
Prognostic implications of
metabolism-related genes in
acute myeloid leukemia

Na Ren1,2,3†, Jianan Wang2†, Ruibing Li2, Chengliang Yin4,
Mianyang Li2 and Chengbin Wang1,2*
1Medical School of Chinese PLA, Beijing, China, 2Department of Laboratory Medicine, The First Medical
Center of Chinese PLA General Hospital, Beijing, China, 3Department of Laboratory Medical Center,
General Hospital of Northern Theater Command, Shenyang, China, 4Medical Innovation Research
Division, Chinese PLA General Hospital, Beijing, China

Introduction: Acute myeloid leukemia(AML) is a diverse malignancy with a
prognosis that varies, being especially unfavorable in older patients and those
with high-risk characteristics. Metabolic reprogramming has become a
significant factor in AML development , presenting new opportunities for
prognostic assessment and therapeutic intervention.

Methods: Metabolism-related differentially expressed genes (mDEGs) were
identified by integrating KEGG metabolic gene lists with AML gene expression
data from GSE63270. Using TCGA data, we performed consensus clustering and
survival analysis to investigate the prognostic significance of mDEGs. A metabolic
risk model was constructed using LASSO Cox reg ression and enhanced by a
nomogram incorporated clinical characteristics. The model was validated
through receiver operating characteristic (ROC) curves and survival statistics.
Gene network analysis was conducted to identify critical prognostic factors. The
tumor immune microenvironment was evaluated using CIBERSORT and
ESTIMATE algorithms, followed by correlation analysis between immune
checkpoint gene expression and risk scores. Drug sensitivity predictions and
in vitro assays were performed to explore the effects of mDEGs on cell
proliferation and chemoresistance.

Results: An 11-gene metabolic prognostic model was established and validated.
High-risk patients had worse overall survival in both training and validation
cohorts (p < 0.05). The risk score was an independent prognostic factor.
High-risk patients showed increased immune cell infiltration and potential
response to checkpoint inhibitors but decreased drug sensitivity. The model
correlated with sensitivity to drugs such as venetoclax. Carbonic anhydrase 13
(CA13) was identified as a key gene related to prognosis and doxorubicin
resistance. Knocking down CA13 reduced proliferation and increased cell
death with doxorubicin treatment.

Conclusion: A novel metabolic gene signature was developed to stratify risk and
predict prognosis in AML, serving as an independent prognostic factor. CA13 was
identified as a potential therapeutic target. This study provides new insights into
the prognostic and therapeutic implications of metabolic genes in AML.
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1 Introduction

Acute myeloid leukemia (AML) is a heterogeneous
malignancy of myeloid precursors characterized by
uncontrolled proliferation and differentiation impediments of
hematopoietic cells, resulting in impaired hematopoiesis and
bone marrow failure (Serroukh et al., 2023; Papaemmanuil
et al., 2016). As the most common type of acute leukemia in
adults, the estimated 5-year overall survival (OS) of AML is about
30% varying significantly across different age groups,
approaching 50% in younger patients but less than 10% in
patients older than 60 years (Sasaki et al., 2021). In recent
years,significant improvements in therapeutic efficacy and
outcomes of AML patients have been achieved due to
advances in diagnostic and prognostic stratification,
improvements in supportive treatment, and resolution of
donor sources for allogeneic hematopoietic stem cell
transplantation (allo-HSCT) (Wang et al., 2015; Kanakry et al.,
2016; Wang et al., 2018; Xu et al., 2018). However, the prognosis
for some AML patients, especially the elderly and those with
adverse-risk features who are prone to drug resistance, remains
relatively poor (Short and Ravandi, 2016). Accumulating
evidence indicates that a comprehensive stratified evaluation
of prognosis is the basis for premise treatment or relapse
intervention for AML patients (Döhner et al., 2017). Risk
stratification based on cytogenetics and genomic signatures
has been widely used in clinical practice to identify various
risk groups. However, current stratification methods have
limitations in precisely predicting the outcome of all the AML
patients due to the diversity of genetic mutation and high
heterogeneity of AML. Therefore, there is an urgent need to
explore more risk features that further improve clinical outcome
and treatment guidance.

