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Background: This study aims to prioritize genes potentially involved in
multifactorial or causal relationships with gout.

Methods: Using the Summary Data-based Mendelian Randomization (SMR)
approach, this research analyzed expression quantitative trait loci (eQTL) data
from blood and renal tissues and genome-wide association study (GWAS) data
related to gout. It sought to identify genetic loci potentially involved in gout.
Heterogeneity testing was conducted with the HEIDI test, and results were
adjusted for the False Discovery Rate (FDR). Blood cis-eQTL data were
sourced from the eQTLGen Consortium’s summary-level data, and renal
tissue data came from the V8 release of the GTEx eQTL summary data. Gout
GWAS data was sourced from the FinnGen Documentation of the R10 release.

Result: SMR analysis identified 14 gene probes in the eQTLGen blood summary-
level data significantly associated with gout. The top five ranked genes are:
ENSG00000169231 (labeled THBS3, PSMR = 4.16 × 10−13), ENSG00000231064
(labeled THBS3-AS1, PSMR = 1.88 × 10−8), ENSG00000163463 (labeled KRTCAP2,
PSMR = 3.88 × 10−6), ENSG00000172977 (labeled KAT5, PSMR = 1.70 × 10−5), and
ENSG00000161395 (labeled PGAP3, PSMR = 3.24 × 10−5). Notably, increased
expression of KRTCAP2 and PGAP3 is associated with an increased risk of
gout, whereas increased expression of THBS3, THBS3-AS1, and KAT5 is
associated with a reduced gout risk. No significant gene associations with
gout were observed in renal tissue, likely due to the limited sample size of
kidney tissue.

Conclusion: Our findings have highlighted several genes potentially involved in
the pathogenesis of gout. These results offer valuable insights into the
mechanisms of gout and identify potential therapeutic targets for its treatment.
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1 Introduction

Gout is commonly diagnosed as inflammatory arthritis
characterized by hyperuricemia and the deposition of
monosodium urate (MSU) crystals, causing intense pain and
joint damage, often leading to deformity (Dalbeth et al., 2019).
As a multifactorial metabolic disorder, the primary risk factors for
gout include hyperuricemia, genetic predispositions, and dietary
influences (Kuo et al., 2015). Research shows that gout’s
pathogenesis mainly results from abnormal uric acid
metabolism—due to either reduced excretion or increased
production—which precipitates MSU crystal deposits in joints,
triggering inflammation (Yang et al., 2024).

Studies reveal that gout’s global prevalence ranges from 1% to
4%, with an incidence rate of 0.1%–0.3% (Singh and Gaffo, 2020). It
occurs more frequently in males than in females and significantly
lowers life quality while imposing a heavy economic burden (Danve
and Neogi, 2020). Current treatments include nonsteroidal anti-
inflammatory drugs, colchicine, and corticosteroids, which may
cause side effects such as hepatorenal toxicity and cardiovascular
issues (Zeng et al., 2023). Moreover, gout commonly leads to acute
joint pain and is linked with systemic diseases such as hypertension
(Khanna et al., 2020), type 2 diabetes (Borghi et al., 2020), and
cardiovascular diseases (Cox et al., 2021). Numerous studies have
identified genetic variants linked to gout, but the biological
implications of these findings are unclear (Dehghan et al., 2008;
Li et al., 2015; Nakayama et al., 2017; Chen et al., 2018), These
variants, identified through GWAS, likely affect the disease through
gene expression, suggesting that exploring this relationship can
clarify the regulatory pathways in gout’s pathogenesis.

Mendelian Randomization (MR) is a method that uses genetic
variants to examine potential causal relationships between
exposures and outcomes, thus reducing confounding factors. A
novel analytical framework that integrates SMR with cis-eQTL
and GWAS data has been proposed (Nica and Dermitzakis, 2013;
Ni et al., 2020). This method has identified genes with pleiotropic or
potential causal associations with various phenotypes, such as
polycystic ovary syndrome (Sun et al., 2022), nasal polyp
(Yoshikawa et al., 2023), and periodontitis (Wang et al., 2021),
demonstrating its value in investigating disease-related gene
pleiotropy.

In this study, we applied the SMR approach to integrate GWAS
and cis-eQTL data for gout, prioritizing genes that may have
pleiotropic or potential causal relationships with the disease.

