target
genes with a correlation p-value <0.05 were then utilized as input for
KEGG pathway and GO analyses.

The KEGG pathway analysis uncovered that our target genes are
primarily involved in pathways in cancer, proteoglycans in cancer,
PI3K-Akt signaling pathway, and PD-L1 expression and PD-1
checkpoint pathway in cancer (Figure 8A). In the context of GO
enrichment analysis, Figure 8B illustrates the top 10 associated terms
in biological processes (BP), cellular components (CC), and
molecular functions (MF).

4 Discussion

In this study, we retrieved mature miRNA expression profiles
along with the relevant clinical information of AC and SCC patients
from TCGA database. Employing the “Limma” R package, we
conducted differential expression analysis to identify miRNAs
that display notable variations in expression levels between AC
and SCC. Our findings unveiled a significant upregulation in the

FIGURE 3
Discriminatory ability of miR-944 and miR-326 for differentiating between AC and SCC based on TCGA data. ROC curve analysis of (A) miR-944
demonstrated an AUC of 0.969 with a p-value of 0, (B)miR-326 showed an AUC of 0.88 with a p-value of 6.19e-112, and (C) the combination of miR-944
and miR-326 yielded an AUC of 0.985 with a p-value of 0, indicating that the integration of the two miRNAs provides higher accuracy for differentiating
between AC and SCC tissues compared to either miRNA alone. AUC: Area under the curve.
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TABLE 2 Correlations between the expression of miRNAs and clinicopathological features in AC. SE: Standard Error.

Variable Number Hsa-miR-944 Hsa-miR-326 Hsa-miR-375 Hsa-miR-205-5p Hsa-miR-205-3p

Mean ± SE p-value Mean ± SE p-value Mean ± SE p-value Mean ± SE p-value Mean ± SE p-value

Gender

Female 255 21.45 ± 2.80 0.9043 120.32 ± 10.04 0.2293 134,886.47 ± 12,672.73 0.9663 3,216.73 ± 676.05 0.7112 1.52 ± 0.25 0.3839

Male 227 22.04 ± 4.01 103.90 ± 9.23 222,475.52 ± 33,513.81 2,868.74 ± 652.37 1.63 ± 0.35

Age at Diagnosis

>60 318 18.94 ± 2.68 0.552 108.20 ± 7.68 0.9281 138,898.64 ± 13,697.27 0.2416 2,728.76 ± 540.90 0.594 1.45 ± 0.26 0.4826

≤60 146 23.81 ± 4.83 109.64 ± 13.48 239,193.89 ± 45,960.59 2,601.64 ± 475.79 1.43 ± 0.25

Tobacco Smoking History

Lifelong Non-smoker 70 28.31 ± 5.97 0.0098 133.14 ± 15.23 0.0069 120,550.61 ± 14,524.92 0.7861 2,938.63 ± 702.88 0.0080 1.7 ± 0.40 0.0746

Current smoker 108 20.18 ± 6.08 107.60 ± 14.00 260,183.41 ± 53,669.74 3,687.90 ± 1,290.05 1.74 ± 0.47

Former smoker 292 20.23 ± 2.90 108.63 ± 9.14 156,934.16 ± 19,653.48 2,899.63 ± 591.16 1.48 ± 0.28

Tumor Location

Central Lung 60 12.27 ± 2.59 0.1196 77.48 ± 12.73 0.0064 272,808.8 ± 80,673.95 0.45 1,018.15 ± 217.29 0.1863 0.45 ± 0.12 0.0091

Peripheral Lung 118 28.69 ± 6.08 115.97 ± 14.16 206,453.74 ± 43,352.85 4,682.40 ± 1,480.30 2.54 ± 0.68

Pathologic Stage

Stage I 260 20.58 ± 3.00 0.2424 116.6 ± 9.95 0.6213 161,574.37 ± 19,370.76 0.9872 3,129.89 ± 547.42 0.3765 1.43 ± 0.22 0.6648

Stage II 116 17.35 ± 2.84 120.23 ± 14.96 155,022.51 ± 26,174.17 2,205.53 ± 488.15 1.43 ± 0.30

Stage III 76 34.53 ± 9.89 97.13 ± 13.20 145,879.91 ± 28,638.29 4,910.34 ± 2,196.40 2.66 ± 1.01

Stage IV 23 19.22 ± 9.54 96.96 ± 20.76 487,458.78 ± 217,966.33 1,160 ± 468.93 0.78 ± 0.40

T Stage

T1+2 417 23.95 ± 2.75 0.0162 111.91 ± 7.11 0.6101 179,460.99 ± 19,237.40 0.7639 3,232 ± 537.89 0.3032 1.63 ± 0.24 0.2815

T3+4 62 7.65 ± 1.29 118.55 ± 23.93 161,061.18 ± 35,099.26 1885.06 ± 547.05 1.23 ± 0.41

N Stage

No 313 18.72 ± 2.58 0.0015 118.50 ± 9.38 0.1771 175,982.89 ± 19,719.05 0.8135 2,875.93 ± 467.48 0.5801 1.37 ± 0.19 0.4777

Yes 158 27.44 ± 5.17 100.54 ± 9.39 180,559.69 ± 35,251.41 3,500.75 ± 1,099.53 2 ± 0.51
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expression levels of miR-205-3p, miR-205-5p, miR-944, miR-767-
5p, miR-4652-5p, and miR-105-5p, contrasting with a marked
downregulation in the levels of miR-504-5p, miR-326, miR-4709-
3p, miR-4728-3p, miR-5698, and miR-375 observed in SCC patients
compared to individuals diagnosed with AC. We subsequently
assessed the diagnostic accuracy of miRNAs through the
application of three different supervised machine learning
approaches: SVM, Decision Trees and Naïve Bayes. Among the
top 10 ranked miRNAs with the utmost accuracy for discriminating
between AC and SCC, five miRNAs were found to overlap with the
highest-ranked DEMs: miR-205-3p, miR-205-5p, miR-944, miR-
375 and miR-326.

