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Introduction: Numerous studies have demonstrated acute myeloid leukemia
(AML) is one of the malignancies with high mortality worldwide. Immunogenic
cell death (ICD) is a form of cell death that is specialised in that it triggers the
body’s immune response, particularly the adaptive immune response. Recent
evidence has confirmed that pseudogenes are implicated in multiple human
tumorigenesis and progression although lacking the function of coding protein.
However, the roles of ICD-associated genes in AML remain largely unascertained.

Methods: TCGA-AML and GSE71014 cohorts were picked out and we combined
them into amerged dataset by removing the batch effect using the sva package in
the R project. A consensus clustering analysis of the ICD genes in AML was
performed to define subgroups. Based on the expression of 15 prognostic-
related pseudogenes, we developed a prognostic model and categorized AML
samples into low and high-risk groups.

Results: AML was differentiated into two subgroups (C1 and C2 clusters). Most
ICD-related genes were significantly up-regulated in the C2 cluster. The single
sample gene set enrichment analysis (ssGSEA) revealed that the immune cell
infiltration and immune checkpoint gene expression of the C2 cluster was
strongly high, suggesting that the C2 population responded well to immune
checkpoint blockade (ICB) therapy and had better survival. The C1 group was
sensitive to chemotherapy, including Cytarabine, Midostaurin, and Doxorubicin.
On the other hand, 15 ICD-related pseudogenes were identified to be associated
with AML prognosis. The receiver operator curve (ROC) analysis and nomogram
manifested that our prognostic model had high accuracy in predicting survival.
However, the high-risk group was sensitive to ICB therapy and chemotherapy
such as Methotrexate, Cytarabine, and Axitinib while the low-risk group benefited
from 5-Fluorouracil, Talazoparib, and Navitoclax therapy.

Discussion: In summary, we defined two subgroups relying on 33 ICD-related
genes and this classification exerted a decisive role in assessing immunotherapy
and chemotherapy benefit. Significantly, a prognostic signature identified by
critical ICD-related pseudogene was created. The pseudogene prognostic
signature had a powerful performance in predicting prognosis and therapeutic
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efficacy, including immunotherapy and chemotherapy to AML. Our research points
out novel implications of ICD in cancer prognosis and treatment approach choice.
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1 Introduction

Acute myeloid leukemia (AML) is defined as a heterogeneous
malignancy where myeloid cell differentiation is inhibited and
uncontrolled proliferation of leukemic blasts (Liu, 2021; Newell
and Cook, 2021). In adult diagnoses, AML is the most prevailing
acute leukemia and led to cancer-related deaths with a median age of
68 years at the diagnosis stage (Koenig et al., 2020). Accumulating
evidence has manifested that there is a wide range of genomic
mutations and alteration (Döhner et al., 2017; Rio-Machin et al.,
2020). AML can be separated into multiple biologic subtypes relying
on cytogenetic abnormalities and genetic mutations. Notably, these
classifications play a determining role in survival time and final
clinical outcomes in AML. The risk stratification guidelines of AML
have been broadly employed to assess prognosis outcomes
(Pogosova-Agadjanyan et al., 2020). As a result, dissecting
genetic abnormalities is beneficial to develop new biomarkers and
therapeutic targets for anti-AML treatment.

Immunogenic cell death (ICD) is defined as a cell death pattern
that is sufficient to mobilize innate and adaptive immune responses
within the immunocompetent context, which finally promotes the
formation of sustaining immunological memory (Galluzzi et al.,
2020; Birmpilis et al., 2022). The antigenicity and adjuvanticity
carried by fading cancer cells determine the immunogenicity that
has influenced the anti-tumor response (Bloy et al., 2017). The
antigenicity of tumor-associated antigens (TAA) has limited
immune activity when lacking supplementary adjuvants that
contribute to the activation and function of antigen-presenting
cells (APC). Dying cancer cells release some signal molecules that
serve as the damage-associated molecular patterns (DAMPs) in the
cellular demise, which induces tumor-specific immune responses
(Hayashi et al., 2020). The innate pattern recognition receptors
(PRRs) perceive DAMP molecules, which enlarges the lasting
efficacy of anticancer drugs by increasing the maturation and
recruitment of APC cells (Ahmed and Tait, 2020). The
introduction of ICD in cancer immune therapy has predominant
clinical significance because the anti-tumor immune responses of
ICD exert an important influence on the efficacy of long-term
anticancer immunity.