2 Materials and methods

2.1 Data sources

The cis-eQTL data were sourced from two primary datasets.
Firstly, summary-level data from the eQTLGen Consortium (Võsa
et al., 2018), which includes 37 datasets and 31,684 participants, is
available at https://www.eqtlgen.org/cis-eqtls.html. Secondly, data
from the V8 release of the GTEx eQTL summarized data for kidney
(GTEx Consortium, 2020) tissue, involving 73 participants, can be
downloaded at https://yanglab.westlake.edu.cn/software/smr/
#eQTLsummarydata. The GWAS data for gout was sourced from

the FinnGen Documentation of the R10 release (Kurki et al., 2023),
comprising 9,568 gout cases and 262,844 controls. This data is
available for download at https://finngen.gitbook.io/documentation/
data-download. All summary data in this study are publicly
accessible and have obtained ethical approval from the respective
institutions (Table 1).

2.2 SMR analysis

The SMR analysis utilized summary statistics from eQTL and
GWAS datasets to examine the association between gene expression
and gout. This analysis employed SNP markers from cis-eQTLs as
instrumental variables (IVs), with gene expression as the exposure
and gout as the outcome. The IVs must satisfy three critical criteria
for MR validity: 1) IVs must be strongly associated with gene
expression; 2) IVs should not be related to any confounders; 3)
IVs must influence the outcome exclusively through gene expression
and not through other pathways (Yang et al., 2021). The analysis was
conducted using SMR software version 1.3.1, following default
settings, including pruning SNPs with a Minor Allele Frequency
(MAF) greater than 0.01, selecting cis-eQTL at p < 5 × 10−8,
excluding SNPs with linkage disequilibrium (LD) r-squared
between top-SNP greater than 0.90 or less than 0.05, and
eliminating one SNP of each pair with LD r-squared greater than
0.90 (Zhu et al., 2016). Significant gene loci were identified with a P_
SMR less than 0.05. Heterogeneity tests (HEIDI) were conducted to
assess the robustness of the associations (P_HEIDI greater than
0.05), and results were adjusted using the False Discovery Rate
(FDR) method (FDR <0.05) (Zhang Q. et al., 2023). The SMR
analysis process is depicted in Figure 1.

2.3 Gene ontology (GO) and KEGG analyses

To explore potential biological functions and pathways, analyses
were performed using RStudio version 4.3.2. Enrichment analysis
was conducted using the clusterProfiler package and the enrichGO
function (Rosado-Galindo and Domenech, 2023; Zheng et al., 2024),
with the gene ontology database set to org.Hs.eg.db (Wang et al.,
2022). The resulting GO diagrams illustrate the biological processes,
molecular functions, and cellular components significantly related to
differentially expressed genes.

3 Results

Through SMR analysis, and subsequent filtering using P_SMR,
P_FDR, and P_HEIDI values, 15,679 probes in the eQTLGen blood
data were found to be associated with gout. Among these, 14 genes
showed pleiotropic or potential causal relationships with gout. No
significant gene associations with gout were detected in the GTEx
V8 kidney tissue data, attributed to the limited sample size of kidney
tissue. Details regarding these genes are presented in Figure 2
and Table 2.

In the eQTLGen dataset, the top five genes identified include
ENSG00000169231 (labeled THBS3, P_SMR = 4.16 × 10−13),
ENSG00000231064 (labeled THBS3-AS1, P_SMR = 1.88 × 10−8),
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ENSG00000163463 (labeled KRTCAP2, P_SMR = 3.88 × 10−6),
ENSG00000172977 (labeled KAT5, P_SMR = 1.70 × 10−5), and
ENSG00000161395 (labeled PGAP3, P_SMR = 3.24 × 10−5).
Elevated expression of KRTCAP2 and PGAP3 is linked to an
increased risk of gout, whereas higher expression of THBS3,
THBS3-AS1, and KAT5 is associated with a reduced risk of the
disease. Data from these five genes were specifically extracted and
displayed on scatter plots and locus plots to depict the associations
between these genes and the disease (Figures 3, 4).

Through GO enrichment analysis, identifications were made of
182 biological processes, 23 cellular components, and 21 molecular
functions. The top six biological processes include: negative
regulation of double-strand break repair via homologous
recombination, negative regulation of double-strand break repair,
negative regulation of DNA repair, cellular response to glucose
starvation, negative regulation of DNA recombination, and
protein N-linked glycosylation. The top six cellular components
are: the site of DNA damage, ribonuclease MRP complex,
multimeric ribonuclease P complex, peptidase inhibitor complex,
serine-type endopeptidase complex, and messenger ribonuclease
P complex. The top six molecular functions comprise: ribonuclease

P RNA binding, K48-linked polyubiquitin modification-dependent
protein binding, ribonuclease P activity, fucosyltransferase activity,
acyltransferase activity transferring groups other than amino-acyl,
and mRNA regulatory element binding translation repressor activity.
The visualization of the top-ranked biological processes from the three
categories of GO enrichment analysis is shown in Figure 5.
Additionally, KEGG pathway analysis identified five pathways:
Transcriptional Misregulation in Cancer; Glycosaminoglycan
Biosynthesis - Keratan Sulfate; Various Types of N-Glycan
Biosynthesis; Malaria; and N-Glycan Biosynthesis, primarily related
to glycan biosynthesis and metabolism. Detailed GO and KEGG
information is available in Supplementary Tables S1, S2;
Supplementary Figures S1, S2.