Further clinical importance of the identified miRNAs was
elucidated through the assessment of their prognostic potential,
employing TCGA samples. In patients with AC, elevated expression
levels of miR-375 and miR-326 were found to be significantly
correlated with an increased overall survival rate. Furthermore,
the relationship between miR-326 expression level and overall
survival exhibited a reversal among SCC patients, where higher
expression correlated with a shorter overall survival. Additionally,
SCC patients presenting low miR-944 expression levels experienced
a significantly poorer overall survival outcome compared to their
counterparts with high expression levels.

All five of miRNAs identified in our study have been reported to
be involved in NSCLC tumorigenesis. In line with our study, Ma
et al. demonstrated a significant increase in the expression level of
miR-944 within SCC tumors. Furthermore, they confirmed that the
upregulated expression of this miRNA stimulated cell growth,
proliferation, migration, and invasion. Functioning as an
oncogene, miR-944 targets SOCS4, a tumor suppressor gene
involved in the regulation of JAK/STAT signaling pathway (Ma
et al., 2014).In contrast, An et al. revealed the tumor-suppressive role
of miR-944 and its participation in the JAK/STAT signaling pathway
by directly targeting STAT1. They also observed a reduction in the
expression of this miRNA in AC tissues and cell lines (An et al.,
2019). Other studies provided additional evidence supporting the
suppressor role of miR-944 in the proliferation, invasion, and
migration in NSCLC cell lines through its binding to MACC1,
EPHA7, YES1, ETS1, and LASP1 (Zhu et al., 2022; Liu et al., 2016; Lv
et al., 2021; Shen et al., 2022).

Regarding miR-326, its tumor-suppressive activity has been
revealed in various studies. Overexpression of miR-326 represses
the proliferation, invasion, and migration in NSCLC cells. This
inhibitory effect is achieved by targeting different genes implicated
in the progression of LC, including CCND1, NSBP1, Phox2a, and
CD155 (Sun et al., 2016; Wang et al., 2016; Nakanishi et al., 2023; Li
et al., 2016). Literature presents conflicting data on the expression
level of miR-326 in AC. While certain studies indicate its
attenuation, our results align with others showing an
upregulation of miR-326 in AC samples (Sun et al., 2016;
Charkiewicz et al., 2023). Moreover, consistent with our findings,
Gan et al. revealed its downregulation in SCC along with a negative
correlation with survival, reinforcing our study’s results (Gan
et al., 2019).

To the best of our knowledge, there have been limited studies on
the mechanism of miR-375 in NSCLC, necessitating further
investigation. Nevertheless, the deregulation of this miRNA and
its association with survival in NSCLC have been evaluated in priorT
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TABLE 3 Correlations between the expression of miRNAs and clinicopathological features in SCC. SE: Standard Error.

Variable Number hsa-miR-944 hsa-miR-326 hsa-miR-375 hsa-miR-205-5p hsa-miR-
205-3p

