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Objective: The aimof this studywas to replicate associations of GWAS-significant
loci with severe COVID-19 in the population of Central Russia, to investigate
associations of the SNPs with thromboinflammation parameters, to analyze
gene-gene and gene-environmental interactions.

Materials and Methods: DNA samples from 798 unrelated Caucasian subjects
from Central Russia (199 hospitalized COVID-19 patients and 599 controls with a
mild or asymptomatic course of COVID-19) were genotyped using probe-based
polymerase chain reaction for 10 GWAS-significant SNPs: rs143334143 CCHCR1,
rs111837807 CCHCR1, rs17078346 SLC6A20-LLZTFL1, rs17713054 SLC6A20-
LLZTFL1, rs7949972 ELF5, rs61882275 ELF5, rs12585036 ATP11A,
rs67579710 THBS3, THBS3-AS1, rs12610495 DPP9, rs9636867 IFNAR2.

Results: SNP rs17713054 SLC6A20-LZTFL1 was associated with increased risk of
severe COVID-19 in the entire group (risk allele A, OR = 1.78, 95% CI = 1.22–2.6,
p = 0.003), obese individuals (OR = 2.31, 95% CI = 1.52–3.5, p = 0.0002, (pbonf =
0.0004)), patients with low fruit and vegetable intake (OR = 1.72, 95% CI =
1.15–2.58, p = 0.01, (pbonf = 0.02)), low physical activity (OR = 1.93, 95% CI =
1.26–2.94, p = 0.0035, (pbonf = 0.007)), and nonsmokers (OR = 1.65, 95% CI =
1.11–2.46, p = 0.02). This SNP correlated with increased BMI (p = 0.006) and
worsened thrombodynamic parameters (maximum optical density of the formed
clot, D (p = 0.02), delayed appearance of spontaneous clots, Tsp (p = 0.02), clot
size 30 min after coagulation activation, CS (p = 0.036)). SNP
rs17078346 SLC6A20-LZTFL1 was linked with increased BMI (p = 0.01) and
severe COVID-19 in obese individuals (risk allele C, OR = 1.72, 95% CI =
1.15–2.58, p = 0.01, (pbonf = 0.02)). SNP rs12610495 DPP9 was associated
with increased BMI (p = 0.01), severe COVID-19 in obese patients (risk allele
G, OR = 1.48, 95% CI = 1.09–2.01, p = 0.01, (pbonf = 0.02)), and worsened
thrombodynamic parameters (time to the start of clot growth, Tlag (p= 0.01)). For
rs7949972 ELF5, a protective effect against severe COVID-19 was observed in
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non-obese patients (effect allele T, OR = 0.67, 95% CI = 0.47–0.95, p = 0.02,
(pbonf = 0.04)), improving thrombodynamic parameters (CS (p = 0.02), stationary
spatial clot growth rates, Vst (p = 0.02)). Finally, rs12585036 ATP11A exhibited a
protective effect against severe COVID-19 in males (protective allele A, OR = 0.51,
95% CI = 0.32–0.83, p = 0.004). SNPs rs67579710 THBS3, THBS3-AS1,
rs17713054 SLC6A20-LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2—were
involved in two or more of the most significant G×G interactions (pperm ≤ 0.01).
The pairwise combination rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-
LZTFL1 was a priority in determining susceptibility to severe COVID-19 (it was
included in four of the top five most significant SNP-SNP interaction models).

Conclusion:Overall, this study represents a comprehensivemolecular-genetic and
bioinformatics analysis of the involvement of GWAS-significant loci in the
molecular mechanisms of severe COVID-19, gene-gene and gene-
environmental interactions, and provides evidence of their relationship with
thromboinflammation parameters in patients hospitalized in intensive care units.

KEYWORDS

chronic diseases, genotyping, COVID-19, GWAS, thromboinflammation syndrome,
rs17713054, rs17078346, rs12610495

