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Introduction:Maize (Zea mays L.) is one of the most important crops worldwide,
the kernel size-related traits are the major components of maize grain yield.

Methods: To dissect the genetic architecture of four kernel-related traits
of 100-kernel weight, kernel length, kernel width, and kernel diameter, a
genome-wide association study (GWAS) was conducted in the waxy and
sweet maize panel comprising of 447 maize inbred lines re-sequenced at the
5× coverage depth. GWAS analysis was carried out with the mixed linear model
using 1,684,029 high-quality SNP markers.

Results: In total, 49 SNPs significantly associated with the four kernel-related
traits were identified, including 46 SNPs on chromosome 3, two SNPs on
chromosome 4, and one SNP on chromosome 7. Haplotype regression
analysis identified 338 haplotypes that significantly affected these four kernel-
related traits. Genomic selection (GS) results revealed that a set of 10,000 SNPs
and a training population size of 30% are sufficient for the application of GS in
waxy and sweetmaize breeding for kernel weight and kernel size. Forty candidate
genes associated with the four kernel-related traits were identified, including
both Zm00001d000707 and Zm00001d044139 expressed in the kernel
development tissues and stages with unknown functions.

Discussion: These significant SNPs and important haplotypes provide valuable
information for developing functional markers for the implementation ofmarker-
assisted selection in breeding. The molecular mechanism of Zm00001d000707
and Zm00001d044139 regulating these kernel-related traits needs to be
investigated further.
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1 Introduction

Maize (Zea mays L.) is one of the most important cereal crops
globally. In 2022, maize production reached 1,163.5 million tons,
surpassing other key crops such as rice (776.5 million tons) and
wheat (880.4 million tons), according to the Food and Agriculture
Organization of the United Nations (https://www.fao.org/
statistics/en/). Maize kernel size and weight are the two major
components associated with grain yield. Specific kernel-related
traits including 100-kernel weight (HKW), kernel length (KL),
kernel width (KW), and kernel thickness (KT), play an important
role in determining overall grain yield in maize (Gupta
et al., 2006).

Genome-wide association study (GWAS) is a powerful approach
to unravel the genetic basis of complex traits, which has been widely
applied to various crops (Pang et al., 2020; Shikha et al., 2021; Shook
et al., 2021; Soleimani et al., 2022). Maize has a high-level genetic
diversity and harbors rare alleles in the genome. GWAS is an ideal
tool to study the genetic architecture of complex traits in maize
(Myles et al., 2009; Yan et al., 2009; Zhang X. et al., 2022). Over
recent decades, numerous SNPs or candidate genes associated with
these traits have been identified using this method. For example,
Zhang et al. (2017) discovered 25 SNPs significantly associated with
kernel weight (HKW), kernel row number (KRN), and kernel size in
a study involving 240 maize inbred lines (Zhang et al., 2017).
Moreover, GWAS was applied to identify 29 SNPs significantly
associated with four kernel-related traits (Hao et al., 2019).
Additionally, 21 SNPs and 7 SNPs were significantly associated
with HKW and kernel weight efficiency (KWE), respectively (Zhang
et al., 2020). Thus, exploring the genetic basis of kernel traits in
maize using GWAS is crucial for enhancing crop improvement
strategies.

The kernel size and weight are affected by key genes in the
regulatory pathway involving cell proliferation and expansion at the
kernel development stage, and several key regulatory factors
involved in various signaling pathways have been identified in
several previous studies. In the ubiquitin-proteasomal pathway,
the GW2 gene encoding a RING-E3 ubiquitin ligase negatively
affects maize kernel size and weight (Li et al., 2010a). A recent
discovery highlighted the ZmKW1 gene, which codes for a SINA
protein with E3 ubiquitin ligase activity, as a regulator of kernel
weight and shape (Zhang et al., 2024). In the G-protein signaling
pathway, the maize ortholog of the GS3 gene, which encodes the γ
subunit of G-protein, negatively regulates kernel size and weight and
also affects the GW2 gene (Li et al., 2010b). In the MAPK signaling
pathway, the OPAQUE11 gene, which encodes an endosperm-
specific bHLH transcription factor, activates the Zmyada gene
upstream of MAPK (Feng et al., 2018). In the phytohormone
pathway, the genes ZmYuc1/De18, ZmVPS29, and ZmSK2 have
been proven to regulate kernel size and weight through the IAA
signaling pathway (Bernardi et al., 2012; Chen et al., 2020; Wang
et al., 2022).