The excessive buildup of nonsense mutations within genes
usually generates pseudogenes, which used to be deemed as non-
functional because they were short of protein-coding ability or
cellular gene expression. However, there is overpowering proof
manifesting that pseudogenes are identified as critical hallmarks
in tumor initiation, progression, and therapy (Ye et al., 2021; Liu
et al., 2022). For instance, pseudogene WTAPP1 is found to be
strongly expressed due to the m6A modification and high WTAPP1
displays a worse prognosis in pancreatic ductal adenocarcinoma
(PDAC).WTAPP1 RNA contributes to the malignant phenotypes of
PDAC cells by increasing its protein-coding counterpart (WTAP)

translation, which intensifies the Wnt signaling (Deng et al., 2021).
Increasing research has developed a reliable pseudogene-related
prognosis signature with excellent performance. Tang and Zhuge
(2021) generated a prognostic signature based on 9 immune-related
pseudogenes and has high efficacy in predicting prognosis and
immune response in endometrial cancer (EC).

Herein, we first depicted the role of ICD-related genes in AML
and defined two AML clusters according to 33 ICD-related gene
expression patterns. The association between classification and
tumor immunotherapy was also explored. More importantly, we
identified ICD-related pseudogenes and created a prognosis
signature based on the critical pseudogenes. Also, we
corroborated the prognostic significance of this signature and the
potential value of the ICD-related pseudogenes signature in
immunotherapy and chemotherapy.

2 Materials and methods

2.1 Data collection

The transcriptome and clinical data (Supplementary Material
S1) of AML were downloaded from the TCGA (https://portal.gdc.
cancer.gov/) database, while the GSE71014 dataset was acquired
from the GEO website (https://www.ncbi.nlm.nih.gov/geo).
GSE71014 is an RNA sequencing dataset containing 104 AML
patients. The single-cell RNA sequencing dataset AML_
GSE116256 was downloaded from the TISCH website (http://
tisch.comp-genomics.org/) and contains 5 healthy control donors
and 16 AML patients. TCGA-LAML served as the training dataset
and GSE71014 was the validation set. AML_GSE116256 was then
used to validate gene expression at the single-cell level. After
merging two datasets into a meta dataset, the batch correction
was performed with the sva package in the R project (4.1.1).
Principal component analysis was used to visualize the data
distribution of combining gene expression patterns. At the same
time, 33 ICD-related genes were identified according to a previous
search from previously published literature for the following
research (Garg et al., 2016). All statistical analyses were
conducted in the R project.

2.2 Cluster analysis and survival analysis

To explore the biological functions exerted by ICD-associated
genes in AML patients, we separated the overall AML samples into
different subsets by using the ConsensusClusterPlus package in R
based on 33 ICD genes expression levels in the merging dataset. The
classification had the best performance when the parameter
consensus matrix k was 2. As a result, AML patients were
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divided into two clusters. Then Kaplan-Meier curve was applied to
display the survival rates of two clusters. Also, the expression data of
33 ICD genes in two AML clusters were extracted from the merging
dataset. Box plots and heatmap were employed to visualize
the results.

2.3 Immune microenvironment
feature analysis

A variety of immune cells make up the major cellular components
in the tumor environment (TME) ecosystem and are engaged in
maintaining TME hemostasis. In the current study, we obtained the
relative amounts of immune cells in two clusters by using GSVA
package of single sample gene set enrichment analysis (ssGSEA)
algorithm. Stromal components are indispensable members in
reshaping TME and assessing stromal infiltration degree provides
important guidance for predicting immunotherapy efficacy.
ESTIMATE algorithm contributes to the quantification of immune
and stromal components in TME. Herein, the immune score and
stromal score of two ICD clusters were calculated by ESTIMATE and
we examined the score differences in two clutters.