The outermost ring displays the GO enrichment IDs, the second
ring shows the number of genes, the third ring depicts the number of
genes significantly associated with the disease, and the fourth ring
illustrates the proportion of significant genes. Three different colors
represent various biological processes. The color intensity in the
second ring indicates the -log10 (p-value) of gene enrichment, the
deeper the red, the more significant the enrichment of disease-
related genes.

TABLE 1 Details of the cis-eQTL and GWASs included in the summary data-based Mendelian randomization.

Trait Data type Total number of participants Consortium

Blood Exposure 31,684 eQTLGen

Kidney Exposure 73 GTEx_V8

Gout Outcome 272,412 FinnGen_R10

FIGURE 1
Flowchart of SMR analysis.
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4 Discussion

This study merged gout-related GWAS and cis-eQTL data for
SMR analysis to identify genes with pleiotropic or potential causal
relationships to gout. We identified 14 genes implicated in the
pathogenesis of gout, focusing on the top five genes discussed herein.

In our findings, THBS3 and THBS3-AS1 exhibited significant
pleiotropic associations with a reduced risk of gout. They are also
linked to clear cell renal cell carcinoma (Wang et al., 2023),
osteoarthritis (Costa et al., 2024), and stomach cancer (Deng
et al., 2021). THBS3, a pentameric protein of the extracellular
matrix (ECM) family, includes over 12 kb, with 3.1 kb of exon

FIGURE 2
Manhattan Plot of SMR Analysis Results between eQTL and Gout.

TABLE 2 Genes significantly associated with Gout in SMR analysis.

Ensemble ID CHR Gene Top SNP SMR HEIDI FDR

Beta P-Value P-Value P-Value

ENSG00000169231 1 THBS3 rs760077 −0.202 4.16 × 10−13 0.219 2.92 × 10−9

ENSG00000231064 1 THBS3-AS1 rs760077 −1.162 1.88 × 10−8 0.882 3.30 × 10−5

ENSG00000163463 1 KRTCAP2 rs12752585 1.306 3.88 × 10−6 0.118 3.03 × 10−3

ENSG00000172977 11 KAT5 rs502468 −1.508 1.70 × 10−5 0.304 1.11 × 10−2

ENSG00000161395 17 PGAP3 rs2952152 0.191 3.24 × 10−5 0.947 1.89 × 10−2

ENSG00000113742 5 CPEB4 rs72810995 −0.095 3.66 × 10−5 0.853 2.06 × 10−2

ENSG00000122378 10 PRXL2A rs10788630 −0.172 4.96 × 10−5 0.093 2.49 × 10−2

ENSG00000174165 11 ZDHHC24 rs3737525 0.536 6.15 × 10−5 0.227 2.87 × 10−2

ENSG00000173727 11 FAUP4 rs1621277 −0.252 9.05 × 10−5 0.118 3.63 × 10−2

ENSG00000122861 10 PLAU rs2227551 0.262 9.44 × 10−5 0.077 3.68 × 10−2

ENSG00000033170 14 FUT8 rs8010726 −0.187 1.14 × 10−4 0.451 4.09 × 10−2

ENSG00000092929 17 UNC13D rs2290769 −0.318 1.19 × 10−4 0.425 4.16 × 10−2

ENSG00000160803 1 UBQLN4 rs34444588 −0.242 1.23 × 10−4 0.144 4.22 × 10−2

ENSG00000167272 12 POP5 rs492574 −0.228 1.44 × 10−4 0.878 4.81 × 10−2
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sequences and 9.2 kb of introns (Adolph et al., 1995). As a member
of the thrombospondin family, it supports various biological
processes such as ECM interactions, cell adhesion, and
inflammatory responses (Chen et al., 2022; Yang et al., 2023),
potentially affecting immune cell infiltration and activity at
inflammation sites, thereby influencing the progression of gout.
A genetic epidemiological study provided evidence for the critical
role of variations in the TRIM46-MUC1-THBS3-MTX1 gene region
in the pathogenesis of kidney and blood diseases, underscoring their
importance in hyperuricemia and gout development (Teng et al.,
2021). Furthermore, THBS3-AS1, a long non-coding RNA
(lncRNA), is crucial in gene expression regulation, cellular
processes, and pathogenesis. The relationship between THBS3-
AS1 and gout remains less explored, and we hypothesize that it
could influence gout through modulation of inflammatory cell
activity or by regulating the expression of urate handling genes,
warranting further research.