Metabolism reprogramming is an emerging hallmark of cancer
cells, playing an important role in the leukemogenesis and AML
prognosis. To meet the growing bioenergetic and biosynthetic
demands for survival and proliferation, AML cells abnormally
regulate fluxes of metabolites through a variety of metabolic
pathways, including lipid metabolism and carbohydrate
metabolism. Metabolic reprogramming is not only an important
manifestation of AML but also clinically relevant to risk
stratification and therapeutic targeting (Wojcicki et al., 2020).
Carbohydrate metabolism is significantly enhanced in AML cells
and the inhibition of glycolysis suppresses the proliferation of
leukemia cells and enhances the cytotoxicity of cytarabine (Chen
et al., 2014). The therapeutic use of targeted inhibitors showed
that prognostic outcomes, including event-free survival (EFS) and
OS, are improved in isocitrate dehydrogenase 1 (IDH1)-mutated
AML (Döhner et al., 2022; Montesinos et al., 2022). Additionally,
abnormity in the lipid metabolism has been found associated with
AML prognosis (Wang et al., 2013).

Recently, investigations on the metabolism-related genes
(MRG) have shown potential application in the therapeutic
targets and prognostic evaluation of AML. Risk models based
on metabolism-related genes of carbohydrate, lipid, amino acid
and mitochondrion have been proposed, depicting signatures that
contribute to better understanding of metabolism-related genes as
promising prognostic biomarkers and therapeutic targets for AML

(Tong and Zhou, 2023; Yang et al., 2022; Li et al., 2022; Zhou et al.,
2022; Zhai et al., 2023). Although these predictive models have
suggested the linkage between MRGs and AML prognosis, few
have been widely applied, and larger-scale cohorts or experimental
verification is still needed. In this study, we integrated
transcriptional and clinicopathological data AML cases in The
Cancer Genome Atlas (TCGA) database to construct a construct a
novel prognostic risk model, and to identify potential prognostic
biomarkers and chemotherapy targets for AML with in vitro
verification. Our aim is to provide novel insights into the
metabolism-related prognostic evaluation and therapeutic
targets for AML.

2 Data and methods

2.1 Data source

The gene expression profiles of GSE63270 were obtained from
the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.
gov/geo/), including samples from 62 AML patients and 42 healthy
individuls (Table 1) AML cases from the TCGA database were
selected, and their clinical and RNA sequencing data were obtained
from the Genomic Data Commons Data Portal (https://portal.gdc.
cancer.gov/). Raw counts data of TCGA cohort were converted to
counts per million (CPM) expression values using the CPM function
in edgeR, and standardized and log2-transformed (log2CPM) with
the voom function in the limma. Metabolism-related genes were
extracted from the KEGG database (https://www.genome.jp/kegg/
pathway.html).

TABLE 1 Baseline characteristics of AML patients in three independent
cohorts.

Characteristics TCGA GSE63270 TARGET

Case No. 151 104 240

Age, n (%)

<60 88 (58.3) 49 (47.1)

≥60 63 (41.7) 55 (52.8) -

Gender, n (%)

Male 83 (55.0) - 126

Female 68 (45.0) - 114

FAB, n (%)

M0 15 (10.0) - 30 (12.5)

M1 35 (23.2) - 23 (9.58)

M2 38 (25.2) 29 (12.08)

M3 15 (10.0) - 27 (11.25)

M4 29 (19.2) - 22 (9.17)

M5 15 (10.0) 19 (7.92)

M6 2 (1.2) 31 (12.9)

M7 1 (0.6) - 30 (12.5)

Unknown 1 (0.6) - 29 (12.08)

Alive 54 (35.8) 43 (41.3) 129 (53.75)

Dead 97 (64.2) 61 (58.7) 111 (46.25)
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2.2 Differential expression and
enrichment analysis

Differentially expressed genes (DEGs) between AML and
healthy individuals in GSE63270 were screened out, |log FC| >
1.5 and false discovery rate (FDR) < 0.05. Differential analysis was
performed using the R software version 4.1.0, utilizing the “ggplot2”
package (version 3.3.5) for visualization, and the VennDiagram
package (version 1.7.3) for generating the Venn diagrams. To
explore the biological functions and potential pathways of the
mDEGs, gene ontology (GO) Dolinski et al., 2000 (Ashburner
et al., 2000) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis (Kanehisa and Goto, 2000)
were performed using the cluster Profiler package in R. Functional
classifications with a false discovery rate (FDR) less than 0.05 were
considered significant.