Genomic Selection (GS) can help breeders improve breeding
efficiency by saving phenotyping costs and reducing the breeding
cycle time (Meuwissen et al., 2001; Crossa et al., 2014; Qu et al.,
2022). GS utilizes a training population to estimate the effect of
genetic markers based on phenotypic and genotypic data, which
then helps predict the genomic estimated breeding values (GEBV) of

individuals in the prediction population (Liu et al., 2023). GS has
been extensively applied in maize to select desirable traits in inbred
lines and to predict the performance of hybrids (Liu et al., 2017; Liu
et al., 2021; Wang B. et al., 2020; Wang et al., 2020b; Song et al.,
2024). The preliminary GS analysis is needed to better understand
how to improve the kernel-related traits in waxy and sweet
maize breeding.

In the present study, the genetic architecture of kernel-related
traits in sweet and waxy maize was dissected in a GWAS
including 230 waxy maize inbred lines, 112 sweet maize
inbred lines, and 105 sweet-waxy maize inbred lines. The
genetic loci and candidate genes regulating HKW, KL, KW,
and kernel diameter (KD) were identified by GWAS, alongside
a GS analysis was carried out. The present study aims to improve
the understanding of the genetic architecture of kernel-related
traits in waxy and sweet maize. Furthermore, it aims to contribute
to the enhancement of kernel yield in both waxy and sweet
maize breeding.

2 Materials and methods

2.1 Plant materials, field planting, and
phenotyping

In this study, 447 maize lines, including 230 sweet maize inbred
lines, 112 waxy maize lines, and 105 sweet-waxy maize lines, were
used for GWAS analysis. The plants were cultivated at the Shanghai
Academy of Agricultural Sciences’ experimental stations in Linshui,
Hainan (110°05′E, 18°55′N) in 2020 and Zhuanghang, Fengxian
District, Shanghai (121°39′E, 30°89′N) in 2021. All experimental
trials followed a randomized complete block design with three
replications at each location. Approximately 50 seeds from each
plant were collected to evaluate the four kernel-related traits,
including HKW, KL, KW, and KD using the SC-G automatic
seed tester and a thousand-kernel weight scale (http://www.wseen.
com/ProductDetail.aspx?id=16&classid=28). For subsequent GWAS
andGS analyses, the phenotypic values of each line were represented
by the best linear unbiased prediction (BLUP) values, calculated
using META-R (version: 6.0, http://hdl.handle.net/11529/10201)
software (Alvarado et al., 2020).

2.2 Sequencing and SNP calling

For genotyping, next-generation sequencing (NGS) was
employed to analyze the genotypes of 447 maize inbred lines.
Genomic DNA was isolated using a modified CTAB method.
Each inbred line of the associated population was genotyped
using Illumina sequencing technology at a 5-fold depth by
Novogene Co., Ltd., Beijing, China (https://cn.novogene.com/).
The raw data from Novogene were initially processed using Fastp
software (version: 0.20.1, https://github.com/OpenGene/fastp) with
parameters set to “-q 20 --length_required = 50” (Chen et al., 2018).
The processed data were then aligned to the Maize B73 RefGen_
v4 reference genome using bwa-mem software (version: 0.7.17,
https://github.com/lh3/bwa) with the ‘-M’ parameter (Chen et al.,
2018). The alignment results were sorted, and duplicates were
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marked using samtools (version: 1.6, https://www.htslib.org/) and
Picard (version: 2.18.29, https://broadinstitute.github.io/picard/)
software, respectively (Danecek et al., 2021). SNPs were identified
using Freebayes software (version: 1.3.6, https://github.com/
freebayes/freebayes) with default parameters (Garrison and
Marth, 2012). The raw SNPs were filtered to retain only those
with a missing rate (MR) < 5%, minor allele frequency (MAF) > 0.
05, and heterozygosity rate (HR) < 0.2, using an in-house Perl script.
After filtering, 1,684,029 high-quality SNPs were retained for
further analysis.