Additionally, KRTCAP2 was identified as a primary gene
increasing the risk of gout. Changes in protein glycosylation can
impact immune responses, with KRTCAP2 situated on human
chromosome 1q22, encoding a protein involved in glycosylation,
which plays a crucial role in biological functions like cell recognition,
immune response, and signal transduction (Sun et al., 2023).
Literature suggests that KRTCAP2 may affect urate production
and clearance by altering the expression and function of xanthine

oxidoreductase (Lee et al., 2022). However, the regulation of XOR
gene expression by KRTCAP2 depends primarily on the modulation
of core transcription factors such as Sp1 or PPARγ (DeVallance
et al., 2023).

KAT5, from the MYST acetyltransferase family, significantly
influences various cellular activities and was associated with a
reduced risk of gout in our study. It modulates chronic
inflammatory responses in different forms of arthritis by
regulating Foxp3 expression in regulatory T cells and STAT6 in
B cells (Yang et al., 2018; Su et al., 2019). Earlier research indicates
that a loss or reduction of KAT5 function may alleviate systemic
inflammatory responses in MSU-induced peritonitis models,
commonly linked with gout or urate deposition (Zhang Y.
et al., 2023).

Furthermore, PGAP3 increases the risk of gout. This protein
participates in the modification of glycosylphosphatidylinositol
(GPI) anchors, a key step in a major metabolic pathway for
hyperuricemia (Yang et al., 2019). In GPI anchor biosynthesis,
PGAP3’s essential role is to refine newly synthesized GPI anchors
by eliminating non-native acyl groups, essential for the proper
expression and functionality of these anchors (Howard et al.,
2014). Increased expression of PGAP3 alters GPI anchor
modifications, thereby influencing urate metabolism in the body.

This study has several limitations. Firstly, the limited number
of probes in our SMR analysis and the small sample size in the

FIGURE 3
Scatterplot of the Association Results between Individual Genes in eQTL and Gout. (A) THBS3; (B) THBS3-AS1; (C) KRTCAP2; (D) KAT5; (E) PGAP3.
The x-axis shows the effect sizes of SNPs within the eQTL genes, and the y-axis shows the effect sizes of SNPs associated with gout. Blue circles indicate
SNPs, and red triangles mark the top SNPs. The dashed lines show the regression line, highlighting the direction of the association between eQTL effect
sizes and GWAS effect sizes. Segments ascending from left to right indicate a positive correlation between gene expression and disease, implying
that higher gene expression is linked to an increased risk of gout. Conversely, decreasing segments suggest a negative correlation, where higher gene
expression is linked to a reduced risk of gout.
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eQTL analysis might have led to the omission of crucial genes
associated with gout. Future studies are advised to utilize larger
samples in eQTL analysis to identify more genes contributing to
the pathogenesis of gout. Secondly, this study included only
participants of European ancestry. Additional research is
needed to apply these findings to other ethnic groups. Thirdly,
the small sample size of only 73 participants in the GTEx

V8 kidney tissue data may have prevented the identification of
significant gene associations, resulting in inadequate statistical
power. Future research should use larger sample sizes for kidney
tissue data to increase statistical power and improve the
reliability of the results. Fourthly, the relevance of the HEIDI
test for some identified genes implies that horizontal pleiotropy
cannot be discounted, suggesting that the observed associations

FIGURE 4
Locus Plots Showing the Pleiotropic Associations between Significant Genes and Gout. (A) THBS3; (B) THBS3-AS1; (C) KRTCAP2; (D) KAT5; (E)
PGAP3. The top gray dots represent the -log10(p-values) of SNPs from GWAS. The middle red dots indicate the -log10(p-values) of the genes, and the
bottom section displays the positions of the probes relative to the genes.

Frontiers in Genetics frontiersin.org06

Wang et al. 10.3389/fgene.2024.1426860

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1426860


could be due to the effects of two distinct genetic variants in
strong linkage disequilibrium.

5 Conclusion

In summary, this study combined GWAS and eQTL data related
to gout, identifying 14 genes that may be involved in the
pathogenesis of the disease. These genes are implicated in
regulating inflammatory responses, immune reactions, and uric
acid metabolism. However, further research is necessary to
confirm the functions of these genes in gout and to investigate
other genes related to the disease’s mechanisms.
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