Mean
± SE

p-
value

Mean
± SE

p-
value

Mean
± SE

p-
value

Mean
± SE

p-
value

Mean
± SE

p-
value

Gender

Female 110 502.47 ±
50.23

0.0471 23.67
± 2.95

0.9996 40,701.25 ±
1,6246.90

0.095 42,425.55 ±
3,759.23

0.0079 18.96
± 1.71

0.0016

Male 332 634.02 ±
42.73

23.67
± 2.36

12,742.31 ±
3,468.48

54,673.06 ±
2,602.88

25.65
± 1.20

Age at Diagnosis

>60 340 586.86 ±
40.36

0.1457 23.09
± 2.11

0.8979 21,378.16 ±
6,138.90

0.3427 51,802.44 ±
2,479.60

0.8293 23.86
± 1.15

0.8899

≤60 94 673.48 ±
70.14

22.13
± 4.07

13,992.39 ±
4,769.67

51,152.89 ±
4,735.70

24.62
± 2.19

Tobacco Smoking History

Lifelong Non-
smoker

16 614 ±
268.75

0.0425 21.19
± 5.60

0.0593 16,579.69 ±
6,435.33

0.3612 41,660.56 ±
10,087.78

0.1861 21 ± 4.33 0.3253

Current smoker 126 660.29 ±
60.42

24.93
± 3.07

14,238.14 ±
5,328.52

55,049.92 ±
3,997.03

24.96
± 1.71

Former smoker 290 571.67 ±
42.86

22.87
± 2.55

22,379.75 ±
6,978.98

50,937.22 ±
2,766.96

23.90
± 1.31

Tumor Location

Central Lung 127 680.09 ±
62.55

0.9372 19.12
± 2.45

0.1163 8,513.74 ±
1,192.26

0.0263 58,150.56 ±
3,722.64

0.1784 27.23
± 1.86

0.3871

Peripheral Lung 85 649.69 ±
66.42

34.09
± 5.79

38,956.54 ±
15,679.78

55,968.73 ±
5,750.01

25.22
± 2.29

Pathologic Stage

Stage I 211 548.81 ±
36.78

0.1079 22.32
± 1.88

0.2779 19,241.17 ±
7,661.68

0.0625 50,768.91 ±
2,914.26

0.2684 24.47
± 1.47

0.0667

Stage II 150 683.25 ±
65.80

25.49
± 3.75

14,116.67 ±
4,716.49

56,421.73 ±
4,143.13

26.2 ± 1.83

Stage III 72 620.79 ±
118.78

25.35
± 6.83

34,525.79 ±
16,727.80

46,885.43 ±
5,451.30

18.72
± 2.11

Stage IV 6 218.67 ±
85.39

13.5 ± 9.61 6,754.33 ±
3,051.98

34,465.33 ±
11,423.46

20.83
± 7.35

T Stage

T1+2 360 587.83 ±
33.83

0.3963 23.69
± 2.06

0.8502 19,771.54 ±
5,760.32

0.4458 51,407.13 ±
2,341.05

0.569 24.42
± 1.12

0.2639

T3+4 82 660.34 ±
112.49

23.61
± 5.03

19,388.15 ±
6,294.61

52,581.73 ±
5,728.39

22.10
± 2.29

N Stage

No 279 615.97 ±
42.05

0.3133 22.94
± 2.12

0.368 17,531.96 ±
5,853.17

0.0327 53,823.54 ±
2,850.50

0.2108 25.02
± 1.31

0.1952

Yes 157 582.24 ±
62.02

24.11
± 3.81

23,486.78 ±
8,775.43

48,627.02 ±
3,431.85

22.45
± 1.60

M Stage

No 361 565.144 ±
33.90

0.0832 20.66
± 1.75

0.1698 16,718.19 ±
3,929.55

0.9243 51,018.11 ±
2,468.71

0.4185 23.90
± 1.13

0.7859

(Continued on following page)

Frontiers in Genetics frontiersin.org09

Javanmardifard et al. 10.3389/fgene.2024.1419099

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1419099


studies. Our findings are consistent with existing reports, supporting
the downregulation of miR-375 in SCC and its upregulation in AC.
Furthermore, its low expression correlates with shorter overall
survival, suggesting a potential tumor suppressor role in AC (Jin
et al., 2015; Li et al., 2012; Chen et al., 2017).

Despite inconsistencies in the available data regarding the role of
miR-205 in LC, the majority of studies indicate its tumor-promoting
function. It is involved in stimulating cell proliferation, invasion, and
migration in NSCLC by targeting genes with tumor-suppressive roles,
such as PTEN, PHLPP2, SMAD4, and TP53INP1 (Cai et al., 2013; Zhao
et al., 2022; Zeng et al., 2017; Lei et al., 2013). The expression levels of
this miRNA have been evaluated not only in NSCLC compared to
adjacent normal tissues but also separately in AC and SCC.
Consequently, elevated miR-205 expression was observed in NSCLC
samples, with higher levels detected in the SCC subtype compared to
AC tissues (Duan et al., 2017; Xu et al., 2021). This observation suggests
the potential of miR-205 as a discriminatory marker for distinguishing
between SCC and AC, supported by our study and confirmed by
Lebanony et al. (Lebanony et al., 2009).

These findings suggest that similar to the expression patterns of
the five miRNAs specific to the NSCLC subtype, their functional
roles may vary depending on whether it is AC or SCC. Our study
provides further support for this observation, particularly through
the correlation analysis between miRNAs and overall survival. For
instance, miR-326 demonstrated a completely opposite correlation
within AC samples compared to SCC, indicating potential divergent
roles in these two subtypes. This observation underscores the
necessity for experimental validation to elucidate their possible
distinct functions. Hence, we propose an investigation into the
exact roles of these miRNAs in NSCLC subtypes separately.

The results of the diagnostic power evaluation revealed that the
combination ofmiR-944 andmiR-326 achieved anAUC value of 0.985,
demonstrating a sensitivity of 0.932 and specificity of 0.981. It is
essential to note that our RT-qPCR results did not match the
robustness of the bioinformatics analysis, yielding an AUC of 0.801.
This discrepancy can be attributed, in part, to limitations in our sample
size.We hypothesize that with a larger sample cohort, our experimental
results would align more closely with the bioinformatics outcomes.

FIGURE 4
Survival analysis using Kaplan-Meier curves in patients with AC. (A) miR-326, (B)miR-944, (C)miR-375, (D) miR-205-3p, (E) miR-205-5p. miR-326
(p-value = 0.038) and miR-375 (p-value = 0.0057) were significantly correlated with overall survival in AC patients. The log-rank test was used to
determine the p-values for the survival analysis of these miRNAs. HR: Hazard Ratio, p: p-value.

TABLE 3 (Continued) Correlations between the expression of miRNAs and clinicopathological features in SCC. SE: Standard Error.

Variable Number hsa-miR-944 hsa-miR-326 hsa-miR-375 hsa-miR-205-5p hsa-miR-
205-3p

Mean
± SE

p-
value

Mean
± SE

p-
value

Mean
± SE

p-
value

Mean
± SE

p-
value

Mean
± SE

p-
value

Yes 6 218.67 ±
85.39

13.5 ± 9.61 6,754.33 ±
3,051.98

34,465.33 ±
11,423.46

20.83
± 7.35
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Moreover, correlation analysis indicated a significant association
between the expression levels of miR-944, miR-326, and miR-205-5p
and smoking history in individuals with AC. Considering that AC
represents the most prevalent subtype among nonsmokers, numerous
studies have investigated molecular alterations, revealing distinctions
not only at the genetic level but also in expression profiles between
never-smokers and ever-smokers (Zhang et al., 2018; Li et al., 2018;
Inamura et al., 2016). Our findings suggest that differences in miRNA
expression patterns are also evident between the two specified groups.