2.3 Unsupervised consensus clustering
based on expression profiles

The expression data of the mDEGs were extracted from TCGA,
and unsupervised clustering of the mDEGs was performed using the
k-means algorithm in Consensus Cluster Plus to identify subtypes.
Survival analysis was performed to compare the prognostic
difference between the clusters.

2.4 Construction and validation of the
metabolic risk score

Univariate Cox regression was used to identify prognostic MRGs
(p < 0.05). A LASSO Cox model was built using the glmnet package
(version4.1–1) (Friedman et al., 2010), with the optimal penalty
parameter determined by 1000-fold cross-validation. The risk score
was calculated as the sum of the product of each gene’s expression
and its corresponding coefficient.

TCGA-LAML samples were randomly divided into training and
validation sets. The LASSOmodel was constructed in the training set
and validated in the validation set and the entire dataset. ROC
analysis was used to evaluate the model’s performance. Patients were
stratified into high- and low-risk groups based on the median risk
score Table 2. Survival analyses were conducted in the training,
validation, and entire sets, as well as an independent TARGET-
AML cohort.

2.5 Establishment of nomogram risk
prediction model

A prognostic nomogram was constructed using factors
identified through univariate Cox regression analysis. The
nomogram visualized the score for each variable on a point scale,
utilizing the “rms” R package. Predictive probabilities for 1-, 3- and
5-year clinical outcomes were evaluated using calibration curves.
Additionally, ROC curves were employed to assess the
model’s accuracy.

2.6 Survival analysis of risk genes and
functional analyses

The single risk gene survival analysis based on OS and the
median expression cutoff was performed using Kaplan-Meier (KM)
on GEPIA2 (http://gepia2.cancer-pku.cn/) within AML groups.
GSEA was performed to compare the enrichment of GO and
KEGG pathways between high- and low-risk groups using the
clusterProfiler package (p < 0.05). FRIEND analysis was
conducted using the GOSemSim package to evaluate functional
similarity among prognostic genes.

2.7 Immune infiltration and immune
checkpoint expression profiles

The abundance of 22 immune cell types in TCGA samples was
estimated using CIBERSORT (Chen et al., 2018). Differences in
immune infiltration between risk groups were compared using the
Wilcoxon test. Correlations between immune checkpoint gene
expression and risk scores were calculated using Pearson
correlation. ESTIMATE was used to quantify the immune score
for each sample (Yoshihara et al., 2013).

2.8 Drug sensitivity analysis

Based on the preceding analysis, The prophetic R package was used
to predict the half-maximal inhibitory concentration (IC50) values for
acutemyeloid leukemia (AML) patients stratified into high and low-risk
categories according to a metabolic gene risk score model, with the
median score as the cutoff. IC50 values for various drugs were calculated
for each risk group using the predictive algorithms. TheWilcoxon rank-
sum test was then applied to evaluate the differences in IC50 values
between these groups, facilitating the identification of drugs significantly
associated with the risk score.

2.9 Cell lines and drug resistance

K562, HL60, and THP1 cell lines were obtained from the PLA
Hematology Laboratory (Beijing, China), while K562/A and HL60/
A were sourced from the Tianjin Institute of Hematology (Tianjin,
China). The THP1/A line was developed in our lab. Doxorubicin
(ADR) was sourced from MCE (United States). Cell cultures were
maintained at 37°C with 5% CO2 in RPMI-1640 medium (Procell,
China), supplemented with 10% fetal bovine serum, 100 U/mL
penicillin, and 100 μg/mL streptomycin.