2.3 Genome-wide association analysis and
haplotype analysis

A total of 1,684,029 high-quality SNPs, evenly distributed
across the ten maize chromosomes, were retained for
subsequent linkage disequilibrium (LD) calculation and GWAS
analysis. LD analysis was conducted using TASSEL5 software
(version: 5.2.90, https://tassel.bitbucket.io/), and LD decay
visualization was achieved using an R programming script
provided by Zhang X. et al. (2022) (Bradbury et al., 2007;
Zhang A. et al., 2022). GWAS analysis on the four kernel-
related traits including HKW, KL, KW, and KD was carried out
with GEMMA software (version: 0.98.5, https://github.com/
genetics-statistics/GEMMA) employing a mixed linear model
(MLM) (Zhou and Stephens, 2012). The number of effective
SNPs, calculated using GEC software (version: 1.0, https://
pmglab.top/gec/#/), determined the p-value threshold (Li et al.,
2012). Manhattan and QQ plots were generated using CMplot
(https://github.com/YinLiLin/CMplot) packages in R.

SNPs with a p-value < 1 × 10−3 from the GWAS were used for
developing haplotype and subsequent haplotype-trait regression
analysis. The development of haplotype was performed using
LDBlockShow software (version: 1.40, https://github.com/BGI-
shenzhen/LDBlockShow) with default parameters (Dong et al.,
2021). The identified haplotype blocks were used to carry out the
haplotype-trait regression (HTR) analysis with four kernel-related
traits using stepwise regression with forward elimination in R
(Rashid et al., 2022).

2.4 Prediction and functional annotation
analysis of candidate genes

Genes located within 106.12 kb (genome-wide average distance
of LD decay to r2 = 0.2) around the significantly associated SNPs
were selected as the candidate genes. Functional annotation of
candidate genes was performed using files from MaizeGDB
(https://maizegdb.org/) and agriGOV2 (http://systemsbiology.cau.
edu.cn/agriGOv2/) for GO functional annotation (Tian et al., 2017).
The expression level dataset was downloaded from the maizeGDB
and filtered based on kernel-related tissues (Kakumanu et al., 2012;
Johnston et al., 2014; Forestan et al., 2016; Stelpflug et al., 2016;
Walley et al., 2016; Waters et al., 2017). The expression data of
candidate genes were obtained from the filtered dataset. Finally, the
expression results of candidate genes were visualized using the
heatmap package in R.

2.5 Genomic selection analysis

The Ridge Regression Best Linear Unbiased Prediction (RRBLUP)
model was employed for genomic prediction analysis (Endelman,
2011). Based on the phenotypic variation explained (PVE) values, the
top 100, 500, 1,000, 3,000, 5,000, and 10,000 SNPs datasets were used
to estimate the prediction accuracy for all four kernel-related traits. At
each marker density, SNPs were randomly selected 500 times, and a
five-fold cross-validation scheme with 500 repetitions was applied. In
addition, 10%–90% of total population size, with a 10% interval, was
set as the training population to explore the effect of training
population size on the estimation of the prediction accuracy for all
four kernel-related traits.

3 Results

3.1 Phenotypic variation and heritability of
kernel size and weight

The HKW, KL, KW, and KD in the GWAS panel ranged from
9.24 to 26.80 g, 10.94–16.09 mm, 9.75–10.91 mm, and
10.32–12.32 mm, respectively, with averages of 17.44 g,
16.09 mm, 10.91 mm, and 12.32 mm (Table 1). Significant
variation was observed in kernel size and weight. The broad-
sense heritability (h2) for these traits ranged from 0.19 to 0.87 in
the GWAS panel, i.e., 0.87 for HKW, 0.54 for KL, 0.19 for KW, and
0.29 for KD. This result shows HKW and KL exhibited higher
heritability, whereas KW and KD had relatively lower values. These
findings indicate that HKW and KL were under stronger genetic
control, whereas KW and KD were influenced to a lesser extent by
genetic factors. The differences in heritability among these traits
may reflect the extent of genetic variation within the population,
providing valuable insights to further understand the genetic
mechanisms and breeding applications of these kernel-related traits.

Density plots of the four kernel-related traits showed bimodal
distributions (Figures 1A–D), suggesting major genes may regulate
these traits in the associated panel. Additionally, the panel was divided
into two subgroups based on the source information of sweet and waxy
maize germplasm. Within each subgroup, correlation analyses of the
traits were performed. In the waxy maize subgroup, the correlation
coefficients between HKW and KL, KW, and KD were 0.61, 0.77, and
0.75, respectively (Figure 2A). In contrast, the sweet maize subgroup
showed lower correlation coefficients of 0.22, 0.50, and 0.44, respectively
(Figure 2B). This suggests that KL, KW, and KD were jointly
contributed to regulating kernel weight in both sweet and waxy maize.

