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Accurate haplotyping facilitates distinguishing allele-specific expression,
identifying cis-regulatory elements, and characterizing genomic variations,
which enables more precise investigations into the relationship between
genotype and phenotype. Recent advances in third-generation single-
molecule long read and synthetic co-barcoded read sequencing techniques
have harnessed long-range information to simplify the assembly graph and
improve assembly genomic sequence. However, it remains methodologically
challenging to reconstruct the complete haplotypes due to high sequencing
error rates of long reads and limited capturing efficiency of co-barcoded reads.
We here present a pipeline, AsmMix, for generating both contiguous and accurate
diploid genomes. It first assembles co-barcoded reads to generate accurate
haplotype-resolved assemblies that may contain many gaps, while the long-read
assembly is contiguous but susceptible to errors. Then two assembly sets are
integrated into haplotype-resolved assemblies with reduced misassembles.
Through extensive evaluation on multiple synthetic datasets, AsmMix
consistently demonstrates high precision and recall rates for haplotyping
across diverse sequencing platforms, coverage depths, read lengths, and read
accuracies, significantly outperforming other existing tools in the field.
Furthermore, we validate the effectiveness of our pipeline using a human
whole genome dataset (HG002), and produce highly contiguous, accurate,
and haplotype-resolved assemblies. These assemblies are evaluated using the
GIAB benchmarks, confirming the accuracy of variant calling. Our results
demonstrate that AsmMix offers a straightforward yet highly efficient
approach that effectively leverages both long reads and co-barcoded reads
for haplotype-resolved assembly.
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1 Introduction

A complete genome assembly provides a comprehensive blueprint of an organism’s
genetic material, facilitating accurate identification and characterization of genetic variants,
and serving as a valuable reference for the discovery of conserved sequences and
evolutionary relationships between species. Genome assembling computationally
reconstructs genomes by identifying overlaps among genomic sequencing reads. Most
assemblers employ assembly graphs to simplify the process of genome reconstruction,
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reducing it to a path problem. However, the intricate presence of
repetitive genomic regions leads to entanglements within the
assembly graphs and yielding fragmented and haplotype-
collapsed genomes, as seen in the current human reference
genome, GRCh38 (Popejoy and Fullerton, 2016; Ballouz et al.,
2019). The recent achievement of the telomere-to-telomere (T2T)
human reference genome by collaborative efforts such as the T2T
Consortium and the Human Genome Structural Variation
Consortium (HGSVC), represents a significant leap forward in
genome assembly (Miga et al., 2020; Rhie et al., 2023). By
leveraging cutting-edge sequencing technologies and employing
paired assembly algorithms, these initiatives have successfully
untangled complex regions of the genome including highly
repetitive sequence regions of centromeres and telomeres.
Notably, the CHM13 cell line consists of two nearly identical
haploid complements to eliminate the need for haplotype
separation and mitigate diploid assembly errors (Yang et al.,
2023). Despite these advancements, a “perfect” genome assembly
should possess satisfactory contiguity, with acceptable assembly
errors, while being haplotype-resolved.

Haplotyping, also known as phasing, involves determining the
specific arrangement of alleles on each chromosome, thereby
distinguishing maternal and paternal haplotypes (Ebert et al.,
2021; Garg et al., 2021). Resolving haplotypes not only aids in
discerning allele-specific expression but also facilitates the
identification of cis-regulatory elements and characterization
genomic variations, which enables more precise investigations
into the intricate relationship between genotype and phenotype
(Rhie et al., 2023). Consequently, there exists an urgent imperative to
advance genome assembly methodologies that can achieve a
complete diploid human genome with a T2T-level assembly of
both haploid genomes that accurately capture the diversity and
complexity of biological genomes (Peters et al., 2015; Jarvis
et al., 2022).

Numerous laboratory and computational approaches have been
developed to tackle these challenges. Recent breakthroughs in
sequencing technologies such as synthetic long read (SLR)
libraries, third-generation sequencing long reads (TGS), BioNano
physical maps, and Hi-C contact maps, have revolutionized genome
assembly methodologies (Sedlazeck et al., 2018). Leveraging their
long-range information, these technologies surpass mainstream
next-generation sequencing (NGS) methods, enabling the
reconstruction of complex genomic regions containing repetitive
elements and facilitating the generation of high-quality, haplotype-
resolved, and chromosome-scale assemblies (Logsdon et al., 2020;
Garg et al., 2021; Qi et al., 2022). Notably, TGS such as Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) in
conjunction with the recent development of computational tools,
have been hailed as the “method of the year 2022” due to their
promising capabilities in sequencing and assembling the complete
genomes (Long-read sequencing powers a more complete reading of
genomic information, 2023). However, TGS long reads have
presented challenges in terms of sequencing accuracy and
throughput, stemming from underlying technological principles,
which have impacted the accurate identification of heterozygous
variants (Wohlers et al., 2023). Recent efforts for ONT ultra-long
(Jain et al., 2018) and PacBio high-fidelity (HiFi) (Wenger et al.,
2019) reads hold the promise in accurately resolving whole-genome

haplotyping. Additionally, recent advancements in SLR sequencing
technologies, such as MGI’s single-tube long fragment reads (stLFR)
(Wang et al., 2019), 10x Genomics’ linked reads (Zheng et al., 2016),
UST’s TELL-Seq (Chen et al., 2020) and Loop Genomics’ LoopSeq
(Callahan et al., 2021), exhibit even longer information than TGS,
and have demonstrated success in genome assembly (Kuleshov et al.,
2016; Guo et al., 2021b; Mak et al., 2023), haplotyping (Wang et al.,
2019), and structural variation (SV) detection (Guo et al., 2021a; Liu
et al., 2021). SLR co-barcoded reads represent an augmented NGS
technology that entails fragmenting chromosomes into numerous
long DNA fragments and assigning the same barcode to reads
originating from a single fragment. Consequently, reads with
identical barcodes are presumed to derive from the same
extended DNA fragment, thus suggesting that their positions on
the chromosome ought to be within the length range of DNA
fragments and on the corresponding haplotype. Therefore, by
utilizing the barcodes as indicators of the physical proximity of
reads, co-barcoded sequencing enables read binning for local
assembly, and has also been employed in sequencing
decontamination (Xu et al., 2023), single-cell transcriptomics
(Han et al., 2022; Jovic et al., 2022), and high-resolution spatial
omics (Chen et al., 2022; Guo et al., 2023). However, the limited
capturing efficiency of co-barcoded reads poses a significant obstacle
to the direct local assembly of these read clouds, impeding the
generation of high-quality contigs as achieved with TGS reads.
Moreover, trio-binning-based approaches utilize heterozygous
pedigree information to classify the offspring’s sequencing data
into distinct maternal and paternal groups. By combining
parental-specific markers with long-range information, which
compensates for high sequencing error rates in TGS reads or low
capture ratios in SLR reads, trio-binning-based strategies can
reconstruct the entire haplotype (Koren et al., 2018; Xu et al., 2021).