Chemoresistant lines (HL60/A, THP1/A, K562/A) were developed
by gradually increasing doxorubicin concentrations and selecting
resistant cells. For HL60/A, initial ADR concentrations ranged from
0.2–0.4 μg/mL, with a final concentration of 0.5 μg/mL. For K562/A,
initial concentrations were 0.6–0.8 μg/mL, with a final concentration of
1 μg/mL. For THP1/A, initial concentrations were 1.0–1.2 μg/ML, with
a final concentration of 1.5 μg/mL. One week before experiments, cells
were cultured in a doxorubicin-free medium to remove residual
drug effects.
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2.10 CA13 correlated with chemoresistance
and cell proliferation

Based on previous analyses, CA13 was selected for further
in vitro verification. CA13-targeted small interfering RNA
(siRNA) and a negative control siRNA (NC) were designed
and synthesized by GenePharma (Suzhou, China). A mixture
of three specific siRNA oligos targeting different sites was
designated as si-CA13. Transfection was performed using
Lipofectamine 3,000 (Invitrogen, Thermo Fisher,
United States) according to the manufacturer’s protocol.
Quantitative PCR (qPCR) was employed to confirm
CA13 expression levels. The primer and siRNA sequences are
provided in Supplemental Table 1.

To assess the impact of CA13 knockdown on cell
proliferation and doxorubicin (DOX) resistance, a CCK-8
assay was conducted to evaluate leukemia cell survival
following treatment with 10 μmol/L DOX. Growth curves were
utilized to compare survival rates between the si-NC and si-
CA13 groups.

2.11 Statistical analysis

GraphPad Prism 10 (GraphPad Software, United States) was
used for statistical analysis of laboratory data. Comparisons between
groups were performed with appropriate statistical tests based on the
distribution of the variables. Two-way ANOVA was used for
comparison of growth curves. A two-tailed p < 0.05 was
considered statistically significant.

The total study design is illustrated in Figure 1.

3 Results

3.1 Identification of metabolism-related
differentially expressed genes (mDEGs)
in AML

A total of 4,831 DEGs were identified between AML
and control group in GSE63270, including 2,236 upregulated
genes and 2,145 downregulated genes (Figures 2A, B).

TABLE 2 Distribution of patients in high and low groups according to clinical factors.

Charactor TCGA-AML Charactor TARGET-AML

Variables High-risk group Low-risk group p-value High-risk group Low-risk group p-value

Age 0.0217 0.19669

<11 years 34 29 54 65

>11 years 32 45 66 55

Gender 0.8614 0.244,688

Female 30 31 62 52

Male 36 43 58 68

Status <0.0001 <0.0001
Alive 14 38 47 82

Dead 52 36 73 38

White blood cell 0.2108 1

<10 ¡Á 10̂9/L 22 29 54 53

¡Ý 10 ¡Á 10̂9/L 44 45 66 67

Platelet count 0.6616 0.896,359

<100 ¡Á 10̂9/L 54 52 67 69

¡Ý 100¡Á 10̂9/L 12 22 53 51

Bone marrow blast 0.6779 0.196,317

<70% 52 50 57 68

¡Ý 70% 14 24 63 52

Risk (Cytogenetic) 0.0009 2.91E-53

Favorable 6 24 0 120

Intermediate 43 31 0 0

Poor 17 19 120 0

ELN2017 0.0105 0.853,885

Good 9 22 37 40

Intermediate 34 20 45 41

Adverse 23 32 38 39

Chemotherapy 0.0148 0.195,943

Yes 22 10 69 58
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Subsequently, 541 mDEGs were found out using Venn intersect
function between the DEGs and the 2,751 metabolism-related
genes from KEGG metabolic pathway-related gene
sets (Figure 2C).

GO and KEGG pathway enrichment analyses of the mDEGs
revealed 431 GO terms and 42 pathways (adjusted p < 0.05)
related to abnormalities in AML, such as myeloid leukocyte
activation, transcriptional misregulation in cancer, neutrophil

FIGURE 1
The workflow chart of the study design and analysis.

FIGURE 2
Identification of mDEGs in AML. (A) Volcano plot of differentially expressed genes between AML patients and the healthy individuals in
GSE63270 dataset. (B) Heatmaps of the top 20 differentially expressed genes. (C) Venn diagram of the DEGs and the metabolism-related genes from
KEGG metabolic pathway-related gene sets.
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extracellular trap formation, and MAPK signaling
pathway (Figure 3).