3.2 SNP calling, filtering, and characterizing

The raw sequencing data were filtered, aligned to the maize
B73v4 genome, and PCR duplicates were removed. This process
identified 45, 728, 361 raw SNPs using Freebayes software. After
filtering, 1,684,029 SNPs were retained for further analysis. The
number of high-quality SNPs ranged from 120,666 on chromosome
10 to 245,799 on chromosome 1, with an average of 168,402 SNPs
per chromosome. The density of these SNPs varied from
732.20 SNPs per megabase (Mb) on chromosome 6 to
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TABLE 1 The means and their standard errors (SE), genetic variances (VG), genotype-environment interaction variances (VGE), error variances (Ve), and
heritability estimates (h2) for kernel-related traits across two environments in the associated panel.

Trait Minimum Maximum Mean ± SE VG VGE Ve h2

HKW (g) 9.24 26.8 17.44 ± 0.19 19.1 4.42 4.04 0.87

KL (mm) 10.9 16.1 12.79 ± 0.05 2.77 4.53 0.39 0.54

KW (mm) 9.75 10.9 10.26 ± 0.01 0.38 3.12 0.31 0.19

KD (mm) 10.3 12.3 11.14 ± 0.02 0.74 3.47 0.29 0.29

FIGURE 1
Distribution of phenotypes for HKW (A), KL (B), KW (C), and KD (D) in the GWAS panel.
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834.24 SNPs/Mb on chromosome 3, averaging 799.51 SNPs/Mb, as
shown in Supplementary Table S1. The high-quality SNPs were
distributed relatively evenly across all ten chromosomes of the maize
B73v4 genome (Figure 3). The missing rate for SNPs across
447 maize inbred lines ranged from 0 to 0.05, with an average of
0.04 (Figure 4A), while SNP heterozygosity ranged from 0 to 0.1,
averaging 0.02 (Figure 4B). The minor allele frequency (MAF)

ranged from 0.05 to 0.5, with an average of 0.21 (Figure 4C).
This SNP dataset was deemed suitable for subsequent GWAS
analysis. Within this GWAS panel, the LD decay distance was
106.12 kb at r2 = 0.2, estimated with this high-quality SNP
dataset (Figure 4F).

Principal component analysis revealed that the first three
components accounted for 15.73% of the total SNP variance

FIGURE 2
Frequency distribution and correlation analysis of HKW, KL, KW, and KD in waxy maize subgroup (A) and sweet maize subgroup (B) across two
environments.

FIGURE 3
Heatmap of distribution of SNP density on ten maize chromosomes.
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(10.42% for PC1, 3.20% for PC2, and 2.11% for PC3), clearly classifying
the 477 maize inbred lines into two subgroups corresponding to the
original information of the sweet and waxy maize germplasm (Figures
4D, E). The sweet-waxy maize inbred lines were divided into either
sweet maize subgroup or waxy maize subgroup, rather than being
grouped into a separate subgroup. These findings reflect a correlation
between domestication levels and selection intensity, leading to reduced
genetic diversity.

3.3 Genome-wide association analysis and
haplotype traits regression analysis

The GWAS analysis results from the GEMMA software showed
that GWAS effects for HKW, KL, KW, and KD were 17.48, 12.77,
10.25, and 11.13, respectively. Meanwhile, the total PVE for HKW,

KL, KW, and KD was 73.32%, 60.33%, 50.07%, and 52.05%,
respectively (Table 2). After analyzing with the GEC software, the
number of effective SNP in the association panel was 445,324. The
threshold of p-value was set to 1.12 × 10−7, based on the number of
effective SNPs and familywise error rate of α = 0.05. A total of 49 SNPs
were significantly associated with the four kernel-related traits
identified by GEMMA with the MLM model (Figures 5, 6). Out of
these 49 SNPs, 19 were significantly associated with HKW, 19 with
KL, 5 with KW, and 6 with KD (Supplementary Table S2). These
significant SNPs were located on chromosome 3, 4, and 7, with counts
of 46, 2, and 1, respectively. The PVE of these significant SNPs ranged
from 6.27% to 12.33%, with an average value of 7.73%. Themaximum
PVE values were 12.33% (S3_220335807) for HKW, 9.25% (S3_
220227161) for KL, 7.95% (S3_222360985) for KW, and 7.55%
(S3_220227161) for KD. Meanwhile, the minimum p-values for
HKW, KL, KW, and KD were 5.66 × 10−14, 1.30 × 10−10, 2.30 ×
10−9, and 7.62 × 10−9, respectively.