The conventional long-range approach, relying solely on error-
prone TGS long reads or inefficiently captured SLR co-barcoded
reads, has demonstrated limited success in generating accurate,
haplotype-resolved genome assemblies for large, repeat-rich
human genomes. To address this challenge, a hybrid assembly
algorithm that integrates long reads with precise SLR reads has
emerged as a promising solution to achieve high-quality, haplotype-
resolved assemblies while minimizing computational requirements.
Currently, hybrid approaches to genome assembly can be classified
into four main types: (a) TGS contigs + SLR polishing, which
involves initially assembling contigs based on TGS reads and
then using SLR’s short reads to correct errors through consensus
or local assembly (Kang et al., 2023; Darian et al., 2024); (b) TGS
contigs + SLR scaffolding, where TGS contigs are assembled first and
then SLR’s short reads are mapped to these contigs to link them into
scaffolds (Guo et al., 2021b); (c) SLR scaffolds + TGS gap-closing,
which starts by assembling SLR co-barcoded reads into scaffolds and
then uses TGS long reads to fill the gaps within these scaffolds (Xu
et al., 2020; Schmeing and Robinson, 2023); and (d) SLR contigs/
scaffolds + TGS (re-)scaffolding, which constructs SLR scaffolds
initially and extends pre-assembled scaffolds using the long-range
information from TGS reads (Zimin et al., 2013; Zimin et al., 2017;
Di Genova et al., 2021). Different assembly algorithms are applied
separately to TGS and SLR reads, taking advantage of their
respective long-range benefits. SLR co-barcoded sequencing
builds and iteratively trims de Bruijn graphs (DBG) as used in
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many modern NGS short-read assemblers that use consecutive
k-mers to avoid the computationally expensive all-versus-all read
comparison (Weisenfeld et al., 2017). On the other hand,
contemporary long-read assemblers for third-generation
sequencing (TGS) have widely adopted the all-versus-all read
alignment approach, utilizing overlap-layout-consensus (OLC)
graphs or string graphs, and leveraging novel algorithms to
expedite the process of read comparison (Koren et al., 2017; Xiao
et al., 2017; Kolmogorov et al., 2019). While some hybrid assembly
approaches employ resource-intensive polishing or initiate assembly
with short reads, they fail to adequately address the crucial issue of
assembly contiguity (Ruan and Li, 2020). Despite multiple rounds of
polishing, a significant number of consensus errors persist due to the
inefficient utilization of valuable short-read sequence information.
Consequently, these errors impede downstream genome analyses,

including gene and protein prediction (Watson and Warr, 2019).
Furthermore, other scaffolding or re-scaffolding approaches
typically rely on pre-assembled TGS contigs or SLR scaffolds in
the initial step, thereby neglecting the propagation of assembly
errors induced by previous misassemblies.

To overcome the challenges in achieving the perfect genome
assembly, we demonstrate a novel hybrid assembly pipeline called
AsmMix, that leverages the complementary strengths of TGS long
reads and SLR co-barcoded sequencing to enhance haplotype-
resolved genome assembly. Unlike most existing hybrid
assemblers, AsmMix integrates assemblies from co-barcoded and
TGS reads independently, thus avoiding biases introduced by
sequencing platforms and bioinformatics algorithms. It involves
employing assembly mixing to rectify errors found in longer TGS
contigs by leveraging the accuracy of co-barcoded assemblies. This

FIGURE 1
Workflow of AsmMix. AsmMix requires both TGS long reads and SLR co-barcoded reads as input, generates preliminary haplotype-collapsed
assemblies using long reads and haplotypes using trio binning and barcode cloud information, merges two sets of genome sequences, and finally
reconstructs the haplotype-resolved assemblies. The gray lines indicate sequencing long reads and long fragments data (solid and dashed), the red and
blue blocks refer to maternal and paternal allelic sites, the red and blue lines refer to reconstructed maternal and paternal haplotypes, and yellow
lines and blocks represent the haplotype-collapsed assembly and regions, respectively.
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strategic approach is based on identifying and addressing
discrepancies between the TGS assemblies and the co-barcoded
assemblies, considering them as errors on a small scale.
Consequently, these errors are rectified by substituting them with
sequences derived from the co-barcoded assemblies. Moreover, the
longer phasing blocks in SLR assemblies guide the reconstruction of
haplotypes with or without trio information. When applied to both
synthetic and real datasets, it consistently maintains high-quality
assembly contiguity and haplotyping accuracy, outperforming other
competing tools. Furthermore, this approach allows us to assemble
the uniformly heterozygous HG002 cell line with high accuracy and
provides phased information for both haploid genomes. This
innovative approach extends beyond accurate and complete
genome assemblies, which has the potential to revolutionize
personalized medicine by enabling precise genomic analyses and
deepens our understanding of genetic disorders, population
genetics, and evolutionary processes.

2 Methods

The AsmMix pipeline is designed to utilize TGS and SLR reads
as input and is compatible with mainstream long-read and co-
barcoded-read assemblers. The main steps are depicted in Figure 1.
It initiates by executing SLR assemblers on the co-barcoded reads,
thereby producing a collection of haplotype-resolved assemblies. At
the same time, it concurrently performs the haplotype-collapsed
TGS assembly by Flye (Kolmogorov et al., 2019), NECAT (Chen
et al., 2021), or other de novo TGS assemblers. If the trio information
is available, HAST (Xu et al., 2021) can be utilized to obtain two
complete haplotypes. Alternatively, SLR assemblers like
stLFRdenovo (https://github.com/BGI-biotools/stLFRdenovo) and
Supernova (Weisenfeld et al., 2017) can generate two pseudohaps for
subsequent mixing. The next step involves the mixing of these SLR
and TGS assemblies. This step is to rectify short-range errors present
in the TGS assembly by leveraging the information obtained from
the SLR assembly. First, AsmMix compares one of the haplotype-
resolved SLR assemblies against the TGS assembly to obtain a list of
alignment blocks by individually mapping the stLFR assembly
against the TGS assembly. Indeed, we use Minimap2 (Li, 2018)
to align each assembly pair and run QUAST (Gurevich et al., 2013)
to generate, score, and select the optimal set of alignment blocks.
Subsequently, the pipeline proceeds to perform a thorough
screening of the generated set to identify and eliminate potential
inconsistencies. This screening involves conducting base-level
pairwise alignments using Minimap2 for each alignment block.
During this process, the pipeline examines the substitutions and
insertion-deletion (Indels) events between the two sequences being
compared. A specified threshold is employed (default: 50 bp) to
determine errors in the TGS assembly. Any substitution or Indel
event with a length below this threshold is categorized as an error
and subsequently replaced with the corresponding sequence from
the SLR assemblies. Conversely, substitutions/Indels that exceed the
threshold are disregarded and not subjected to correction. This
strategic approach effectively targets and corrects the majority of
short-scale errors present in the TGS assembly. By replacing
erroneous regions with their corresponding sequences from the
SLR assemblies, the pipeline ensures enhanced accuracy and