3.2 Prognosis in consensus clustering
subgroups of TCGA cohort

Consensus clustering of AML samples from the TCGA
dataset based on the 541 mDEGs revealed two distinct
subgroups: Cluster 1 and Cluster 2 (Figure 4A). Cluster 1,
characterized by lower metabolic activity (Figure 4B), showed
a significantly longer overall survival (OS) compared to Cluster 2
(p = 0.0395, Figure 4C), suggesting that different metabolic
subgroups may be associated with divergent prognosis in
AML patients.

3.3 Construction of the metabolism-related
risk model for AML prognosis

Univariate Cox regression analysis identified 131 mDEGs
associated with AML prognosis. LASSO regression further
selected 11 mDEGs for the construction of a prognostic risk
model (Figures 5A–D). The model-based risk score was
calculated as follows:

Risk score = (CA13 * 0.0093) + (CLIC2 * 0.0248) +
(DGKG * −0.1392) + (ECHDC3 * 0.1135) + (G6PD * 0.2315) +

(KCNJ2 * 0.0676) + (KCNK1 * 0.0506) + (NDUFB10 * 0.1066) +
(OAS1 * 0.0284) + (SLC38A1 * 0.0941) + (TRPV5 * −0.0360).

The model-based risk score was calculated using the expression
levels and corresponding risk coefficients of these mDEGs
(Figure 5E). It showed that nine genes (CA13, CLIC2, ECHDC3,
G6PD, KCNJ2, KCNK1, NDUFB10, OAS1, SLC38A1) had hazard
ratio (HR) > 1, categorized as risk genes, while two genes (Fan et al.,
2014; Gravina et al., 2023; Li et al., 2019; Liu et al., 2015; Poulain
et al., 2017; Sun et al., 2023; Ueno et al., 2019) (DGKG, TRPV5) with
HR < 1 were identified as protective genes. A heatmap revealed that
high-risk patients had elevated expression of risk genes, while low-
risk patients had increased expression of protective
genes (Figure 5F).

3.4 Validation of themetabolism-related risk
score for AML prognosis

The prognostic value of the risk score was validated on TCGA
training, validation and total cohorts (Figures 6A–C). Patients were
stratified into high- and low-risk groups based on the median risk
score. The risk score effectively predicted overall survival (OS)
across different time points. High-risk patients exhibited
significantly shorter OS compared to the low-risk group (p <
0.001, Figure 6F).

In an independent TARGET cohort, the model maintained
robust prognostic performance (Figures 6G, H), further

FIGURE 3
Enrichment analysis of mDEGs. (A–C) Bubble plot of the top 15 terms of biological process (BP), Cellular component (CC), Molecular function (MF).
(D) Cnet plot of KEGG pathways. (E) Circle plot of metabolism-related genes KEGG enrichment pathways.
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confirming its predictive accuracy across diverse patient
populations. Expression patterns of the 11 metabolism-related
genes were concordant with the risk stratification (Figure 6I).

Compared to the Metabolic Risk Prognostic Signature Index
(MRPSI) developed by Wang et al. using 28 genes, our 11-gene

model demonstrated superior 5-year OS prediction in both the
TCGA (AUC = 0.885 vs. 0.697) and TARGET (AUC = 0.71 vs.
0.688) datasets. While MRPSI employed a support vector machine
algorithm, our LASSO Cox regression approach effectively captured
prognostic metabolic signals.

FIGURE 5
Construction of mDEGs-based prognostic model. (A) The coefficients of LASSO cross-validation regression. (B) LASSO calculated variable to filter
lambda and calculate the minimum lambda and lambda1se. (C) The distribution and median value of the risk scores. (D) The distributions of OS status in
each patient. (E) The expression of 11 mDEGs in TCGA-AML cohort. (F) Heatmap showing the expression levels of 11 mDEGs.