After applying a filtering criterion of p-value < 0.001, the numbers
of retained SNPs were 1,808 for HKW, 3,213 for KL, 2,350 for KW,
and 2,550 for KD. These were used in haplotype analyses conducted
using the LDblockshow software. The analysis formed 316, 438, 338,
and 370 haplotype blocks for HKW, KL, KW, and KD, respectively,
which were then used for HTR analyses using BLUP for the kernel-
related traits (Supplementary Table S4). The HTR analysis detected
61, 122, 66, and 89 significant haplotypes for HKW, KL, KW, and KD,
respectively, with adjusted p-values < 0.05. The PVE values of the
haplotypes ranged from 1.10% to 6.28% for HKW, 1.09%–11.76% for

FIGURE 4
Distribution of the missing rate (A), heterozygosity rate (B), and minor allele frequency (C) of genotype. The scatter plot of the first three principal
components of the GWAS panel (D, E), and the LD decay plot in GWAS panel (F).

TABLE 2 The PVE and their standard errors (SE), genetic variances (VG), error
variances (Ve), and Beta and their standard errors (SE) for GWAS using mix
liner model in the associated panel.

Traits PVE ± SE (%) VG Ve Beta ± SE

HKW 73.32 ± 5.58 7.83 2.85 17.48 ± 0.08

KL 60.33 ± 5.18 0.34 0.22 12.77 ± 0.02

KW 50.07 ± 5.68 0.02 0.02 10.25 ± 0.01

KD 52.05 ± 5.52 0.05 0.04 11.13 ± 0.01
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KL, 1.21%–6.78% for KW, and 1.17%–10.19% for KD
(Supplementary Table S5). Notably, haplotype of hap6.16 for
HKW on chromosome 6, comprising two SNPs at 142 Mb (S6_
142324685 and S6_142324939), had the lowest adjusted p-value of
1.01 × 10−5. Similarly, haplotype of hap4.62 for KL on chromosome 4,
formed by 51 SNPs at 239 Mb, had the lowest adjusted p-value of
4.19 × 10−11. Haplotype of hap3.10 for KW on chromosome 3,
consisting of two SNPs at 161 Mb, and haplotype of hap9.23 for
KD on chromosome 9, formed by six SNPs at 129 Mb, also
demonstrated significantly low adjusted p-values of 4.19 × 10−11

and 2.20 × 10−9, respectively.

3.4 Functional annotation of
candidate genes

In total, 40 candidate genes were identified in the genomic
regions spanning 106.12 kb upstream and downstream of the
significant associated SNPs, and the annotation of candidate
genes was performed using the B73 RefGen_v4 as the reference
genome. Among them, the number of candidate genes identified for
HKW, KW, KL, and KD was 25, 20, 14, and 18, respectively
(Figure 7A). A dataset comprising expression levels from
194 maize tissues was downloaded from MaizeGDB and refined
to include data from 34 kernel-related tissues. From this refined
dataset, expression data for 40 candidate genes were extracted
(Figure 7B). The gene Zm00001d044129 exhibited the highest
expression with an FPKM value of 1,599.63 in the endosperm
tissue 16 days after pollination in the B73 inbred line. Among
the 40 candidate genes, only Zm00001d000713, Zm00001d044149,
and Zm00001d044123 did not exhibit expression in these kernel-
related tissues. In contrast, the remaining 37 genes were expressed in
these tissues (FPKM > 1).

Function annotations were available for 26 of the 40 candidate
genes (Supplementary Table S3). Zm00001d000707 and
Zm00001d044139 were associated with all four kernel-related
traits. Notably, Zm00001d044129 and Zm00001d044143, encoding
glucose-1-phosphate adenylyltransferase and ubiquitin carboxyl-
terminal hydrolase 27 respectively, have been reported for
regulation of HKW and KL. Mutations in Zm00001d044129
caused maize kernel shrinkage. These genes can directly or
indirectly regulate the weight and size of maize kernels.