integrity of the final assembly. To retain both haplotypes, each
haplotype from the SLR assembly is independently mixed with the
TGS assembly. This step is essential to preserve the phased
information and enable further downstream analyses that rely on
haplotype-resolved genomic sequences. The AsmMix pipeline is
implemented in Python and is freely available at https://github.com/
BGI-tianjin-dev/AsmMix. In the subsequent sections, we provide a
detailed description of two core modules, screening inconsistent
alignment blocks and replacing error-prone sequences.

2.1 Screening inconsistent alignment blocks

The screening module starts with the assembly alignment, in
which the TGS assembly is set as the target while the SLR assemblies
serve as the query (Figure 2). We use Minimap2 to perform this
alignment, and generate a set of alignment blocks for each SLR
scaffold. These blocks are then sorted based on the alignment quality
on the SLR assembly and denoted by bi, i � 1, . . . , n. In order to
assess the quality of a pair of alignment blocks bi, bj, we define a
penalty function p(bi, bj) as follows: if the aligned regions of the
blocks on the TGS contigs do not overlap, then the penalty is defined
as −|l1 − l2|, in which l1 and l2 represent the gap lengths between the
aligned regions on the SLR scaffolds and TGS contigs, respectively.
On the other hand, if the aligned regions on the TGS contigs overlap,
then the penalty is −(l1 + l2), in which l1 is gap length between the
aligned regions on the SLR scaffolds and l2 is the length of the
overlap on the TGS contigs. For a chain of alignment blocks
bk1, . . . , bkm{ }, k1 < . . . < km, the score is defined as:

s � ∑
m

i�1
len bki( ) + ∑

m−1

i�1
p bki, bki+1( )

in which len(bki) represents the length of the aligned region on the
SLR scaffolds. It is important to note that if a block is mapped to
distinct TGS contigs, or if their strands are different, or if the
length of their overlap on the TGS contigs exceeds a preset ratio
(80% of the length of the shorter aligned region by default), then
the penalty is set to −1,000,000,000. To select the chain that
maximizes the score s, we apply a dynamic programming
algorithm. We define si as the maximal score for chains
terminated at block bi, and then we determine si using the
following recursive relation:

si � len bi( ) + max(0, maxj�1,...,i−1(sj + p(bi, bj)))

Thus if si is the maximal score, then the optimal chain must be
terminated at bi and the whole chain can be recovered through a
trace-back process. During implementation, we conduct a two-
round iteration to ensure the integrity of the analysis,
considering both the positive and negative strands. This ensures
that we take into account alignment blocks on both strands of the
DNA sequence. Once the optimal chain of alignment blocks has
been established, we utilize stringent measures to ensure their
congruence with respect to the target sequences and strand
orientation. Alignment blocks that are found to be mapped to
disparate targets or divergent strands are flagged and passed on
to the subsequent sequence replacement module for further
examination and potential correction.
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2.2 Replacing error-prone sequences

Following the screening module, the AsmMix pipeline employs
a rigorous clustering approach to organize alignment blocks
according to their corresponding TGS contigs. Within each
TGS contig, the alignment blocks are sorted based on their
starting positions to ensure that the blocks are arranged in a
logical order. Subsequently, a comprehensive analysis is
conducted on each TGS contig, whereby all alignment blocks
undergo an examination to eliminate any instances of
overlapping between consecutive regions. This critical step is
executed to ensure that each region is unique and non-
redundant in accordance with the following rules: (a) if one
region encompasses the subsequent region, the latter is
discarded as it is redundant; (b) if two regions are found to
overlap, priority is assigned to the latter region, assimilating the
overlapping areas. Once the overlapping regions have been
resolved, the AsmMix pipeline proceeds to subject the selected
regions from each TGS contig, along with their corresponding
counterparts from the alignment blocks, to a pairwise alignment
using the Minimap2 algorithm. During this alignment, AsmMix
scrutinizes the cs tags within the PAF (Pairwise mApping Format)
files. These tags provide detailed information about the alignment,
such as insertions, deletions, and substitutions. In the final
replacement stage, the AsmMix pipeline disregards any N bases
present in the SLR assemblies. Additionally, a carefully chosen
length threshold (50 bp by default) is used to determine whether a
replacement should occur when an Indel signal is detected within
the cs tag. This threshold ensures that only significant insertions or
deletions are considered for replacement. Ultimately, the pipeline
concatenates the replaced sequences with the sequences
originating from regions not covered by alignment blocks,
culminating in a comprehensive and cohesive output that
combines the information from both the alignment blocks and
the original TGS contigs, providing a more accurate representation
of the targeted genomic regions.

2.3 Benchmarking datasets

To quantitatively assess the performance of the de novo
genome assembly achieved by AsmMix, we generated simulated
data based on the HG002 reference genome using PBSIM2 (Ono
et al., 2021) (Supplementary Table S1). We chose HG002 rather
than the single human reference genome (Shumate et al., 2020),
GRCh38 because the latter is a mosaic genome derived from
multiple individuals and lacks pedigree information. Instead,
HG002 derived from the Ashkenazi trio (HG003 as the father
and HG004 as the mother), is an NIST reference genome sourced
from Genome In A Bottle (GIAB) (Zook et al., 2016). The
availability of the parental genomes enables the evaluation of
haplotyping effects in assemblies. The reference (GCA_
021950905.1_HG002.pat.cur.20211005_genomic.fna) was
downloaded online, offering greater continuity and
completeness compared to GRCh38 (Jarvis et al., 2022). To
expedite the benchmarking process, we specifically extracted
Chromosome 19 (Chr19) and performed individual simulations
of error-free TGS reads, ONT reads, PacBio CLR and HiFi reads. In
addition, we also assessed the impact of read coverage, sequencing
error rate, and read length on the mixed assembly. The generative
model employed to assign quality scores and error profiles varied
based on the sequencing platforms employed (R95 chemistry for
ONT and P6C4 chemistry for PacBio; substitution: insertion:
deletion = 23:31:46 for ONT and 6:50: 54 for PacBio). Note
that there has been no SLR read simulator available. Hence, we
directly extracted stLFR co-barcoded reads that were mapped to
the Chr19 reference genome for assembling and benchmarking.