FIGURE 4
Prognosis in consensus clustering subgroups of TCGA-AML. (A) AML patients in TCGA cohort were grouped into two clusters according to the
consensus clustering matrix (k = 2). (B)Heatmap and the clinical characters of the two clusters classified by the metabolism-related genes in TCGA-AML
cohort. (C) Kaplan-Meier OS analysis of patients in the Cluster 1 and Cluster 2.
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3.5 Independent prognostic value of the
metabolism-related risk score for AML

To assess the independence of risk score in clinical application,
univariate and multivariate Cox regression analyses were performed
in TCGA-AML cohort. The risk scores and clinicopathological
characteristics, including age, gender, race, andFrench-American-
British classification systems (FAB)classification were used as
covariates. The results revealed that both age and risk score were
independent unfavorable prognostic factors of OS, and risk score is
superior to age (Figures 7A, B). Subsequently, a nomogram for OS
prediction of AML (1, 3 and 5 years) was established to visualize the
metabolism-related risk score (Figure 7C).

3.6 Survival and functional analyses of the
risk genes

GEPIA2 database analysis showed that high CA13 expression
was significantly correlated with poor OS in AML (HR = 3.2,
p = 0.00014; Figures 8A–F). Functional interaction analysis
identified CLIC2, CA13, and KCNJ2 as potential hub genes in
AML prognosis (Figure 8G). GSEA revealed that the risk model
predominantly modulates immune and metabolic pathways,.The
high-risk phenotype was positively correlated with the B cell
receptor signaling pathway and negatively correlated with
ascorbate, alternate metabolism, cysteine, and methionine
metabolism (Figures 8H, I). These findings suggest that the risk

FIGURE 6
Kaplan-Meier plot and ROC curve for validation of the metabolism-related risk score. Kaplan–Meier survival curves between two risk groups based
on the metabolic risk score classification in the training (A), validation (B) and the total (C) cohort. ROC curve of the metabolic risk score AML prognosis
prediction in the training (D), validation (E) and the total (F) cohort. TP, true positive; FP, false positive. (G-I) External validation of TARGET cohort.

Frontiers in Genetics frontiersin.org08

Ren et al. 10.3389/fgene.2024.1424365

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1424365


model captures key metabolic alterations in AML that may
contribute to disease progression and prognosis.

3.7 Immune infiltration and immune
checkpoint expression profiles

CIBERSORT analysis showed a significant correlation
between risk scores and the abundance of 22 immune cell
types (Figure 9A). High-risk patients had a higher abundance
of monocytes, while low-risk patients had more B cell naive and
resting mast cells (Figure 9B). Nine immune checkpoint-related
genes (CD80, CD86, LAG3, CD274, CTLA4, PDCD1, LGALS3,
CD200R1, and KIR3DL1) were significantly upregulated in the
high-risk group (Figure 9C), suggesting that high-risk patients
may be more suitable for immune checkpoint inhibitor
therapy.ESTIMATE analysis of TCGA cancer samples revealed
significant differences between high-risk and low-risk patient
groups. Patients in the high-risk group had notably higher
ESTIMATE scores, Immune scores, and Tumor purity
compared to the low-risk group (Figures 9D–F). This suggests
a more dense infiltration of stromal and immune cells within the

tumor microenvironment of the high-risk patients, as well as a
more pronounced presence of immune cells in their tumors.

3.8 Drug sensitivity

We employed the half-maximal inhibitory concentration (IC50)
as a measure to assess the sensitivity of the medication (Figure 10).
The results indicated that the high-risk group exhibited significantly
higher IC50 values, implying decreased sensitivity to the drugs
compared to the low-risk group (p < 0.05). Specifically, we
observed the following median IC50 values (in μM) for high-risk
vs. low-risk groups:ABT737: 8.2 vs. 5.1 (p = 0.003),AZD5991:
12.4 vs. 7.8 (p = 0.001),ULK1 inhibitor: 6.7 vs. 4.3 (p =
0.008),UMI-77: 9.5 vs. 6.2 (p = 0.002),Entinostat: 7.9 vs. 5.6 (p =
0.004),Venetoclax: 11.3 vs. 7.1 (p < 0.001). These results
demonstrate that high-risk patients consistently required higher
drug concentrations to achieve 50% inhibition of cellular
response, indicating reduced drug sensitivity. The most
pronounced difference was observed with Venetoclax, where
high-risk patients showed a 59% higher IC50 value compared to
low-risk patients.