Thirty-five candidate genes were annotated with 174 GO terms:
105 for biological processes, 35 for cellular components, and 34 for
molecular functions (Supplementary Table S6). These terms include
signal transduction (GO:0007165), multicellular organism development
(GO:0007275), regulation of hormone levels (GO:0010817), signaling
(GO:0023052), developmental processes (GO:0032502), hormone
metabolic process (GO:0042445), and cellular developmental process
(GO:0048869), which may be involved in maize kernel development.

3.5 Estimation of genomic prediction
accuracies

The accuracy of genomic prediction improves as the number of
SNPs increases (Figure 8A). For HKW, the prediction accuracy
increased from 0.67 with 100 SNPs to 0.94 with 10,000 SNPs. For
KL, it rose from 0.81 with 100 SNPs to 0.94 with 10,000 SNPs. For
KW, the prediction accuracy increased from 0.76 with 100 SNPs to
0.90 with 10,000 SNPs. For KD, it went from 0.78 with 100 SNPs to
0.91 with 10,000 SNPs (Table 3). At a scale of 10,000 SNPs, the
prediction accuracy for all traits is consistently above 0.90.

The accuracy of genomic prediction also improves with the
increase of the training population size (Figure 8B). For HKW, the
prediction accuracy increased from 0.88 with 10% of the GWAS

FIGURE 5
The Manhattan plots of GWAS results for HKW (A), KL (B), KW (C), and KD (D) using the mixed linear model. The cut-off of 0.01/number of effective
SNPs and 0.05/number of effective SNPs are represented by red and blue parallel lines, respectively.
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panel as the training population to 0.95 with 90%. For KL, the
prediction accuracy increased from 0.91 with 10% of the GWAS
panel as the training population to 0.94 with 90% of the GWAS
panel as the training population. For KW, it rose from 0.86 with 10%
of the GWAS panel as the training population to 0.90 with 90% of
the GWAS panel as the training population. For KD, the prediction
accuracy increased from 0.88 with 10% of the GWAS panel as the
training population to 0.92 with 90% of the GWAS panel as the
training population (Table 4). The prediction accuracy for the four
traits tends to saturate, whenmore than 60% of the GWAS panel was
used as the training population.

These results revealed that a set of 10,000 SNPs and a training
population size of 30% are sufficient for the application of GS in
waxy and sweet maize breeding for kernel weight and kernel size.

4 Discussion

The kernel weight and size are among the most crucial factors
influencing grain yield in maize (Liu et al., 2017). In the present study,
GWAS, HTR, and GS analyses were conducted to dissect the genetic
architecture of four kernel-related traits of HKW, KL, KW and KD in

a representative sweet and waxy maize inbred line panel. The
phenotypic analysis results of the four kernel-related traits across
two environments revealed that the heritability of HKW and KL is
moderately high, being 0.87 and 0.54, respectively. Both the genetic
effects and genetic-environment interaction are significant, while the
environmental effects are not significant, indicating that these two
traits are primarily influenced by genetic factors. On the other hand,
KW and KD exhibit lower heritability, with values of 0.19 and 0.29,
respectively. This may be attributed to the relatively small phenotypic
variation of these traits in this GWAS panel. The observed differences
in heritability among these traits may reflect varying levels of genetic
variation within the GWAS panel. Such insights are valuable for
further understanding the genetic mechanisms underlying these
kernel-related traits and can inform breeding strategies aimed at
improving specific characteristics, particularly those with higher
heritability like HKW and KL.

In GWAS, high-density and high-quality SNPs across the entire
maize genome are essential to identify the SNPs significantly
associated with the target traits. Genotyping by target sequencing
(GBTS), genotyping-by-sequencing (GBS), and chip-based
genotyping have been extensively utilized in the GWAS studies
in maize (Xu et al., 2017; Wang et al., 2020c; Guo et al., 2021;

FIGURE 6
The quantile-quantile (QQ) plots of GWAS results for HKW (A), KL (B), KW (C), and KD (D) using the mixed linear model.
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Vinayan et al., 2021). Compared with these genotyping methods,
whole-genome resequencing has a higher genome coverage and SNP
density. With the dramatic decrease in the cost of whole-genome
resequencing, this genotyping technique is being widely applied in
GWAS analyses in maize (Xiao et al., 2017). In the present study,
with the availability of the resequencing dataset of 447 sweet and
waxy maize inbred lines, a saturated genome-wide dataset including

1,684,029 SNPs was used for GWAS analysis, the results showed the
high-quality and high-density SNP dataset extracted from the re-
sequencing data is powerful for obtaining more accurate results.