We also downloaded 24, 915, 207, 810 bp ONT PromethION
long reads, 65, 228, 232, 554 bp PacBio Sequel I long reads, and 74,
559, 455, 800 stLFR co-barcoded reads for a plant genome,
Macadamia jansenii (Murigneux et al., 2020). In this case, the
publicly available reference genome of Macadamia integrifolia v2
(Genbank accession: GCA_900631585.1) was obtained as a
reference for the QUAST benchmarking.

FIGURE 2
Filtering inconsistent blocks. In the figure above, each yellow rectangle indicates an alignment block, the number in each rectangle indicates the
length of the alignment block, and the number on the arrow indicates the penalty score. We seek a path that maximizes the sumof lengths and penalties it
passes through. In the figure below, the shallow yellow rectangles indicate discarded alignment blocks, yellow rectangles, and black lines indicated
selected blocks and paths.

Frontiers in Genetics frontiersin.org05

Liu et al. 10.3389/fgene.2024.1421565

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1421565


2.4 Validation methods

To assess the genome assemblies for the simulated datasets, we
extracted the Chr19’s reference genome from the HG002 reference.
QUAST v5.0.2 was utilized to report the assembly statistics,
encompassing various metrics such as total length, contig NG50,
contig NGA50, genome fraction, misassemblies, and local
misassemblies. The default parameters were employed, except for
the -m parameter set to 1,000. The genome’s completeness and
quality was also evaluated by BUSCO v4 with the marker set
primates_odb10 (Manni et al., 2021).

In addition, Merqury (Rhie et al., 2020) was applied for
benchmarking the precision and recall of haplotyping. This
assessment was carried out by utilizing reliable haplotype-specific
k-mers derived from the sequencing reads of the trio. The contiguity
wasmeasured by themaximum length and N50 length of contigs. To
determine the single-base assembly quality value (QV) and
completeness, haplotype-specific k-mers (hapmers) were
generated by intersecting parental-specific k-mer sets with the
offspring’s read set. The QV was calculated based on the survival
rate of k-mers, considering only those found exclusively in each
haplotype-resolved assembly as assembly errors. Completeness was
determined by comparing the fraction of recovered solid k-mers in
the assembly to the offspring’s sequencing reads. In addition, the
haplotyping precision was given by

Haplotyping Precision � correctly found hapmers in an assembly

totally found hapmers in an assembly

The haplotyping recall rate was determined by

Haplotyping Recall � correctly found hapmers in an assembly

total hapmers for the offspring

The haplotyping F1-score was then calculated using the formula

F1 − score � 2 · Haplotyping Precision · Haplotyping Recall

Haplotyping Precision +Haplotyping Recall

Phasing blocks, which consist of hapmers from the same
haplotype, were identified by the presence of more than two
hapmers in the assembly. Conversely, the switch error rate was
determined by the observation of hapmers from the other haplotype
within a window of the phasing blocks (20 Kbp by default).

2.5 Other tools

We used default parameters for TGS long-read assemblers
including Flye and Canu, and SLR co-barcoded assemblers
including stLFRdenovo (Supplementary Table S6). To evaluate
the performance of hybrid assemblies, we also utilized WENGAN
(Di Genova et al., 2021), a state-of-the-art hybrid assembler, in both
its fastest WENGAN-M (MINIA3) and most contiguous
WENGAN-D (DISCOVARdenovo) modes. Furthermore, we
employed TrioCanu (Koren et al., 2018) and HAST to
benchmark the accuracy and efficiency of haplotyping using the
same dataset. It is important to note that TrioCanu and HAST
employed the same trio-binning strategy to identify paternal-specific

and maternal-specific reads for generating haplotype-resolved
genome assemblies. However, they exclusively relied on TGS long
reads or SLR co-barcoded reads.

3 Results

3.1 Hybrid assemblies of synthetic datasets

AsmMix accepts all types of main TGS and SLR data types. To
assess the robustness, we simulated error-free (EF), ONT, PacBio
CLR, and HiFi reads, each with different read length distribution
and sequencing error patterns, and individually assembled them
with stLFR reads. Overall, all four hybrid assemblies achieved a
minimum genome fraction of 95%, effectively covering the majority
of the reference genome (Figure 3). In contrast, the stLFRdenovo
assembly, which utilized the same stLFR reads exclusively, only
recovered 89.340% of the reference regions. In terms of contiguity,
the PacBio HiFi hybrid assembly exhibited the longest contig
NG50 values, followed by the EF, ONT, and CLR assemblies.
The EF hybrid assembly outperformed the others in terms of
contig NGA50 values when aligned against the reference. This
may be attributed to the relatively high single-base sequencing
accuracy of EF and PacBio HiFi reads, resulting in simpler
assembly graphs. Despite having the highest sequencing error
rate, ONT outperformed PacBio CLR in terms of contig
NG50 and NGA50 values, which can be attributed to its
relatively longer read length advantage. This longer read length
aids in resolving repetitive regions, thereby improving assembly
quality. The variations in sequencing accuracy observed across
different sequencing platforms were consistent with the
occurrence of long-range misassembles, as well as short-range
mismatches and Indels. It is worth noting that we normalized
these values by their contig NG50 to mitigate the impact of
assembled sequence length. Among the evaluated hybrid
assemblies, EF and PacBio HiFi hybrid assemblies exhibited the
fewest misassembles, mismatches, and Indels due to the higher
single-base accuracy of TGS reads. These observations underscore
the robustness of AsmMix, which is unaffected by TGS read length
and accuracy, and consistently achieves high-quality assemblies
across different sequencing platforms.