2.4 Prediction of immunotherapy and
chemotherapy response

A tumor immune dysfunction and exclusion (TIDE) scoring
system has been developed to predict the immunotherapy
response in multiple cancer patients (Wu et al., 2021). The
computational framework for TIDE is constructed according
to two types of tumor immune escape: T cell dysfunction in
high levels of cytotoxic T lymphocytes (CTL) and T cell

infiltration in low levels of CTL. A reduced TIDE score
represents activated immune checkpoint blockade (ICB)
response. We compared the TIDE score in two clusters and
investigated immune checkpoint gene expression in two
clusters. Besides immunotherapy, chemotherapy is a
predominant treatment approach in AML. The IC50 value of
some common chemotherapeutic agents such as Cytarabine,
Midostaurin, and Doxorubicin in AML therapy between two
clusters was also compared.

2.5 Identification of ICD-associated
pseudogenes

A total of 11597 ICD-associated pseudogenes were obtained
firstly via the GENCODE, Vega, and Pseudogene.org databases.
980 ICD-associated pseudogenes were finally identified by the
screening criteria (r > 0.3 and p < 0.001) and 153 of
980 pseudogenes were established for the subsequent analysis by
taking the intersection with the GSE70714 validation set. The
relationship between ICD genes and matching pseudogenes was
shown in the Sankey diagram.

2.6 Construction of prognostic model
identified by ICD-related pseudogenes

The prognostic ability of ICD-related pseudogenes were first
evaluated by univariate method. Next Kaplan-Meier analysis was
used to consistently pick out the crucial prognostic-related
pseudogenes. 33 ICD-related pseudogenes had a significant
impact on AML survival. Then the gene model with the highest
efficacy was ensured using least absolute shrinkage and selection

FIGURE 1
Data processing. (A) Original data distribution pattern. (B) Mixed data distribution pattern after PCA analysis.
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operator (lasso) cox risk model (iteration = 1000). The 15-genes
model was found to produce the best performance and we developed
the prognostic model.

2.7 Efficacy validation of the
prognostic model

According to the formula determined by 15 pseudogenes
expressions in the AML sample, the risk score of each AML
sample was acquired by lasso regression. With the median of all
pseudogenes scores, the AML samples could be categorized into low
and high ICD pseudogene groups. The KM survival curves were
used to demonstrate the survival differences between the two groups
in both training and validation datasets. The prediction accuracy of
the ICD pseudogene model was displayed by the area under the
curve of receiver operator curve (ROC) in two groups. Univariate
andmultivariate analyses were introduced to evaluate the prognostic
potential of this ICD pseudogene model. A nomogram combining
clinical features was generated to predict the survival rates of AML
patients. The calibration curve analysis was employed to examine
the prediction accuracy of the ICD pseudogene model.

2.8 Prediction of chemotherapy and
immunotherapy efficacy by
prognostic model

For chemotherapy, the pRRophetic package can predict
phenotype from gene expression data and predict drug sensitivity
in external cell lines. The pRRophetic package was used to
investigate the correlation of 251 chemotherapeutic drugs with
the prognostic model. For the immunotherapy, the differences in
immune checkpoint gene expression between high and low-risk
groups and TIDE scores were compared between high and low-
risk groups.

2.9 Statistical analyses

R software, version 4.1.1, was used to conduct statistical
analyses. The differences between the two groups were compared
using theWilcoxon test, while the differences between the numerous
groups were examined using the Kruskal–Wallis test. Statistical
significance was defined as p «< 0.05 (*p < 0.05, **p < 0.01 and
***p < 0.001).

FIGURE 2
Two clusters identified by ICD genes. (A) The plot of consensus clustering of LAML samples with k = 2. (B) Survival curve of two clusters. (C) The box
plot of expression levels of 33 ICD genes in two clusters. (D) Expression heatmap of 33 ICD genes in two clusters.
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3 Results

3.1 Two clusters identified by the ICD genes

The PCA analysis was introduced to abolish the batch effect of
the meta dataset consisting of the GSE71014 dataset and TCGA-
LAML cohort (Figures 1A, B). According to recently published
research, 33 ICD-related genes were obtained. Then by applying the
consensus clustering analysis (Supplementary Figure S1), LAML

samples were classified into two distinct clusters (Figure 2A). And
KM survival curve showed that the patients in the C1 cluster had a
higher survival rate than the C2 cluster (Figure 2B). The expression
levels of ICD genes altered excessively across the two clusters
(Figures 2C, D). Among them were NLRPJ, ENTPD1, TLR4,
FNGR1, LY96, MYD8S, CASP1, P2RX7, CD4, and IL17RA
expression levels were significantly higher in the C2 cluster than
in the C1 cluster (Figure 2D), implying the critical but complex role
of these ICD genes in LAML subtypes.