Our functional enrichment analysis revealed that the top
25 DEMs identified in our study exert pivotal influences on key
pathways contributing to the development and progression of
NSCLC (Yuan et al., 2019; Mosele et al., 2020). These pathways
include PI3K-Akt, MAPK, FoxO, Ras signaling pathways, as well as
PD-L1 expression and PD-1 checkpoint pathway. Currently,
numerous drugs are available, targeting the genes regulated by
these miRNAs. For instance, PIK3CA, PDGFRB, VEGFA, and
IGF1R emerge as crucial options for targeted treatment in

FIGURE 6
The expression level of miRNAs in AC and SCC tissue samples detected by RT-qPCR. (A) miR-944 expression levels were significantly increased in
SCC compared to AC samples, with a p-value of 0.0056, and (B) miR-326 expression levels were significantly lower in SCC tissues, with a p-value
of 0.028.

FIGURE 5
Survival analysis using Kaplan-Meier curves in patients with SCC. (A) miR-326, (B)miR-944, (C)miR-375, (D)miR-205-3p, (E)miR-205-5p. miR-326
(p-value = 0.0096) and miR-944 (p-value = 0.015) were significantly correlated with overall survival in SCC patients. The log-rank test was used to
determine the p-values for the survival analysis of these miRNAs. HR: Hazard Ratio, p: p-value.
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NSCLC (Hirsch et al., 2017; Lemjabbar-alaoui et al., 2015). Hence,
the identifiedmiRNAsmay participate in responses to these targeted
therapies. It is strongly recommended to evaluate the impact of these
drugs on miRNA expression levels. In addition, these miRNAs
themselves may play a therapeutic role by regulating the
aforementioned pathways. Therefore, exploring their therapeutic
potential presents a valuable opportunity for the development of
innovative and effective therapies for NSCLC patients.

Traditional histopathological diagnosis, even when combined with
immunohistochemical staining, faces several challenges and limitations.
These include the difficulty of diagnosing small biopsy samples from
patients with unresectable NSCLC, cases of NSCLC not otherwise

specified, and discrepancies in diagnoses among pathologists
(Lindquist et al., 2022; Yamashita et al., 2023). Therefore, the
development of a differentiating approach that does not rely on
conventional methods is crucial for enhancing diagnostic precision.
Detecting miRNAs as discriminative markers using RT-qPCR offers
numerous advantages. MiRNAs remain stable in FFPE tissues due to
their short length, and RT-qPCR, being a quantitative method,
eliminates the need for expertise in interpretation (Sinn et al., 2017;
Wilkerson et al., 2013). In addition, miR-944, located in the TP63 gene
which is frequently amplified in SCC, can serve as an alternative or
complementary biomarker to p40, an isoform of the p63 protein used as
an IHC marker for SCC (Rodriguez-canales et al., 2016).

FIGURE 8
Functional enrichment analysis of the top 25 DEMs target genes. (A) KEGG pathways; the x-axis indicates the number of target genes involved in
each pathway, which is shown on the y-axis, (B) Gene ontology (GO) analysis; the x-axis indicates the number of target genes, and the y-axis represents
the GO terms, including Biological Process, Cellular Component, and Molecular Function.

FIGURE 7
Discriminatory ability of miR-944 andmiR-326 for differentiating between AC and SCC based on RT-qPCR data. ROC curve analysis of (A)miR-944
demonstrated an AUC of 0.756 with a p-value of 1.75e-03, (B)miR-326 showed an AUC of 0.713 with a p-value of 1.25e-02, and (C) the combination of
miR-944 and miR-326 yielded an AUC of 0.801 with a p-value of 6.91e-05. These findings confirm the bioinformatics analysis, indicating that the
combined use of these miRNAs improves distinguishing power. AUC: Area under the curve.
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Numerous previous studies have aimed to detect miRNAs with
high precision to differentiate between AC and SCC. Early research
focused on identifying a single miRNA as a distinguishing
biomarker, leading to the identification of miR-205. miR-205 was
initially considered a stand-alone biomarker with sufficient
sensitivity and specificity to independently differentiate between
the two subtypes (Lebanony et al., 2009; Bishop et al., 2010).
However, subsequent studies revealed that miR-205 alone was
less effective than previously believed and should be combined
with another miRNA to enhance accuracy (Del Vescovo et al.,
2011). This resulted in the identification of miR-375 as a
promising candidate to pair with miR-205 (Patnaik et al., 2015;
Hamamoto et al., 2013). Despite this progress, there remained
potential for improving the sensitivity and specificity by adding
more miRNAs to this panel. Hence, we conducted comprehensive
analyses beyond simple differential expression, employing machine
learning algorithms such as SVM, Naïve Bayes, and Rpart, to
enhance accuracy. The purpose of this study was to: first,
determine if miR-205 and miR-375 are indeed among the top-
ranked miRNAs for differentiating AC and SCC in the large TCGA
cohort; and second, identify other potentially valuable miRNAs that
can be combined with miR-205 and miR-375 to form a panel with
high sensitivity and specificity.

5 Conclusion

Our study aimed to address the imperative need for accurate
differentiation between AC and SCC through the exploration of
miRNAs. Utilizing bioinformatics analyses, we not only identified
miRNAs with significant discriminatory capabilities in
distinguishing between AC and SCC but also provided valuable
insights into the potential roles of miRNAs as prognostic factors. We
demonstrated their correlation with clinicopathological features in
these specific cancer subtypes. Furthermore, by predicting the target
genes of miRNAs and conducting thorough pathway and GO
enrichment analyses, this study sought to unveil the functional
mechanisms of the top-ranked miRNAs. Ultimately, our study
establishes a foundation for future research and underscores the
clinical significance of miRNA-based stratification in NSCLC,
paving the way for more precise diagnoses and, consequently,
more personalized and targeted therapeutic interventions.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by The Ethics
Committee of Tarbiat Modares University. The studies were
conducted in accordance with the local legislation and
institutional requirements. The participants provided their
written informed consent to participate in this study.