3.2 Comparison with other hybrid
assemblers

In our comparison with other state-of-the-art hybrid assemblers
using the same ONT and stLFR synthetic datasets, AsmMix
demonstrated remarkable performance in terms of total assembly
length and coverage of the HG002 Chr19 reference genome
(Figure 4). Notably, AsmMix achieved a 2.13-fold and 2.75-fold
increase in contig NG50 value compared to WENGAN-
DiscovarDenovo (WENGAN-D) and WENGAN-Minia3
(WENGAN-M), respectively, while its NGA50 value was 2.73-
fold and 3.68-fold higher, respectively. Furthermore, our hybrid
algorithm significantly reduced long-range misassembles by more
than two and three orders of magnitude compared to WENGAN-D
and WENGAN-M, respectively. Additionally, AsmMix exhibited
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the fewest short-range assembly errors, including mismatches and
Indels, among the three assemblers.

Moreover, a comprehensive comparison of computational
resources would provide users a clear understanding of the
feasibility of implementing AsmMix in their own work (Garg,
2021). Thus, we compared the computational consumptions of
different hybrid assemblers. AsmMix outperformed the other
assemblers in terms of computational resources, running
considerably faster than WENGAN-D and WENGAN-M due to
its straightforward yet highly efficient hybrid algorithm design. Its
peak memory usage was similar to that of WENGAN-M, but much
lower than that of WENGAN-D.

3.3 Comparison with other haplotype-
resolved assemblers

We evaluated the performance of four state-of-the-art
haplotype-resolved assemblers using the same datasets and
utilized Merqury to assess the haplotyping effect. AsmMix,
HAST, and TrioCanu employed a binning strategy to separate
reads and generate haplotype-resolved datasets. However, it is
important to note that HAST was specifically designed for SLR
reads, while TrioCanu exclusively utilized TGS long reads. We also
included stLFRdenovo, which does not rely on trio-binning and
instead generates two pseudo-haplotypes. AsmMix surpasses the
stLFR co-barcoded assembly in terms of contig N50/NG50 length
(Table 1). This is because the co-barcoded assemblers face
limitations due to the low coverage of read pairs from the same
long fragment. Consequently, they struggle to fully reconstruct the
complete long fragment using mainstream co-barcoded sequencing

platforms, resulting in fragmented assemblies with many N’s left in
the scaffolds. To address this issue, AsmMix integrates TGS long
reads into the assembly process. It utilizes the long-read assembly as
the backbone sequence and connects the haplotype-resolved
sequences assembled by stLFR co-barcoded reads in the same
genomic region. By doing so, the contig N50/NG50 length in the
AsmMix assembly benefits from the inclusion of the TGS assembly,
which is significantly longer compared to stLFRdenovo and HAST
assemblies. In specific scenarios, AsmMix even outperforms the
long-read assembly generated by TrioCanu, as TrioCanu struggles
with the inefficiency of trio binning on long reads due to high
sequencing error rates. AsmMix overcomes this limitation by
utilizing accurate co-barcoded reads for trio binning, effectively
replacing heterozygous regions in the long-read assembly and
ensuring the generation of longer contigs. On the other hand,
stLFRdenovo and HAST, which were based on SLR reads,
demonstrated higher k-mer-based QV due to the increased
sequencing accuracy of SLR reads. The completeness values of all
assemblers were above 90%, except for TrioCanu, as the high
sequencing error rates hindered the accurate identification
of hapmers.

Haplotyping errors arise from the presence of unexpected
hapmers in the assembly. The haplotype precision of AsmMix
for paternal-specific and maternal-specific assemblies was 72.65%
and 73.20%, respectively. In contrast, stLFRdenovo pseudo-
haplotypes exhibited haplotype precisions of only 53.36% and
46.79%, while TrioCanu haplotypes had haplotype precisions of
64.99% and 51.79%. HAST accurately detected expected hapmers,
indicating that the inclusion of long-range information from SLR
reads contributes to improved global haplotyping precision.
AsmMix demonstrates comparable precision and recall in

FIGURE 3
Improved assemblies using simulated data for different TGS sequencing platforms. The metrics were measured by QUAST.
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haplotyping when compared to HAST results. This similarity can be
attributed to the fact that both tools employ trio-binning stLFR data
for haplotyping. By comparing the number of expected hapmers
present in the child’s diploid assembly, we observed that each
haplotype generated by different assemblers recovered the same
level of parental heterozygous sites. The major strength of AsmMix
lies in its ability to maintain the excellent contiguity of TGS assembly
while incorporating the robust haplotyping performance of co-
barcoded reads.

In the stacked haplotyping assembly spectra of k-mer multiplicity,
the main peak (green) represents k-mers that are shared by both
haplotypes, and its height corresponds to the sequencing depth
(Figure 5). The smaller blue and red peaks indicate k-mers that
occur in only one of the haplotype-resolved assemblies, and their
x-values should be half of the main peak or even integral multiples.
AsmMix, stLFRdenovo, and HAST haplotype-resolved assemblies
exhibited the expected patterns in the spectra. However, the high
sequencing error rate of TGS long reads affected the genome
reconstruction using TrioCanu, resulting in overlapping peaks.

By incorporating long-range information from SLR co-barcoded
read data, the pipeline experienced improved contiguity and

precision in the phase blocks of the assemblies. One of the
challenges in haplotype assembly is the correct grouping of
haplotype-specific variants. Failure to accurately group these
variants can result in switch errors, where haplotypes are
mistakenly swapped within a contig. Switch errors can lead to
the splitting of contigs and a reduction in the size of haplotype
blocks. AsmMix achieved phase block lengths with N50 values of up
to 234 Kbp and 310 Kbp for paternal and maternal haplotypes,
respectively, with the longest block reaching 2.42 Mbp (Table 2).
SLR-based stLFRdenovo and HAST demonstrated lower switch
error rates, while TGS-based TrioCanu had a switch error rate of
almost 20%. AsmMix effectively mitigated these error rates and
reduced them to 15% by leveraging the advantages of both data
types. The observations regarding contiguity and precision in the
phase blocks of the assemblies were supported by the hapmer blob
plots (Figure 5). In AsmMix and HAST assemblies, the hapmer blob
plots showed near-perfect separation of hapmers across all contig or
scaffold lengths. This indicates that the haplotype-specific k-mers
were accurately assigned to their respective haplotypes, resulting in
precise and contiguous phase blocks. The clear separation of
hapmers in the plots suggests that the assembled haplotypes were

FIGURE 4
Comparison with different hybrid assembles. The metrics were measured by QUAST. We benchmarked their performance on a Linux system with
Intel Core Processor (Broadwell, IBRS), 12 CPU cores and 24 threads. It is worth noting that AsmMix relies on pre-assembled long-read and co-barcoded
assemblies, which entail additional computational consumptions.
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distinct and accurately captured. Conversely, numerous contigs or
scaffolds in each pseudo-haplotype assembled by stLFRdenovo and
haplotypes assembled by TrioCanu shared both paternal and
maternal-specific k-mers.