In this GWAS panel, PCA analysis distinctly divided the
447 maize inbred lines into two subgroups (Figures 4D,E). The
results indicated that there was a very small partial germplasm
exchange between sweet and waxy maize inbred lines in breeding

FIGURE 7
(A) Venn plot of candidate genes overlapping among the four kernel-related traits. (B) The expression heatmap of the candidate genes in kernel-
related tissues.

FIGURE 8
Genomic prediction accuracy of HKW, KL, KW, and KD in the population (A) when the number of SNPs varied from 100 to 30,000 with 8 scales, (B)
when the training population size ranged from 10% to 90% of the total population size.
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selection. The main emphasis is on the improvement within each
subgroup. Meanwhile, the LD decay distance at r2 = 0.2 was
106.12 kb, which is much greater than the LD decay distance of
33 kb in 350 modern maize lines developed from 2000 to 2010 in
China (Wang B. et al., 2020), indicating lower genetic diversity of the
GWAS panel used in the present study. Sweet and waxy maize are
primarily cultivated for human consumption. The breeding process
has historically emphasized traits linked to eating quality and
nutritional value, resulting in decreased genetic diversity and
increased linkage disequilibrium among genetic loci.

The GWAS has been shown to be an effective strategy for mining
genetic loci for kernel weight and size (Liu et al., 2020). Due to the
relatedness among maize inbred lines, the GWAS was conducted using
the mixed linear model with the incorporation of the kinship matrices.
The p-value of SNPs was the parameter to assess the association level
between SNP and the trait. The smaller the p-value, themore significant
the association between SNPs and the trait. To control the familywise
error rate, 0.05/number of effective SNPs were used as the cut-off to
ensure statistical significance for these SNPs (Li et al., 2022). In total,
49 SNPs were significantly associated with the four kernel-related traits
based on the strict cut-off of the p-value. Candidate gene analysis
revealed that 40 genes are the putative candidate genes for the four
kernel-related traits. Out of these 40 genes, 37 genes were expressed in

the kernel-related tissues of maize. Zm00001d044129 encodes the ADP-
glucose pyrophosphorylase that affects starch metabolism in the maize
endosperm (Bhave et al., 1990). Maize with mutations in the
Zm00001d044129 gene exhibits a kernel shrunkage, affecting the
weight and size of the maize kernel. Although the genes
Zm00001d000707 and Zm00001d044139 lack functional annotations,
they were found to be associated with all four kernel-related traits.
Further experiments are needed to validate their functional
characterization. Based on the GWAS results, functional markers
can be developed, which will facilitate the marker-assisted selection
to improve these kernel-related traits in sweet and waxy maize.

Genomic prediction has been successfully applied to several
crops to accelerate the grain yield in maize breeding programs
(Wang et al., 2020b). In the present study, the top 10,000 SNPs
with the highest PVE values for each kernel-related trait were used
for the GP analysis. In this GWAS panel, the predictive accuracy
increased as the increase of the training population size. At a training
population size of 10%, the lowest predictive accuracy for the four
kernel-related traits, notably KW, reached 0.86. As the training
population size increased, the prediction accuracy for HKW and KL
stabilized around 0.94, while for KW and KD, it plateaued at
approximately 0.91. Compared to previous approaches using
SNPs significantly associated with the trait or random SNPs for
GP analysis, this method exhibited higher predictive accuracy in GP
analysis (Dang et al., 2023; Liu et al., 2023). Meanwhile, the
predictive accuracy increased with the expansion of the SNPs
from 100 to 10,000. At 500 SNPs, the predictive accuracy for the
four kernel-related traits reached approximately 0.80. In this study,
more than one and a half millions SNPs were used for GWAS
analyses. However, our GS results showed that the prediction
accuracies for all the kernel-related traits reached plateaus above
0.90, when 10,000 SNPs were used in prediction, these prediction
accuracies are relatively high, indicating that using all the more than
one million SNPs for prediction is not necessary. In practical
applications, the KASP genotyping platform can be used
(Semagn et al., 2014; Qu et al., 2022). This genotyping platform
offers a faster and more cost-effective approach for low-density
genotyping of a large number of individuals (500 SNPs). The
prediction accuracies for four kernel-related traits were above
0.90 using 10,000 SNPs. In this case, the GBTS platform, suitable
for medium-density genotyping, can be used (Guo et al., 2019).
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