1 Introduction

The emergence of coronavirus disease 2019 (COVID-19) at the close
of 2019 brought forth an array of symptoms and outcomes stemming
from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2). Globally, the case fatality rate of COVID-19 ranges from 1% to 17%.
Various factors, like the size of the population tested, demographic
characteristics, ethnicity, the effectiveness of healthcare systems, and
virus variants can affect the rates of mortality from COVID-19 (https://
coronavirus.jhu.edu/data/mortality (accessed 18 March 2024)).
However, the most common cause of death from COVID-19 is
severe disease, manifested by immune dysregulation and the onset of
a cytokine storm (CS) (Kim et al., 2021), characterized by a rapid surge in
proinflammatory cytokines and other markers of inflammation. This
hyperinflammation leads to coagulopathies, oxidative stress, organ
failure, and ultimately, mortality (Silva et al., 2023). Hypercoagulation
and micro-clot formation are critical factors in the molecular
pathogenesis of COVID-19, contributing significantly to its
complications and adverse outcomes (Pretorius et al., 2020).
Furthermore, we are becoming increasingly aware of COVID-19
long-term consequences on various organ systems, including the
pulmonary, cardiovascular, hematologic, renal, central nervous
system, gastrointestinal, and psychosocial manifestations (Joshee et al.
, 2022; Ma et al., 2022). This growing comprehension underscores the
imperative to delve deeper into the understanding of COVID-19.

Understanding why some individuals experience asymptomatic
or mild courses while others face intensive care unit (ICU)
admissions with severe organ failure and mortality remains a
critical challenge and the subject of much research worldwide
(Carvalho et al., 2023; Collins et al., 2023).

To date, it is known that lifestyle factors such as fruit and
vegetable consumption and physical activity significantly influence
the severity of COVID-19 (Yedjou et al., 2021; Tadbir Vajargah
et al., 2022; Tavakol et al., 2023). However, host genetic factors play
no less a significant role, as evidenced by findings from molecular-
genetic studies. Genes such as SLC6A20, LZTFL1, IFNAR2, DPP9,
CCHCR1, ELF5, ATP11A and THBS3 have been identified as

potentially contributing to severe COVID-19 and hospitalization
in genome-wide association studies (Severe Covid-19 GWAS Group
et al., 2020; Lee et al., 2021; Horowitz et al., 2022; Kousathanas et al.,
2022; Pairo-Castineira et al., 2021). Many of the genetic variants
identified by GWAS have been replicated in different populations
around the world, demonstrating their high predictive value for the
risk of severe COVID-19 (Rescenko et al., 2021; Garg et al., 2024).

Despite the wealth of genetic data, there is a significant lack of
researchworldwide on the relationship between genetic variants and the
severity of thromboinflammatory syndrome in COVID-19 patients, as
well as intergenic interactions, interactions between genetic variants and
environmental factors that could either mitigate or exacerbate the
impact of genetic variants on the severity of the disease.

Therefore, the aim of this pilot study was to i) investigate the
association between common single nucleotide polymorphisms
identified by GWAS and the risk of severe COVID-19 in a
Russian population; ii) investigate the most significant gene-gene
interactions associated with severe COVID-19; iii) evaluate the joint
influence of polymorphisms and environmental risk factors on
disease susceptibility; and iv) find out how COVID-19 GWAS
loci influence the features of the clinical manifestations of the
disease, including thrombodynamic parameters.

2 Materials and methods

2.1 Study design

The study’s fundamental structure, along with the materials and
tools employed, are outlined in Figure 1.

2.2 Study participants

The study included 798 unrelated individuals from Central
Russia, comprising 199 hospitalized COVID-19 patients and
599 patients of the control group. The Ethical Review Committee
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of Kursk State Medical University approved the study protocol
(protocol №1 from 11 January 2022), and all participants
provided written informed consent. The patients were enrolled in
the study during the COVID-19 pandemic from 2020 to 2022 at the
intensive care units (ICU) of Kursk Regional Hospital №6 and
Kursk Regional Tuberculosis Dispensary. All patients had a PCR-
confirmed diagnosis of COVID-19. The control group consisted of
healthy volunteers from Biobank of Research Institute for Genetic
and Molecular Epidemiology (Bushueva O. et al., 2015; OYu et al.,
2015) who had mild or asymptomatic COVID-19 and did not need
ICU admission (Bushueva, 2020; Kobzeva et al., 2022; Belykh et al.,
2023). Supplementary Table S1 provides the baseline and clinical
characteristics of the study cohort.

In accordance with WHO guidelines (Amine et al., 2003), low fruit
and vegetable consumption was defined as consuming less than 400 g
per day. Adequate consumption of fresh vegetables and fruits was
defined as consuming 400 g or more, equivalent to 3-4 servings per day,
excluding starchy tubers like potatoes. Insufficient physical activity was
characterized by engaging in less than 180min per week of moderate to
vigorous physical activities. This encompassed various forms of exercise,
including leisure activities such as walking and running as well as fitness
club exercises like treadmill running, aerobics, or resistance training.
Obesity is assessed using the Body Mass Index (BMI), a measurement
based on a person’s height and weight. A BMI of 30 or higher is
generally considered indicative of obesity.