In the spectra copy-number plots (Figure 5), different colors
represent different copy numbers of k-mers in the genome. The
small red peak represents the 1-copy k-mers. These k-mers are
specific to either the paternal or maternal genome and do not have
any duplicates within a haplotype. The presence of 1-copy k-mers
indicates sequences that are exclusive to a specific haplotype, allowing
for unambiguous haplotype assignment. On the other hand, the larger
blue peak corresponds to the 2-copy k-mers. These are sequences that
are shared between both haplotypes or may exist as duplications within
a haplotype. The higher copy number peaks (green, purple, orange)
represent repetitive regions in the genome. These regions have multiple
copies of the same sequence, which can contribute to the higher peak
heights. The gray k-mers indicate sequences that are present in the
sequencing reads but could not be assembled into the genome. These
may be due to sequencing errors or missing genomic regions that were
not captured in the assembly. The blue and red k-mers in the spectra
indicate assembly errors in the paternal and maternal haplotypes,
respectively. These k-mers represent sequences that were incorrectly
assembled ormergedwith other sequences during the assembly process.
The relatively small bar at the zero multiplicity in the k-mer analysis for
SLR-based stLFRdenovo and HAST, assemblies indicates a high single-
base-level QV., this means that these assemblies have a low error rate at
the individual base level, resulting in a smaller number of k-mers that
are found in the assembly but absent from the sequencing reads.

However, the usage of error-prone long reads, such as in TGS,
sequencing, can lead to higher error rates, resulting in the higher
blue and red peaks at the zero multiplicity. These peaks represent
k-mers that were erroneously duplicated or deleted during the assembly
process due to sequencing errors.

3.4 Effect of TGS sequencing coverage, read
length, and accuracy

To evaluate the effect of TGS sequencing coverage, read length,
and accuracy on the AsmMix hybrid assembly, we simulated the
ONT datasets but varied their coverage depth, read length
distribution, and sequencing error patterns (Supplementary
Tables S2, S3). Specifically, we examined the performance of
three datasets with long-read features at 15 ×, 50 ×, and 75 ×
coverage depths in reconstructing the Chr19 genome, achieving
genome fraction ratios exceeding 96% (Figure 6). It is
counterintuitive that the 15 × dataset generated relatively longer
contig NG50 and NGA50 values compared to the higher coverage
depths. This unexpected outcome suggests that deeper sequencing
may introduce increased complexity into the assembly graph.
However, when assessing assembly accuracy, the 75 × dataset
exhibited the lowest numbers of long-range misassembles, short-
range local misassembles, single-base mismatches, and Indels
among the three datasets. This improvement can be attributed to
the substantial enhancement in single-base accuracy resulting from
the overlapping of higher sequencing data.

TABLE 1 Haplotype-resolved assembly quality statistics.

Assembly Contiguity Quality Haplotyping

Contig
max (bp)

Contig
N50 (bp)

QV
(Phred)

Completeness
(%)

Precision
(%)

Recall
(%)

F1-
score (%)

AsmMix

Paternal 2,762,169 938,888 34.09 93.18 72.65 49.14 58.63

Maternal 2,491,016 614,713 34.88 93.47 73.20 48.47 58.32

Combined 2,762,169 739,405 34.47 97.89 94.27 51.79 66.85

stLFRdenovo

Pseudohap1 376,611 51,558 57.83 93.77 53.36 36.76 43.53

Pseudohap2 376,608 51,543 57.99 93.79 46.79 37.04 41.35

Combined 376,611 51,547 57.91 95.25 74.06 49.81 59.56

HAST

Paternal 349,597 36,239 54.16 92.99 78.17 46.52 58.33

Maternal 278,083 33,038 53.54 92.18 72.94 46.05 56.46

Combined 349,597 34,464 53.90 97.06 98.26 47.11 63.69

TrioCanu

Paternal 498,940 122,721 26.71 62.48 64.99 34.89 45.41

Maternal 1,157,749 227,689 27.96 77.19 51.79 37.75 43.67

Combined 1,157,749 162,254 27.35 95.09 82.35 44.01 57.36
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Furthermore, we observed that the dataset featuring longer read
lengths (mean length of 50 Kbp) outperformed assemblies with
shorter read lengths (10 Kbp and 30 Kbp) across all evaluation
metrics (Figure 7). This finding underscores a strong positive
association between read length and assembly completeness,
contiguity, and accuracy. Notably, the quality of sequencing
accuracy emerged as a critical factor impacting assembly

performance. The genome fraction, duplication ratio, contig
NG50, contig NGA50, misassembles, local misassembles,
mismatches, and Indels all demonstrated dependency on
sequencing accuracy. It was evident that higher sequencing error
rates induced false overlapping relationships between long reads,
ultimately leading to incomplete, fragmented, and erroneous
assembled sequences (Figure 8). In addition, we calculated the

FIGURE 5
Evaluation of haplotyping with characteristic k-mers. The inherited hapmer plots (left) measured the hapmer distribution and overlying with the
offspring’s reads. The hapmer blob plots (middle) were used to assess the overall phasing across each assembly. Each dot (circle) represented a sequence
(contig or scaffold) with its size relative to the sequence length. The x and y-axis were the number of detected hapmers. The spectra copy-number plots
(right) provided the copy-number analysis. These figures were rendered by Merqury.
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computational usage for different hybrid assemblers using these
datasets (Supplementary Table S4). The results displayed that
AsmMix still required the least CPU time among three
assemblers across datasets with different parameters. In
summary, our experiments demonstrate the robustness of our
algorithm in accommodating diverse sequencing coverage, read
length, and accuracy of long reads. Moreover, we provide
valuable insights into the minimum requirements for achieving
efficient hybrid assembly. These findings underscore the
importance of sequencing parameters.

3.5 Application to a human whole genome

We applied the AsmMix pipeline to a dataset comprising 84 ×
stLFR SLR reads and 50 × ONT reads of HG002 sourced from the

GIAB project (Zook et al., 2016), aiming to showcase the successful
application of hybrid assembly for a human whole genome. The ONT
reads were pre-assembled by NECAT and subsequently mixed with
stLFRdenovo-assembled stLFR sequences using AsmMix. To assess the
quality of the assemblies, we conducted evaluations using QUAST and
the primate gene marker set primates_odb10 by BUSCO v4. The results
were listed in Table 3. It is evident that most metrics did not exhibit
substantial changes after mixing, indicating the resilience of the
AsmMix pipeline. However, it is noteworthy that the number of
Indels decreased from 0.39 to 0.31 per 1 Kbp post-mixing,
suggesting a reduction in Indel errors resulting from themixing process.