FIGURE 3
Tumor microenvironment features analysis in two LAML subgroups. (A) The box plot of immune cell proportions in two clusters. (B) The heatmap of
immune cell proportions in two clusters. (C) The immune score, matrix score, and immune checkpoint expression in two clusters. (D) ESTIMATE score of
two clusters.
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3.2 Identification of tumor
microenvironment features in two
LAML subgroups

TME ecosystem consists of various immune cells with cancer-
promoting or anti-cancer functions and matrix components,
together with tumor cells. The immune cell infiltration degree
exerts a decisive impact on the immunotherapeutic outcome such
as the immune checkpoint blockade. Given this observation, we
surveyed the overall immune cell amounts in two subtypes by using
the ssGSEA algorithm. Our findings suggested that the amounts of
most immune cells altered significantly across two clusters and were
highly enriched in the C2 cluster (Figures 3A, B). For instance,
B cells, CD8+ T cells, DC cells, macrophages, neutrophils, NK cells,
CD4+ T cells, and Treg cells were enormously increased in the
C2 cluster. Furthermore, LAML-specific immune cell infiltration

status was next investigated. We quantified the infiltration level of
24 microenvironmental cell types and investigated the expression of
immune checkpoint genes in two LAML subgroups (Figures 3C, D).
The immune score, matrix score, and ESTIMATE were higher in the
C2 cluster, which was consistent with the ssGSEA result. These
research findings confirmed the higher immune infiltration level of
the C2 cluster. In addition, the immune checkpoint expression
landscape of the two clusters was distinguished from each other.

3.3 Immune checkpoint analysis and
prediction of chemotherapeutic agents of
two clusters

The immune checkpoint expression landscape of the two clusters
was distinguished from each other. HHLA2, HAVCR2, CTLA4, BTLA,

FIGURE 4
Immune checkpoint analysis and prediction of chemotherapeutic agents. (A–E) Several immune checkpoint expression levels in two clusters. (F)
TIDE score of two clusters. (G–I) IC50 values of Cytarabine, Midostaurin, and Doxorubicin in two clusters.
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andPDCD1LG2were upregulated in the C2 cluster (Figures 4A–E). The
C2 cluster obtained a higher tumor immune dysfunction and exclusion
(TIDE) score, which represented an enhancement of immune evasion

ability and a worse response to ICB therapy (Figure 4F). As a result, the
patients in the C2 cluster could benefit from the ICB therapy and have a
better prognostic outcome relative to the patients of the C1 subset.

FIGURE 5
Constructing the prognostic model based on ICD-associated pseudogenes. (A) The Sankey diagram of the relationship between ICD genes and
ICD-associated pseudogenes. (B) The frequency differences of models containing different gene numbers. (C) Path diagram of lasso coefficients for
15 ICD-related pseudogenes. (D) Cross-validation curves of the lasso.
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Chemotherapy has emerged as an effective anti-cancer therapeutic
strategy in reliving AML progression. Cytarabine, Midostaurin, and
Doxorubicin have been considered the conventional chemotherapeutic
drugs in anti-AML treatment. The IC50 values of three

chemotherapeutic agents for LAML were then predicted and the
results showed that the C1 cluster was more sensitive to treatment
with three drugs, demonstrating that C1 cluster populations were
suitable for the chemotherapy (Figures 4G–I).