Author contributions

ZJ: Conceptualization, Data curation, Investigation,
Methodology, Validation, Visualization, Writing–original draft.
SR: Data curation, Formal Analysis, Investigation, Methodology,
Software, Visualization, Writing–review and editing. HB: Data
curation, Methodology, Writing–review and editing. Hanifeh
Mirtavoos Mahyari: Resources, Writing–review and editing. MG:
Resources, Writing–review and editing. SM: Conceptualization,
Data curation, Project administration, Supervision,
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1419099/
full#supplementary-material

References

An, J. C., Shi, H. B., Hao, W. B., Zhu, K., and Ma, B. (2019). miR-944 inhibits lung
adenocarcinoma tumorigenesis by targeting STAT1 interaction. Oncol. Lett. 17,
3790–3798. doi:10.3892/ol.2019.10045

Bishop, J. A., Benjamin, H., Cholakh, H., Chajut, A., Clark, D. P., andWestra,W.H. (2010).
Accurate classification of non–small cell lung carcinoma using a novel microRNA-based
approach. Clin. Cancer Res. 16, 610–619. doi:10.1158/1078-0432.CCR-09-2638

Cai, J., Fang, L., Huang, Y., Li, R., Yuan, J., Yang, Y., et al. (2013). miR-205 targets
PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in
non–small cell lung cancer. Cancer Res. 73, 5402–5415. doi:10.1158/0008-5472.CAN-
13-0297

Charkiewicz, R., Pilz, L., Sulewska, A., Kozlowski, M., Niklinska, W., Moniuszko, M.,
et al. (2016). Validation for histology-driven diagnosis in non-small cell lung cancer

Frontiers in Genetics frontiersin.org13

Javanmardifard et al. 10.3389/fgene.2024.1419099

https://www.frontiersin.org/articles/10.3389/fgene.2024.1419099/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1419099/full#supplementary-material
https://doi.org/10.3892/ol.2019.10045
https://doi.org/10.1158/1078-0432.CCR-09-2638
https://doi.org/10.1158/0008-5472.CAN-13-0297
https://doi.org/10.1158/0008-5472.CAN-13-0297
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1419099


using hsa-mi R-205 and hsa-mi R-21 expression by two different normalization
strategies. Int. J. cancer 138, 689–697. doi:10.1002/ijc.29816

Charkiewicz, R., Sulewska, A., Charkiewicz, A., Gyenesei, A., Galik, B., Ramlau, R.,
et al. (2023). miRNA-seq tissue diagnostic signature: a novel model for NSCLC
subtyping. Int. J. Mol. Sci. 24, 13318. doi:10.3390/ijms241713318

Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., et al. (2013).
Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinforma. 14, 128. doi:10.1186/1471-2105-14-128

Chen, W.-J., Gan, T.-Q., Qin, H., Huang, S.-N., Yang, L.-H., Fang, Y.-Y., et al. (2017).
Implication of downregulation and prospective pathway signaling of microRNA-375 in
lung squamous cell carcinoma. Pathology-Research Pract. 213, 364–372. doi:10.1016/j.
prp.2017.01.007

Colaprico, A., Silva, T. C., Olsen, C., Garofano, L., Cava, C., Garolini, D., et al. (2016).
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic acids Res. 44, e71. doi:10.1093/nar/gkv1507

Del vescovo, V., Cantaloni, C., Cucino, A., Girlando, S., Silvestri, M., Bragantini, E.,
et al. (2011). MiR-205 expression levels in nonsmall cell lung cancerdo not always
distinguish adenocarcinomas from squamous cell carcinomas.Am. J. Surg. pathology 35,
268–275. doi:10.1097/PAS.0b013e3182068171

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A., and Leisch, M. F.
(2006) “The e1071 package,” in Misc Functions of Department of Statistics (e1071). TU
Wien, 297–304.

Du, X., Zhang, J., Wang, J., Lin, X., and Ding, F. (2017). Role of miRNA in lung
cancer-potential biomarkers and therapies. Curr. Pharm. Des. 23, 5997–6010. doi:10.
2174/1381612823666170714150118

Duan, B., Guo, T., Sun, H., Cai, R., Rui, Q., and XI, Z. (2017). miR-205 as a biological
marker in non-small cell lung cancer. Biomed. and Pharmacother. 91, 823–830. doi:10.
1016/j.biopha.2017.04.086

Florczuk, M., Szpechcinski, A., and Chorostowska-Wynimko, J. (2017). miRNAs as
biomarkers and therapeutic targets in non-small cell lung cancer: current perspectives.
Target. Oncol. 12, 179–200. doi:10.1007/s11523-017-0478-5

Gan, Z., Zou, Q., Lin, Y., Huang, X., Huang, Z., Chen, Z., et al. (2019). Construction
and validation of a seven-microRNA signature as a prognostic tool for lung squamous
cell carcinoma. Cancer Management and Research, 11, 5701–5709. doi:10.2147/CMAR.
S191637

Hamamoto, J., Soejima, K., Yoda, S., Naoki, K., Nakayama, S., Satomi, R., et al. (2013).
Identification of microRNAs differentially expressed between lung squamous cell
carcinoma and lung adenocarcinoma. Mol. Med. Rep. 8, 456–462. doi:10.3892/mmr.
2013.1517

Hill, M., and Tran, N. 2021. miRNA interplay: mechanisms and consequences in
cancer. Dis. Model. Mech., 14, dmm047662, doi:10.1242/dmm.047662

Hirsch, F. R., Scagliotti, G. V., Mulshine, J. L., Kwon, R., Curran,W. J., Wu, Y.-L., et al.
(2017). Lung cancer: current therapies and new targeted treatments. Lancet 389,
299–311. doi:10.1016/S0140-6736(16)30958-8