To further elucidate the accuracy of assembly, we performed
variant calling and compared the results against a well-established
benchmark: the GIAB benchmark encompassing small variant
(single nucleotide polymorphism (SNP) and Indel) v3.3.2 and SV
v0.6. The accuracy of the variant calling reflected the assembly

TABLE 2 Statistics for phase blocks and switch error rates.

Phasing blocks No. of blocks Genome covered (bp) Block size max Block size N50 Switch (%)

AsmMix

Paternal 438 42,930,019 1,375,534 233,984 17.27

Maternal 357 46,369,334 2,415,885 309,740 12.80

stLFRdenovo

Pseudohap1 616 46,953,031 1,430,655 340,227 6.34

Pseudohap2 594 46,112,517 1,296,386 312,444 6.98

HAST

Paternal 777 43,063,437 1,411,352 310,566 7.27

Maternal 894 39,913,896 1,880,279 495,639 8.57

TrioCanu

Paternal 585 21,752,871 276,945 79,735 19.45

Maternal 561 30,967,055 535,430 121,156 22.74

FIGURE 6
Effect of TGS sequencing coverage on the hybrid assembly. The metrics were measured by QUAST.
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accuracy. The variant calling from assemblies was performed by
Minimap2 and PAFtools (Li, 2021). For haplotype-resolved
assemblies, variations were called separately and combined using
VCFtools (Danecek et al., 2011). Evaluations against benchmarks
were performed by Rtg-tools (Cleary et al., 2015) for small variants
and Truvari (English et al., 2022) for large SVs. Regarding SVs, the

comparison between calls and benchmarks was conducted using
Truvari with the parameter “-r 1,000 -passonly” and false-positive
Indels were counted by a customized Perl script, in which variants
with reference sequence longer than alternative sequence were
considered as deletions and otherwise insertions. Variants with
“N” in the alternative sequence were excluded.

FIGURE 7
Effect of TGS read length on the hybrid assembly. The metrics were measured by QUAST.

FIGURE 8
Effect of TGS sequencing accuracy on the hybrid assembly. The metrics were measured by QUAST.
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We conducted a thorough evaluation of haplotyping accuracy in
terms of the short/long switch error rate and phasing block N50. To
assess the accuracy, we selected common heterogeneous SNPs and
compared their phases. The phased SNP ratio, which represents the
ratio of common heterogeneous SNPs against heterogeneous SNPs in
the benchmark, was used as ameasure of accuracy.We defined the short
switch error as the error of flipping the phase of a single variant, while the
long switch error referred to the error of flipping the phase of all variants
after a particular variant. To minimize the long switch error, we
employed a dynamic programming scheme with a penalty of 5 times
that of a switch error. The counting of short/long switch errors was
performed by minimizing the penalty function 5 · nlong + nshort, where
nshort represents the number of short switch errors and nlong represents
the number of long switch errors. Phasing blocks were defined as regions
delineated by long switch errors, and the phasing block N50 was
calculated as the N50 of their lengths. The comprehensive results of
these evaluations can be found in Table 4. Regarding the evaluation of
SNPs, the mixing procedure resulted in a 3.8/3.8-fold decrease in false
negatives and a 3.4/1.4-fold decrease in false positives, with/without
considering haplotyping differences. In terms of Indels, mixing led to a
3.0/3.4-fold decrease in false negatives and a 3.6/4.8-fold decrease in false
positives, again with/without considering haplotyping differences.When
evaluating large SVs, the false negative rate for insertions/deletions
remained relatively unchanged, while the false positive rate exhibited
a 1.8/1.6-fold increase. Our analysis demonstrated that the mixing
procedure significantly improved the accuracy of short variants,
effectively correcting a large proportion of small-scale errors.
However, we also observed a decline in the performance of long
variant calling, which can be attributed in part to the limited
resolving power of short reads in repetitive regions. Despite this, the
overall metrics for haplotyping displayed a slight improvement
compared to stLFR assemblies.

In terms of computational efficiency, AsmMix required
7,313 thread • hours with a peak memory of 352 GB when run
on a high-performance computing node with 32 threads (Intel Core
Processor - Broadwell, IBRS). However, it is worth mentioning that
the majority of the time and memory were spent on the pre-
assembly steps of NECAT and stLFRdenovo.

3.6 Application to a plant genome

We also extended the application of AsmMix to a plant genome to
demonstrate its scalability and potential for improving assembly quality.
We downloaded 32 × ONT PromethION long reads, 84 × PacBio Sequel
I long reads, and 96 × stLFR co-barcoded reads for the macadamia
genome with an estimated genome size of 780 Mb (Murigneux et al.,
2020). The two long-read datasets were individually pre-assembled using
Canu, while the stLFR dataset was pre-assembled using Supernova, as
described in the original paper. AsmMix was then employed to integrate
the stLFR pseudohaplotype assemblies with the haplotype-collapsed
assemblies generated from the ONT and PacBio data, respectively.
Due to the unavailability of a trio-binning sequencing dataset and
parental reference genomes, we were unable to perform an accurate
haplotyping assessment in this case.

As a result, we benchmarked the pre-assembled long-read and co-
barcoded genomes, as well as the AsmMix results, using QUAST and a
publicly available reference genome of M. integrifolia v2 (Genbank
accession: GCA_900631585.1) (Nock et al., 2020). The results were
listed in Supplementary Table S5, which indicated the assembly
enhancement achieved by AsmMix. Specifically, the integration
approach successfully combined the long contiguity provided by the
long reads with the high single-base accuracy of the co-barcoded data,
resulting in improved NGA50 values. More importantly, AsmMix
enabled the reconstruction of two pseudohaplotypes using the long-
range haplotyping information from the stLFR reads. In contrast,
mainstream long-read assembles such as Canu could only generate a
haplotype-collapsed assembly without additional trio-binning
information. Compared to the AsmMix and Canu assemblies using
ONT long reads, we observed that assemblies utilizing a higher
sequencing depth of PacBio data exhibited superior local assembly
accuracy, with lower numbers of local misassemblies, mismatches, and
indels. The longer total genome length observed in these assembliesmay
be due to the presence of duplicated allelic contigs. Note that the
reference genome was obtained from a closely related species,
Macadamia integrifolia, instead of Macadamia jansenii. It might
have contributed to the lower genome fraction and higher
misassemblies observed in all the assemblies, including the AsmMix