FIGURE 7
Independent prognostic value of the metabolism-related risk score. (A) Univariate analysis in the TCGA cohort. (B)Multivariate analysis in the TCGA
cohort. (C) Construction of a nomogram to predict survival of patients based on clinical parameters and risk score in the TCGA cohort.
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3.9 CA13 correlated with chemoresistance
and cell proliferation

CA13 showed higher expression levels in DOX (Doxorubicin)-
resistant leukemia cell lines (HL60/A, THP1/A and K562/A)

compared to their corresponding wild-type cells (HL60,
THP1 and K562). Significant difference in survival rates was
observed between the DOX-resistant and wild-type leukemia cells
after treatment of 10 μmol/L DOX (Figures 11A, B). Then, we
knocked down the expression of the CA13 through siRNA (Figures

FIGURE 8
Survival and Functional Analyses of the risk genes. (A-F) The Kaplan-Meier curves of AML patients between high and low expression of the genes
frommetabolism-related risk model. (G) Identification of the hub genes from the Friends analysis. The horizontal axis represents the correlation strength,
and the vertical axis indicates the gene name.(H).GSEA analysis of KEGG pathway and (I) GO biological process.
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11C, D). As shown in (Figures 11F, G), CA13 knock-down resulted
in diminished proliferation of K562 and K562/A cells compared to
the control, moreover, a significantly declined survival rate in K562/
A cells was found in comparison with that in K562 cells in the
milieu of DOX.

4 Discussion

This study aimed to enhance the prognostic evaluation of acute
myeloid leukemia (AML) by identifying and validating metabolism-
related gene signatures. Hundreds of metabolism-related
differentially expressed genes (mDEGs) were screened from the
GSE63270 cohort, and consensus clustering was performed on
TCGA-AML patient data. Significant differences in AML
outcomes among the subgroups suggested that mDEGs
expressions could be useful for prognosis evaluation. A
metabolism-related risk model comprising 11 mDEGs was
developed through Cox combined with LASSO regression
analysis, and its predictive capacity was validated using KM
survival curves and ROC curve analysis.

Our results align with previous findings that metabolic
reprogramming plays a critical role in AML progression, drug
resistance, and adverse outcomes (Wojcicki et al., 2020; Mishra
et al., 2023; Rattigan et al., 2023). In comparison, our model

demonstrated AUC values of 0.73 for 1-year OS, 0.759 for 3-year
OS, and 0.885 for 5-year OS in the TCGA validation cohort,
indicating superior predictive performance, particularly for
long-term survival predictions (Wang et al., 2013). The
metabolism-related risk score developed in this study has
significant potential in clinical settings. It can serve as an
independent prognostic factor to supplement existing AML
risk stratification systems (Döhner et al., 2017; Döhner
et al., 2022).

Gene set enrichment analysis (GSEA) revealed that our risk
model predominantly modulates immune and metabolic pathways,
indicating that key metabolic alterations contribute to AML
progression and prognosis (Ashburner et al., 2000; Kanehisa and
Goto, 2000). The correlation of the risk score with immune cell
abundance and immune checkpoint-related gene expression further
supports the link between metabolism and immune response in
AML (Chen et al., 2018).

The study supports the theory that metabolic reprogramming is
integral to cancer cell survival and proliferation (Supuran and
Winum, 2015). In evaluating targeted therapy efficacy in high-
risk AML, we analyzed sensitivity to drugs targeting key
pathways using IC50 (Figure 10). For ABT737 (p = 0.003), high
Bcl-xL expression may reduce binding affinity (Mérino et al., 2012;
Parry et al., 2021). Venetoclax, a selective Bcl-2 inhibitor, showed the
highest IC50 increase (59%) potentially due to altered mitochondrial