Huang, H.-Y., Lin, Y.-C.-D., Cui, S., Huang, Y., Tang, Y., Xu, J., et al. (2022).
miRTarBase update 2022: an informative resource for experimentally validated
miRNA–target interactions. Nucleic acids Res. 50, D222–D230. doi:10.1093/nar/
gkab1079

Inamura, K., Yokouchi, Y., Kobayashi, M., Sakakibara, R., Ninomiya, H., Subat, S.,
et al. (2016). WITHDRAWN: tumor B7-H3 (CD276) expression and smoking history in
relation to lung adenocarcinoma prognosis. J. Control. Release 243, 21–28. doi:10.1016/j.
lungcan.2016.09.016

Jin, Y., Liu, Y., Zhang, J., Huang, W., Jiang, H., Hou, Y., et al. (2015). The expression of
miR-375 is associated with carcinogenesis in three subtypes of lung cancer. PloS one 10,
e0144187. doi:10.1371/journal.pone.0144187

Kassambara, A., Kosinski, M., Biecek, P., and Fabian, S. (2017) Package ‘survminer’.
Drawing Survival Curves using ‘ggplot2’(R package version 03 1), 3.

Kolde, R., Laur, S., Adler, P., and Vilo, J. (2012). Robust rank aggregation for gene list
integration andmeta-analysis.Bioinformatics 28, 573–580. doi:10.1093/bioinformatics/btr709

Kosaka, N., Iguchi, H., and Ochiya, T. (2010). Circulating microRNA in body fluid: a
new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101,
2087–2092. doi:10.1111/j.1349-7006.2010.01650.x

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z.,
et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server
2016 update. Nucleic acids Res. 44, W90–W97. doi:10.1093/nar/gkw377

Landi, M. T., Zhao, Y., Rotunno, M., Koshiol, J., Liu, H., Bergen, A. W., et al. (2010).
MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin.
Cancer Res. 16, 430–441. doi:10.1158/1078-0432.CCR-09-1736

Lebanony, D., Benjamin, H., Gilad, S., Ezagouri, M., Dov, A., Ashkenazi, K., et al.
(2009). Diagnostic assay based on hsa-miR-205 expression distinguishes squamous
from nonsquamous non–small-cell lung carcinoma. J. Clin. Oncol. 27, 2030–2037.
doi:10.1200/JCO.2008.19.4134

Lei, L., Huang, Y., and Gong, W. (2013). miR-205 promotes the growth, metastasis
and chemoresistance of NSCLC cells by targeting PTEN. Oncol. Rep. 30, 2897–2902.
doi:10.3892/or.2013.2755

Lemjabbar-alaoui, H., Hassan, O. U., Yang, Y.-W., and Buchanan, P. (2015). Lung
cancer: biology and treatment options. Biochimica Biophysica Acta (BBA)-Reviews
Cancer 1856, 189–210. doi:10.1016/j.bbcan.2015.08.002

Li, D., DU, X., Liu, A., and Li, P. (2016). Suppression of nucleosome-binding protein
1 by miR-326 impedes cell proliferation and invasion in non-small cell lung cancer cells.
Oncol. Rep. 35, 1117–1124. doi:10.3892/or.2015.4403

Li, X., Li, J., Wu, P., Zhou, L., Lu, B., Ying, K., et al. (2018). Smoker and non-smoker
lung adenocarcinoma is characterized by distinct tumor immune microenvironments.
Oncoimmunology 7, e1494677. doi:10.1080/2162402X.2018.1494677

Li, Y., Jiang, Q., Xia, N., Yang, H., and Hu, C. (2012). Decreased expression of
microRNA-375 in nonsmall cell lung cancer and its clinical significance. J. Int. Med. Res.
40, 1662–1669. doi:10.1177/030006051204000505

Lindquist, K. E., Ciornei, C., Westbom-Fremer, S., Gudinaviciene, I., Ehinger, A.,
Mylona, N., et al. (2022). Difficulties in diagnostics of lung tumours in biopsies: an
interpathologist concordance study evaluating the international diagnostic guidelines.
J. Clin. pathology 75, 302–309. doi:10.1136/jclinpath-2020-207257

Liu, M., Zhou, K., and Cao, Y. (2016). MicroRNA-944 affects cell growth by targeting
EPHA7 in non-small cell lung cancer. Int. J. Mol. Sci. 17, 1493. doi:10.3390/
ijms17101493

Lv, J., Li, Q., Ma, R., Wang, Z., Yu, Y., Liu, H., et al. (2021). Long noncoding RNA
FGD5-AS1 knockdown decrease viability, migration, and invasion of non-small cell
lung cancer (NSCLC) cells by regulating the microRNA-944/MACC1 axis. Technol.
cancer Res. and Treat. 20, 1533033821990090. doi:10.1177/1533033821990090

Ma, J., Mannoor, K., Gao, L., Tan, A., Guarnera, M. A., Zhan, M., et al. (2014).
Characterization of microRNA transcriptome in lung cancer by next-generation deep
sequencing. Mol. Oncol. 8, 1208–1219. doi:10.1016/j.molonc.2014.03.019

Mlcochova, H., Hezova, R., Stanik, M., and Slaby, O. (2014). Urine microRNAs as
potential noninvasive biomarkers in urologic cancers. Urologic Oncol. Seminars Orig.
Investigations 41, e1–e9. doi:10.1016/j.urolonc.2013.04.011

Mosele, F., Remon, J., Mateo, J., Westphalen, C., Barlesi, F., Lolkema, M., et al. (2020).
Recommendations for the use of next-generation sequencing (NGS) for patients with
metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann.
Oncol. 31, 1491–1505. doi:10.1016/j.annonc.2020.07.014

Nakanishi, T., Yoneshima, Y., Okamura, K., Yanagihara, T., Hashisako, M., Iwasaki,
T., et al. (2023). MicroRNA-326 negatively regulates CD155 expression in lung
adenocarcinoma. Cancer Sci. 114, 4101–4113. doi:10.1111/cas.15921