2.3 Selection of genes and polymorphisms

For this study, we selected SNPs from the largest GWAS meta-
analysis of severe COVID-19 (top 20 SNPs with p-level of significance
of ≤1 × 10−20) (Pairo-Castineira et al., 2023). Then, SNPs with a minor
allele frequency<0.05 were excluded from the analysis, as well as loci for
which was unable to design probes for TaqMan-based-PCR (low CG
composition, presence of GC clamps, runs of identical nucleotides). In
total, 10 SNPs were included in the genotyping: rs143334143 CCHCR1
(chr6:31153649 (GRCh38)), rs111837807 CCHCR1 (chr6:31153455
(GRCh38)), rs17078346 SLC6A20-LZTFL1(chr3:45804256
(GRCh38)), rs17713054 SLC6A20-LZTFL1 (chr3:45818159
(GRCh38)), rs7949972 ELF5 (chr11:34480495 (GRCh38)),
rs61882275 ELF5 (chr11:34482745 (GRCh38)), rs12585036 ATP11A
(chr13:112881427 (GRCh38)), rs67579710 THBS3, THBS3-AS1 (chr1:
155203736 (GRCh38)), rs12610495 DPP9 (chr19:4717660 (GRCh38)),
rs9636867 IFNAR2 (chr21:33639 (GRCh38)).

2.4 Genetic analysis

The Laboratory of Genomic Research at the Research Institute
for Genetic and Molecular Epidemiology of Kursk State Medical
University (Kursk, Russia) performed genotyping. Up to 5 mL of
venous blood from each participant was collected from a cubital

FIGURE 1
Materials and methods of the study.
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vein, put into EDTA-coated tubes, and kept at −20 C until it was
processed. Defrosted blood samples were used to extract genomic
DNA using the standard methods of phenol/chloroform extraction
and ethanol precipitation. The purity, quality, and concentration of
the extracted DNA samples were assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States).

Genotyping of the SNPs was performed using allele-specific
probe-based polymerase chain reaction (PCR) according to the
protocols designed in the Laboratory of Genomic Research at the
Research Institute for Genetic andMolecular Epidemiology of Kursk
State Medical University. The Primer3 software was used for primer
design (Koressaar and Remm, 2007). A real-time PCR procedure
was performed in a 25 µL reaction solution containing 1.5 units of
Hot Start Taq DNA polymerase (Biolabmix, Novosibirsk, Russia),
approximately 10 ng of DNA, and the following concentrations of
reagents: 0.25 μM of each primer; 0.1 μM of each probe; 250 μM of
each dNTP; 3 mM MgCl2 for rs7949972, 3.5 mM MgCl2 for
rs61882275, 2 mM MgCl2 for rs12610495, and 2.5 mM MgCl2
for the remining SNPs; 1xPCR buffer (67 mM Tris-HCl, pH 8.8,
16.6 mM (NH4)2SO4, 0.01% Tween-20). The PCR procedure
comprised an initial denaturation for 10 min at 95°C, followed by
39 cycles of 92 °C for 30 s and 57 °C, 59 °C, 60 °C, 61 °C, 62 °C, 63 °C,
65 °C, 66 °C for 1 min (for rs12610495 DPP9, rs17078346 SLC6A20-
LZTFL1, rs17713054 SLC6A20-LZTFL1, rs111837807 CCHCR1,
rs9636867 IFNAR2, rs143334143 CCHCR1 and rs7949972 ELF5,
rs12585036 ATP11A and rs61882275 ELF5, rs67579710 THBS3,
THBS3-AS1, respectively). 10% of the DNA samples were
genotyped twice, blinded to the case-control status, in order to
assure quality control. Over 99% of the data were concordant. Due to
the Hardy-Weinberg equilibrium deviation in the control group for
SNP rs12610495 DPP9, all locus samples underwent re-genotyping.
The results were entirely consistent (100%) with the
initial genotypes.

2.5 Thrombodynamics analysis

The analysis utilized venous blood samples obtained from the
peripheral veins of patients upon admission to the ICU, prior to the
initiation of drug therapy or any other manipulations. Blood collection
involved vacuum tubes containing sodium citrate 3.2%, with a
maximum interval of 45 min between collection and centrifugation.

To isolate platelet-free plasma for the thrombodynamics test, a
“soft” double centrifugation method was used: samples underwent
initial centrifugation at 1,600 g for 15 min, followed by an additional
20 min at 1,600 g. Platelet-free plasma (120 µL) was used for the test
within 3 h.