FIGURE 6
Efficacy validation of the prognostic model. (A,B) Survival analysis of two risk subgroups in the TCGA-LAML cohort and GSE71014 cohort. (C,D)
Distribution of risk scores in each sample between two risk subgroups in TCGA-LAML cohort andGSE71014 cohort. (E,F)Distribution of survival status and
survival time of each sample between two risk subgroups in the TCGA-LAML cohort andGSE71014 cohort. (G,H)Gene expression of 15 ICD pseudogenes
between two risk subgroups.
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FIGURE 7
The validation of the independent prognostic potential of the risk model. (A) ROC analysis of the prognostic model at predicting 1, 3, and 5 years. (B)
ROC analysis of the risk model and clinical features. (C,D) Univariate and multivariate cox regression analyses of the risk model, respectively. (E) Clinical
nomogram of the risk model. (F) The C-index plot of the nomogram. (G) The calibration curve for predicting survival at 1 year and 3 years.
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3.4 Establishment of the prognostic model
identified by ICD-associated pseudogenes

We screened ICD-associated pseudogenes by performing Pearson
correlation analysis (r> 0.3 and p< 0.001) and 11597 pseudogenes were
identified. Then by taking the intersection with the genes of the
GSE71014 dataset, 153 pseudogenes were obtained in the
subsequent analysis. The relationship between ICD genes and ICD-
associated pseudogenes was shown in the Sankey diagram (Figure 5A).
The multivariate cox regression analysis and Kaplan-Meier analysis
were introduced to find out the prognosis-related ICD pseudogenes,
respectively. 23 overlapping pseudogenes between multivariate cox
regression and survival analysis were identified for the following
investigation. To increase the predictive value of ICD pseudogenes

in determining the clinical outcomes of LAML, we developed a risk
model by implementing the lasso cox regression method to the 23 ICD
pseudogenes. These 23 ICD-related pseudogenes were then subjected to
cox proportional risk regression with 10-fold cross-validation to
generate the best genetic model numbers. We performed a total of
1000 iterations, including 5 genomes, for further analysis (Figure 5B).
The gene model with 15 ICD-associated pseudogenes had the highest
frequency (882) compared to the other 4 gene models. Therefore, this
15 genes model was most suitable for constructing a prognostic
signature (Figures 5C, D). In AML_GSE116256, cells are
distinguished into a total of 13 subtypes, which are HSC cell,
Malignant cell, Monocyte cell, Progenitor cell, GMP cell, CD4Tn
cell, EryPro cell, Promonocyte cell, CD8Tcm cell, B cell, Tprolif cell,
NK cell, Plasma cell (Supplementary Figure S2A). At the single-cell level

FIGURE 8
Chemotherapeutic agents sensitivity and ICB analysis. (A) IC50 values of 6 chemotherapeutic drugs in two risk groups. (B) Immune checkpoints
expression in two risk groups. (C) TIDE score of two risk groups.
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we verified the expression of a total of 8 genes, namely, FAHD2CP,
NAPSB, ADCY10P1, WHAMMP3, SUZ12P1, SDHAP3, RPS10P7,
PDCD6IPP2 (Supplementary Figures S2B–I). Among them, NAPSB
was significantly highly expressed in Malignant cells, suggesting that
NAPSB may be a marker gene for Malignant cells.

3.5 Predictive efficacy validation of the
prognostic model

According to the coefficients of 15 ICD-associated pseudogenes,
we calculated the ICD related risk score of each LAML sample
relying on the prognostic model. Based on the median ICD risk
score, LAML samples were divided into low or high ICD groups.
Kaplan-Meier survival analysis showed that patients in the high ICD
pseudogenes group had worse overall survival rates than those in the
low ICD pseudogene group in both the training (TCGA-LAML
cohort) and test datasets (GSE71014 cohort), demonstrating that the
low ICD-associated pseudogenes group had a better prognosis
outcome (Figures 6A, B). More death events were observed in
the high ICD-associated pseudogenes group, suggesting that the
increasing ICD pseudogenes level reflected the unfavorable
prognosis of patients with LAML (Figures 6C–H).