FIGURE 9
Immune Landscape Analysis. (A). Using the CIBERSORT algorithm, which quantitatively evaluated 22 immune cell types. (B).Immune Cell
Distribution Across Risk Groups. (C). Differential expression of immune checkpoint genes between high-risk and low-risk groups. (D-F). Comparison of
ESTIMATES score, Immune score, and Stromal score in high-risk and low-risk groups.
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outer membrane permeability blocking apoptosis. Our risk model
unveiled glycolysis and mitochondrial metabolism activation in the
high-risk group, explaining reduced sensitivity to metabolic enzyme
inhibitors like ULK1/UMI-77 (Mishra et al., 2023). Resistance to
apoptosis-targeting drugs like Venetoclax may stem from sustained
pathway activation, suggesting metabolic reprogramming
contributes to therapy resistance. Modulating metabolism could
improve treatment responses, particularly for metabolically
dysregulated high-risk patients. This analysis clarified the
reprogramming landscape and resistance mechanisms, guiding
personalized approaches. Additionally, our findings suggest that
high-risk patients may benefit from metabolism-targeted therapies,

which could be integrated into chemotherapy regimens to enhance
treatment efficacy, particularly in relapsed or refractory AML
patients (Chen et al., 2014; Lee et al., 2018).

Several potential mechanisms by which CA13 might contribute to
chemotherapy resistance were identified based on its known functions.
CA13 is involved in cellular pH regulation, carbon dioxide transport,
and cell homeostasis. Abnormalities in these processes can affect the
tumor microenvironment, influencing cancer cell survival,
proliferation, and resistance to therapy (Angeli et al., 2020; Supuran,
2008). Our in vitro experiments showed that decreased expression of
CA13 conferred partial sensitivity to chemotherapy in drug-resistant
strains. After knock-down of CA13, the cell growth rate of drug-

FIGURE 10
Analysis of the sensitivity to multiple chemotherapy drugs. (A–F) In the high-risk group, the IC50 values for ABT737, AZD5991, ULK1, UMI-77,
Entinostat, and Venetoclax, were higher. (G–L) The IC50 values for Rapamycin, AZD5383, Pictilisib, Taselisib, Selumetinib, Gemcitabine were higher in the
low-risk group.
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resistant strains was significantly reduced compared with wild-type
strains, indicating that CA13 might augment cellular resistance to
chemotherapy by regulating the proliferation process of leukemia cells.

There are several limitations to this study. Firstly, the risk model
needs validation with larger-scale cohorts to ensure its robustness.
Secondly, while we identified CA13 as a prospective therapeutic
target, the underlying mechanisms of CA13 in regulating drug
resistance and its potential as a therapeutic sensitization target in
AML require further research. Addressing these limitations is crucial
to ensure the robustness and applicability of our findings.

Future research should focus on validating the risk model with
larger and more diverse cohorts to confirm its predictive power and
applicability. Investigating the detailed mechanisms of CA13 in drug
resistance will be crucial for developing targeted therapies
(Yogosawa et al., 2021). Moreover, exploring the potential of
combining metabolism-related signatures with other biomarkers
could lead to more comprehensive and personalized prognostic
models for AML (Long et al., 2020; Zhao et al., 2022).
Prospective clinical studies to validate our model and explore its
integration into existing risk stratification systems or its use in
treatment decision-making would also be valuable (Montesinos
et al., 2022).

In summary, our study provides a robust metabolism-related
gene signature for prognostic evaluation in AML, highlighting the
significance of metabolic pathways in disease progression and

treatment resistance. The metabolism-related risk score developed
in this study has significant potential in clinical settings, both as an
independent prognostic factor and as a guide for therapy strategies
(Pastorekova et al., 2006; Supuran and Winum, 2015). Further
validation and exploration of targeted therapies based on these
findings could significantly improve AML patient outcomes.

5 Conclusion

Based on bioinformatics data analysis extracted from the public
database, we constructed a novel metabolism-related gene signature
for AML, which could be an effective assistant for the risk
stratification and outcome prediction in AML. In addition, CA13
was verified to be a poor prognosis factor and potential therapeutic
target due to its regulation of drug resistance, providing a new
perspective on AML chemotherapy and deserved meticulous
investigation.
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FIGURE 11
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DOX treatment after CA13 knock-down in K562 and K562/A. (F–G) Cell growth curve of K562 and K562/A after CA13 knock-down. NC: cell line
transfectedwith negative control siRNA. si-CA13: cell line transfected withmixed siRNAs targeting different sites ofCA13. ***: p < 0.001, **: p < 0.01, *: p <
0.05, ns: p > 0.05.
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