Patnaik, S., Mallick, R., Kannisto, E., Sharma, R., Bshara, W., Yendamuri, S., et al.
(2015). MiR-205 and MiR-375 microRNA assays to distinguish squamous cell
carcinoma from adenocarcinoma in lung cancer biopsies. J. Thorac. Oncol. 10,
446–453. doi:10.1097/JTO.0000000000000423

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic acids Res. 43, e47. doi:10.1093/nar/gkv007

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., et al. (2011).
pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinforma. 12, 77–78. doi:10.1186/1471-2105-12-77

Rodriguez-canales, J., Parra-Cuentas, E., and Wistuba, I. I. (2016). Diagnosis and
molecular classification of lung cancer. Lung Cancer Treat. Res. 170, 25–46. doi:10.1007/
978-3-319-40389-2_2

Ru, Y., Kechris, K. J., Tabakoff, B., Hoffman, P., Radcliffe, R. A., Bowler, R., et al.
(2014). The multiMiR R package and database: integration of microRNA–target
interactions along with their disease and drug associations. Nucleic acids Res. 42,
e133. doi:10.1093/nar/gku631

Shen, J., Wang, Q., Liang, C., Su, X., Ke, Y., Mao, Y., et al. (2022). Novel insights into
miR-944 in cancer. Cancers 14, 4232. doi:10.3390/cancers14174232

Sinn, H.-P., Schneeweiss, A., Keller, M., Schlombs, K., Laible, M., Seitz, J., et al. (2017).
Comparison of immunohistochemistry with PCR for assessment of ER, PR, and Ki-67
and prediction of pathological complete response in breast cancer. BMC cancer 17 (1),
124. doi:10.1186/s12885-017-3111-1

Sun, C., Huang, C., Li, S., Yang, C., XI, Y., Wang, L., et al. (2016). Hsa-miR-326 targets
CCND1 and inhibits non-small cell lung cancer development. Oncotarget 7, 8341–8359.
doi:10.18632/oncotarget.7071

Sun, F., Yang, X., Jin, Y., Chen, L.,Wang, L., Shi,M., et al. (2017). Bioinformatics analyses of
the differences between lung adenocarcinoma and squamous cell carcinoma using the Cancer
Genome Atlas expression data. Mol. Med. Rep. 16, 609–616. doi:10.3892/mmr.2017.6629

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021).
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA a cancer J. Clin. 71, 209–249. doi:10.3322/caac.21660

Tane, S., Nishio,W., Ogawa, H., Hokka, D., Tane, K., Tanaka, Y., et al. (2014). Clinical
significance of the ‘not otherwise specified’subtype in candidates for resectable non-
small cell lung cancer. Oncol. Lett. 8, 1017–1024. doi:10.3892/ol.2014.2302

Therneau, T. M., and Lumley, T. (2015). Package ‘survival. R. Top. Doc. 128, 28–33.

Wang, R., Chen, X., Xu, T., Xia, R., Han, L., Chen, W., et al. (2016). MiR-326 regulates
cell proliferation and migration in lung cancer by targeting phox2a and is regulated by
HOTAIR. Am. J. cancer Res. 6, 173–186.

Frontiers in Genetics frontiersin.org14

Javanmardifard et al. 10.3389/fgene.2024.1419099

https://doi.org/10.1002/ijc.29816
https://doi.org/10.3390/ijms241713318
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1016/j.prp.2017.01.007
https://doi.org/10.1016/j.prp.2017.01.007
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1097/PAS.0b013e3182068171
https://doi.org/10.2174/1381612823666170714150118
https://doi.org/10.2174/1381612823666170714150118
https://doi.org/10.1016/j.biopha.2017.04.086
https://doi.org/10.1016/j.biopha.2017.04.086
https://doi.org/10.1007/s11523-017-0478-5
https://doi.org/10.2147/CMAR.S191637
https://doi.org/10.2147/CMAR.S191637
https://doi.org/10.3892/mmr.2013.1517
https://doi.org/10.3892/mmr.2013.1517
https://doi.org/10.1242/dmm.047662
https://doi.org/10.1016/S0140-6736(16)30958-8
https://doi.org/10.1093/nar/gkab1079
https://doi.org/10.1093/nar/gkab1079
https://doi.org/10.1016/j.lungcan.2016.09.016
https://doi.org/10.1016/j.lungcan.2016.09.016
https://doi.org/10.1371/journal.pone.0144187
https://doi.org/10.1093/bioinformatics/btr709
https://doi.org/10.1111/j.1349-7006.2010.01650.x
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1158/1078-0432.CCR-09-1736
https://doi.org/10.1200/JCO.2008.19.4134
https://doi.org/10.3892/or.2013.2755
https://doi.org/10.1016/j.bbcan.2015.08.002
https://doi.org/10.3892/or.2015.4403
https://doi.org/10.1080/2162402X.2018.1494677
https://doi.org/10.1177/030006051204000505
https://doi.org/10.1136/jclinpath-2020-207257
https://doi.org/10.3390/ijms17101493
https://doi.org/10.3390/ijms17101493
https://doi.org/10.1177/1533033821990090
https://doi.org/10.1016/j.molonc.2014.03.019
https://doi.org/10.1016/j.urolonc.2013.04.011
https://doi.org/10.1016/j.annonc.2020.07.014
https://doi.org/10.1111/cas.15921
https://doi.org/10.1097/JTO.0000000000000423
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1007/978-3-319-40389-2_2
https://doi.org/10.1007/978-3-319-40389-2_2
https://doi.org/10.1093/nar/gku631
https://doi.org/10.3390/cancers14174232
https://doi.org/10.1186/s12885-017-3111-1
https://doi.org/10.18632/oncotarget.7071
https://doi.org/10.3892/mmr.2017.6629
https://doi.org/10.3322/caac.21660
https://doi.org/10.3892/ol.2014.2302
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1419099