3.6 The prognosis signature identified by
15 ICD pseudogenes was an independent
prognostic factor in LAML

To assess the predictive efficacy of 15 ICD-associated pseudogenes
model, we examined the independent prognostic potential of ICD
prognostic model by conducting the ROC analysis. The ICD
pseudogene model had higher efficacy (AUC values were >0.8) in
the training group (Figure 7A). The AUC value of the 15 pseudogene
model was higher than that of general AML clinical characteristics such
as age and gender (Figure 7B), indicating that the prognostic model
carried good predictive value for the prognosis of LAML patients. We
then performed univariate and multivariate cox regression analyses to
assess the independent predictive potential of the prognosticmodel. The
results showed that our risk score could be used as an independent
prognostic factor (Figures 7C, D). By combining the independent
prognostic factor, we constructed a nomogram as a clinically
relevant quantitative method by which the mortality in LAML
patients could be predicted (Figure 7E). By summing the scores of
each prognostic parameter, a total score value would be obtained for
each patient. A higher final score corresponds to a worse prognosis
outcome. The time-dependent C-index curve showed a high predictive
power of the columnar plot (Figure 7F). The calibration curve showed
that the column model has an ideal diagnostic efficacy (Figure 7G).

3.7 Predictions of chemotherapeutic agents
and ICB analysis in two risk groups

To depict the underlying association between chemotherapy and
the risk model, we investigated the sensitivity of 6 conventional
chemotherapeutic agents in two clusters by calculating the
IC50 values of each sample. By comparing the differences in

IC50 values between the two risk groups, it was found that
Cytarabine and Axitinib were sensitive in the high-risk group
while Methotrexate, 5-Fluorouracil, Talazoparib, and Navitoclax
were sensitive in the low-risk group (Figure 8A). Immune
checkpoint analysis showed that most immune checkpoints genes
such as PDCD1 and CTLA4 were significantly increased in the high-
risk group (Figure 8B). In agreement with this point, the high-risk
group acquired a lower TIDE score than the low-risk subtype,
confirmed by the TIDE analysis results (Figure 8C). As a result,
ICB therapy would produce high clinical efficacy and lead to a good
prognosis outcome in high-risk groups.

4 Discussion

Regulated cell death (RCD) occurs in mammalian cells when the
microenvironmental distribution signals surpass the maximal
processing potential of cellular homeostasis, which promotes
cytoprotecting molecular mode changing into cytotoxic cascades
(Galluzzi et al., 2018; Bedoui et al., 2020). As the specific variant of
RCD, ICD is triggered by the stress signals such as epigenetic
modifiers, tumor cell lysis molecules, radiation therapy,
traditional chemotherapeutic agents even specific anticancer
agents (tyrosine kinase inhibitors, cetuximab) (Galluzzi et al.,
2017; Fucikova et al., 2020; Galluzzi et al., 2020). Recent research
has reported that the successful benefits of anti-cancer drugs are
derived from the increasing tumor-targeting immune response
caused by ICD (Petroni et al., 2021). Combining immunogenic
therapy with immunotherapy improves survival time and achieves
better clinical outcomes in human cancers (Boumelha et al., 2022).
Wang et al. (2021) have defined two head and neck squamous cell
carcinoma (HNSSC) subtypes based on several ICD-related genes
and find that the high-ICD subtype obtains a better prognosis and
benefits from the immune therapy. Chen et al. (2024), Zhong et al.
(2024), Sheng et al. (2023) have explored the role of ICDs in AML by
distinguishing AML subtypes and establishing prognostic models,
but establishing a link with pseudogenes has not been investigated. It
is advantageous to develop a reliable immunogenic biomarker that
holds great promise for treating malignancies. Here we pinpointed
the prognosis and immunotherapy implication of ICD in LAML.