TABLE 3Quality assessment of de novo assemblies of HG002. StLFRdenovo hap1/2 is the haplotype-resolved assembly built from the stLFR dataset, NECAT
is the assembly built by long reads, and AsmMix hap1/2 is the haplotype-resolved assembly after assembly mixing.

stLFRdenovo hap1 stLFRdenovo hap1 NECAT AsmMix hap1 AsmMix hap2

Total length (bp) 2,899,262,788 2,899,974,893 2,880,654,213 2,880,459,545 2,880,632,458

Scaffold NG50 (bp) 21,283,539 21,282,592 - - -

Contig NG50 (bp) 85,008 84,928 34,759,314 34,757,611 34,759,622

Genome fraction (%) 90.688 90.636 97.815 97.814 97.810

Duplication ratio 1.058 1.059 1.009 1.008 1.009

Scaffold NGA50 (bp) 1,826,678 1,826,238 - - -

Contig NGA50 (bp) 82,847 83,028 15,981,976 15,594,006 15,594,501

# Misassemblies 4,519 4,493 2,536 2,548 2,539

Mismatch per 1Kbp 1.0174 1.0128 1.2765 1.2888 1.2867

Indel per 1Kbp 0.2504 0.2494 0.3932 0.3116 0.3114

BUSCO completeness (%) 86.3 86.1 89.4 89.9 89.9
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assemblies. Despite this limitation, the AsmMix approach still
demonstrated improvements in assembly quality, particularly in
terms of haplotyping and contiguity, as compared to the individual
long-read and co-barcoded assemblies.

4 Discussion

Leveraging a combination of data from diverse technologies has
become a prevalent approach in genome assembly. However, the
question of determining the optimal strategy for effectively
combining such data remains an open challenge. In this paper,
we put forth a pioneering assembly pipeline that serves as a solution
to this predicament, enabling the achievement of three pivotal goals:
contiguity, single-base accuracy, and haplotyping, making full use of
TGS and SLR reads. Importantly, our pipeline excels in delivering
assembly accuracy that is sufficiently robust for enabling accurate
SNP, Indel, and SV calling, thereby exhibiting competitive

performance. In addition to its inherent modularity, the AsmMix
pipeline offers compatibility with various assemblers for TGS and
co-barcoded reads, providing users with the flexibility to customize
and test their own pipelines. This feature enhances the versatility of
the pipeline and empowers researchers to tailor the assembly process
to their specific requirements.

Moving forward, the development of the AsmMix pipeline will
focus on the following directions. Firstly, we will leverage co-
barcoded reads to generate longer contigs in SLR assemblies and
rectify short-range errors. However, it is important to note that this
information can also be utilized to further scaffold TGS assemblies.
Many existing scaffolding methods rely on read mapping to TGS
assemblies, which often demands significant computational
resources. To address this challenge, we will devise a novel
scaffolding approach that leverages co-barcoded assemblies. By
doing so, we aim to streamline the scaffolding process and
reduce the computational burden associated with mapping reads
to TGS assemblies. Secondly, our current implementation utilizes

TABLE 4 Evaluation of assembly by variant calling. The values before the slash are generated by default parameters while values after are with “-squash-
ploidy”, which allows matches that ignore the haplotyping difference.

Variation type Variation subtype Metric stLFRdenovo NECAT AsmMix

SNV SNP TP 2,330,486/2,523,914 1,161,996/2,067,723 2,536,637/2,779,428

FN 698,572/505,144 1,867,062/961,337 492,421/249,635

FP 253,797/60,369 975,393/69,669 291,137/48,351

Precision 0.9018/0.9766 0.5437/0.9674 0.8970/0.9829

Sensitivity 0.7694/0.8332 0.4498/0.6826 0.8374/0.9176

Indel TP 334,312/377,364 162,087/284,873 358,833/408,144

FN 125,053/82,001 297,278/174,492 100,541/51,200

FP 72,872/29,827 355,587/232,840 97,589/48,279

Precision 0.8210/0.9268 0.3131/0.5502 0.7862/0.9842

Sensitivity 0.7278/0.8215 0.3529/0.6201 0.7811/0.8885

SV Insertion TP 1811 3,752 3,906

FN 3,631 1779 1,659

FP 539 343 627

Precision 0.7707 0.9162 0.8616

Sensitivity 0.3329 0.6784 0.7018

Deletion TP 2,750 2,420 2,539

FN 1,449 1,690 1,537

FP 5,983 763 1,223

Precision 0.3148 0.7603 0.6749

Sensitivity 0.6548 0.5888 0.6229

Haplotyping Phased SNP Ratio 0.6881 - 0.7224

Short Switch Ratio 0.0515 - 0.0502

Long Switch Ratio 0.0008 - 0.0007

Phasing Block N50 4,802,248 - 5,015,779
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only co-barcoded reads for phasing. In future investigations, we will
explore the integration of TGS reads to enhance the performance of
haplotyping. By incorporating TGS reads into the phasing process,
we anticipate improvements in accuracy and efficiency, ultimately
leading to more robust haplotyping results. Third, integrating
additional types of sequencing data, such as Hi-C data, could
significantly improve assembly accuracy and contiguity. Hi-C
data provides information about the spatial organization of the
genome, allowing for the analysis of long-range haplotyping and
scaffolding at the chromosome level (Garg et al., 2021). Previous
algorithms such as hifiasm and DipAsm have showed that
combining Hi-C and long reads can provide chromosome-scale,
haplotype-resolved assembly of genomes (Cheng et al., 2021; Garg
et al., 2021). By incorporating Hi-C data into the pipeline, AsmMix
could leverage the long-range information and accurate short-read
sequencing data to improve the scaffolding and arrangement of
contigs, leading to more accurate and contiguous genome
assemblies. Fourth, another promising direction for future
enhancements of AsmMix is in the field of pangenomics. By
integrating chromosome-scale, haplotype-resolved genomes into
high-resolution pangenomes, AsmMix could allow for capturing
the full genetic diversity including complex structural variations and
long-range interactions within populations (Garg et al., 2022). Fifth,
future enhancements could focus on optimizing the computational
resources required for analyzing large and complex genomes and
handling high error rates in long-read sequencing data. An
improved parallel computing strategy and a more efficient long-
read aligner could deliver robust and reliable assembly results. These
planned advancements highlight our commitment to refining and
expanding the capabilities of the AsmMix pipeline. Through our
ongoing research and development, we aim to empower researchers
with a comprehensive and adaptable tool for genomic assembly,
scaffolding, and haplotyping analysis.
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