Wilkerson, M. D., Schallheim, J. M., Hayes, D. N., Roberts, P. J., Bastien, R. R.,
Mullins, M., et al. (2013). Prediction of lung cancer histological types by RT-qPCR gene
expression in FFPE specimens. J. Mol. Diagnostics 15, 485–497. doi:10.1016/j.jmoldx.
2013.03.007

Xi, Y., Nakajima, G., Gavin, E.,Morris, C. G., Kudo, K., Hayashi, K., et al. (2007). Systematic
analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed
paraffin-embedded samples. Rna 13, 1668–1674. doi:10.1261/rna.642907

Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J., Evangelista, J. E., Jenkins, S. L., et al.
(2021). Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90. doi:10.1002/
cpz1.90

Xu, L.-B., Xiong, J., Zhang, Y.-H., Dai, Y., Ren, X.-P., Ren, Y.-J., et al. (2021). miR-205-
3p promotes lung cancer progression by targeting APBB2. Mol. Med. Rep. 24, 588.
doi:10.3892/mmr.2021.12227

Yamashita, T., Takanashi, Y., Uebayashi, A., Oka, M., Mizuno, K., Kawase, A., et al.
(2023). Lung adenocarcinoma and squamous cell carcinoma difficult for
immunohistochemical diagnosis can be distinguished by lipid profile. Sci. Rep. 13,
12092. doi:10.1038/s41598-023-37848-w

Yuan, M., Huang, L.-L., Chen, J.-H., Wu, J., and Xu, Q. (2019). The emerging
treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct.
Target. Ther. 4, 61. doi:10.1038/s41392-019-0099-9

Zeng, Y., Zhu, J., Shen, D., Qin, H., Lei, Z., Li, W., et al. (2017). MicroRNA-205 targets
SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and
in vivo. Oncotarget 8, 30817–30829. doi:10.18632/oncotarget.10339

Zhang, M.-Y., Liu, X.-X., Li, H., Li, R., Liu, X., and Qu, Y.-Q. (2018). Elevated mRNA
Levels of AURKA, CDC20 and TPX2 are associated with poor prognosis of smoking
related lung adenocarcinoma using bioinformatics analysis. Int. J. Med. Sci. 15,
1676–1685. doi:10.7150/ijms.28728

Zhang, Y.-K., Zhu,W.-Y., He, J.-Y., Chen, D.-D., Huang, Y.-Y., LE, H.-B., et al. (2012).
miRNAs expression profiling to distinguish lung squamous-cell carcinoma from
adenocarcinoma subtypes. J. cancer Res. Clin. Oncol. 138, 1641–1650. doi:10.1007/
s00432-012-1240-0

Zhao, Y. L., Zhang, J. X., Yang, J. J., Wei, Y. B., Peng, J. F., Fu, C. J., et al. (2022). MiR-
205-5p promotes lung cancer progression and is valuable for the diagnosis of lung
cancer. Thorac. Cancer 13, 832–843. doi:10.1111/1759-7714.14331

Zheng, M. (2016). Classification and pathology of lung cancer. Surg. Oncol. Clin. 25,
447–468. doi:10.1016/j.soc.2016.02.003

Zhu, H., Lu, Q., Lu, Q., Shen, X., and Yu, L. (2022). Matrine regulates proliferation,
apoptosis, cell cycle, migration, and invasion of non-small cell lung cancer cells through
the circFUT8/miR-944/YES1 Axis [retraction]. Cancer Manag. Res. 14, 3455–3456.
doi:10.2147/cmar.s401320

Frontiers in Genetics frontiersin.org15

Javanmardifard et al. 10.3389/fgene.2024.1419099

https://doi.org/10.1016/j.jmoldx.2013.03.007
https://doi.org/10.1016/j.jmoldx.2013.03.007
https://doi.org/10.1261/rna.642907
https://doi.org/10.1002/cpz1.90
https://doi.org/10.1002/cpz1.90
https://doi.org/10.3892/mmr.2021.12227
https://doi.org/10.1038/s41598-023-37848-w
https://doi.org/10.1038/s41392-019-0099-9
https://doi.org/10.18632/oncotarget.10339
https://doi.org/10.7150/ijms.28728
https://doi.org/10.1007/s00432-012-1240-0
https://doi.org/10.1007/s00432-012-1240-0
https://doi.org/10.1111/1759-7714.14331
https://doi.org/10.1016/j.soc.2016.02.003
https://doi.org/10.2147/cmar.s401320
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1419099

	A comprehensive in silico analysis and experimental validation of miRNAs capable of discriminating between lung adenocarcin ...
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and identification of differentially expressed miRNAs
	2.2 Feature selection and classification
	2.3 ROC curve analysis
	2.4 Correlation with clinical characteristics
	2.5 Survival analysis
	2.6 Target genes identification and functional enrichment analysis
	2.7 Clinical specimens
	2.8 RNA extraction and RT-qPCR

	3 Results
	3.1 Identification of DEMs
	3.2 Identification of significant miRNAs by supervised machine learning approaches
	3.3 Evaluation of the diagnostic values of selected miRNAs
	3.4 Correlation between miRNA expression and clinicopathological features
	3.5 Evaluation of the prognostic values of selected miRNAs
	3.6 RT-qPCR validation of the candidate miRNAs
	3.7 Diagnostic value of the candidate miRNAs in distinguishing between SCC and AC based on RT-qPCR
	3.8 Target genes and functional enrichment analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