In the current study, we emerged the TCGA-LAML and
GSE71014 cohort and classified LAML into two clusters (C1 and
C2) premised on 33 ICD-associated gene expression levels by
consensus clustering analysis. The C2 cluster had higher ICD gene
expression and immune cell infiltration, implying the C2 cluster benefits
immune therapy. Notably, NK cells and CD8+ T cells were more
enriched in the C2 cluster. NK cells exert a predominant tumor-
suppressing function by indirectly generating multiple cytotoxic
cytokines and directly killing tumor cancer. Recent clinical trial data
reveal that cytokine-induced memory-like NK cells derived from the
same-donor hematopoietic cell transplantation (HCT) achieved a
complete response and persisted for over 2 months in relapsed/
refractory AML patients. ML NK cells devastate tumor cells by
producing granzyme B and perforin and expressing CD16 and
CD57 (Berrien-Elliott et al., 2022). Vitro and in vivo evidence
suggested that the novel monoclonal antibody (T-1A5) targeting
immune checkpoint B7-H3 plays an immune-suppressive role by
endorsing the cytotoxicity activity of NK cells. Combining T-1A5
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with NK cells significantly improves survival time in AML (Tyagi et al.,
2022). CD8+ T cell exhaustion is present in the bone marrow in the
murine receiving the allogeneic bone marrow transplantation.
Inhibiting the CD8+ T cells with exhaustion phenotype before
allogeneic bone marrow transplantation spares T cells from
obtaining a stem-like memory phenotype, which magnifies the
antitumor immunity response by swelling cytokine signaling gene
expression such as IL18 receptor via increasing the chromatin
accessibility (Minnie et al., 2022). Furthermore, we noted that
immune checkpoint HAVCR2 (also termed TIM3) is highly
expressed in the C2 cluster. In line with our research results, Rakova
et al. (2021) have pointed out that TIM-3 is strongly expressed in the
NK cells in AML patients and encourages NK cell cytotoxicity and
superior effector functions, which improves survival outcomes in AML
patients. These findings demonstrated that the C2 cluster could achieve
high efficacy in immune therapy relative to the C1 cluster, also
confirmed by the TIDE analysis results. Of course, the C1 cluster
subgroup would benefit from traditional chemotherapeutic drugs
including Cytarabine, Midostaurin, and Doxorubicin.

Considering the significant role of pseudogenes in determining
cancer progression and clinical outcome, we surveyed the overall
function landscape of ICD-related pseudogenes in AML.
153 pseudogenes were identified to be associated with 33 ICD
genes and 23/153 pseudogenes were found to be related to AML
prognosis by univariate regression and Kaplan-Meier analysis.
Hinging on lasso regression analysis, we found that
15 pseudogenes were suitable for generating a prognostic model
with high efficacy. The AML sample was categorized into high and
low-risk groups according to the risk score calculated by the
prognostic model. Survival analysis in both TCGA-LAML and
GSE71014 cohorts illuminated that the high-risk group had a
reduced overall survival rate and more death events. Increased
risk score reflected the unfavorable prognosis for AML. These
results verified the high efficacy of our prognostic model in
evaluating the prognosis of AML patients.

To probe whether 15 ICD-related pseudogenes serve as an
independent prognostic index, the prognostic influence of
10 pseudogenes was exemplified. ROC analysis certified that our
prognostic model did the best performance in predicting prognosis
relative to clinical features such as age and gender. Cox analysis
supported that 15 ICD-related pseudogenes could be considered as
an independent prognostic factor in AML. To better dissect the
diagnostic value of 15 ICD-related pseudogenes, we created a clinical
nomogram based on 15 pseudogenes. Results hinted that the risk
score calculated by the prognostic model could play a determining
role in survival assessment combined with clinical features. The
c-index and calibration curve confirmed that the clinical nomogram
had higher predictive ability and sensitivity.

Finally, we compared the IC50 values of 6 conventional
chemotherapeutic agents in two risk subgroups. Cytarabine and
Axitinib were found to be perceptive to the high-risk group while
Methotrexate, 5-Fluorouracil, Talazoparib, and Navitoclax were
hypersensitive to the low-risk group. Smarmily, immune
checkpoints such as PDCD1, TNFSF18, TNFRSF14, CD40, LAG3,
LGALS9, CD86, CD200R1, CD276, and CTLA4 were strongly
expressed in the high-risk group. The high-risk group was hyper-
sensitive to the immune checkpoint inhibitor therapy. Moreover, in
line with this point, the TIDE score of the high-risk group was

reduced, hinting at the increased anti-tumor immune response to
the immunotherapy.

5 Conclusion

Our research successfully categorized the TCGA-AML and
GSE71014 samples into two subtypes premised on 33 ICD-
related genes and explicated the tumor immune environment and
therapy differences between the two clusters. Furthermore, we
created a stable prognostic model using 15 ICD-related
pseudogenes and this prognostic signature performed excellently
in determining the clinical efficacy of immunotherapy and
chemotherapy. Although clinical validation of our findings is still
needed, for the time being, our study points out the new significance
of ICD in the prognosis and precision treatment of acute myeloid
leukaemia, and provides new ideas for the treatment of AML.
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