The thrombodynamics test was performed using the laboratory
diagnostic system “Thrombodynamics Recorder TD-2". Blood
plasma was introduced into specialized cuvettes, into which an
“activator-insert” containing lipids and tissue factor protein was
added. This factor initiated the clotting process, simulating damage
to the blood vessel wall. Coagulation is initiated on the surface of an
activator fixed in space and extends into a thin layer of non-stirred
plasma. The growth of the fibrin clot was recorded by the device in
sequential photography mode with a digital camera using the dark
field method for 30 min.

Based on the obtained images, the Thrombodynamics Recorder
TD-2 software calculated the quantitative parameters of the spatial
dynamics of fibrin clot growth and spontaneous thrombus
formation, including: time to the start of clot growth (Tlag),
initial Vi) and stationary (Vst) spatial clot growth rates (the
slopes of the clot size curve vs time for the segments of 2–6 min
and 15–25min from the clot growth start for Vi and V, respectively),
the clot size at 30 min after coagulation activation (CS), the
maximum optical density of the formed clot (D), characterizing
its quality, and the time of appearance of spontaneous clots in the
sample (Tsp). This latter characteristic has substantial clinical value
because spontaneous clots (i.e., those that do not grow from the
activator surface) may only be observed in cases of serious
hypercoagulable states.

2.6 Statistical and bioinformatic analysis

The STATISTICA software (v13.3, United States) was utilized
for statistical processing. The normality of the distribution for
quantitative data was assessed using the Shapiro-Wilk’s test.
Given that the majority of quantitative parameters exhibited
deviations from normal distribution, they were presented as the
median (Me) along with the first and third quartiles [Q1 and Q3].
The Kruskal–Wallis test was used to compare quantitative variables
among three independent groups. Following that, groups were
contrasted pairwise using the Mann–Whitney test. To compare
quantitative variables among two independent groups, the Mann-
Whitney test was also performed. For categorical variables,
differences in statistical significance were evaluated using
Pearson’s chi-squared test with Yates’s correction for continuity.

The compliance of genotype distributions with Hardy-Weinberg
equilibrium was evaluated using Fisher’s exact test. The study
groups’ genotype frequencies and their associations with disease
risk were analyzed using the SNPStats software (https://www.
snpstats.net/start.htm (accessed on 18 February 2024)). The
additive model was considered for the genotype association
analysis. Associations within the entire group of COVID-19
patients/controls were adjusted for age and gender. Given the
potentially significant modifying influence of environmental risk
factors on the association of genetic markers with disease (Bushueva
et al., 2016; Polonikov et al., 2017), associations were analyzed based
on the presence or absence of the risk factor. When information
about the environmental risk factor was unavailable in the control
group (for fruit/vegetable intake, physical activity levels), the patient
group was compared to the overall control group. In such cases, the
Bonferroni correction was applied to account for multiple
comparisons.

The MB-MDR analysis tested two-, three-, and four-level
genotype combinations (G×G) and genotype-environment
combinations with the including of smoking as an environmental
risk factor (G×E). Smoking was analyzed as an environmental risk
factor in the analysis of G×E interactions (due to the high
pathogenetic significance of this environmental factor in the
development of severe COVID-19, as well as the lack of data
about other environmental factors like physical activity levels and
levels of fruit and vegetable intake in control group). Since SNPs
located in the same genes are in linkage disequilibrium, and linkage
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groups included no more than two SNPs, one of the SNPs was
included in the MB-MDR analysis. For each model, the empirical
p-value (pperm) was estimated using a permutation test. Permutation
testing was employed to improve the validity of the results obtained
(Calle et al., 2010). Because the default call to MB-MDR is designed
to simultaneously test all possible interactions of a given order, we
used 1,000 permutations to obtain accurate p-values. Models with
pperm < 0.01 were considered as statistically significant. All
calculations were adjusted for gender and age. Statistical analysis
was carried out using the R software environment. Models (on
average 3-4models of each level) with the highestWald statistics and
the lowest p-level of significance were included in the study.
Additionally, using the MB-MDR method, individual
combinations of genotypes associated with the studied
phenotypes were established (p < 0.05). Calculations were
performed in the MB-MDR program for the R software
environment (Version 3.6.3) (Ivanova, 2024).

Additionally, the most significant G×G and G×E models
were analyzed using the MDR method (the analysis included
genes that appeared in the 2 or more best models of 2-, 3- and 4-
locus G×G models in the analysis of intergenic interactions/
smoking and genes included in 2 or more best models of 2-, 3-
and 4-locus G×E models in the analysis of gene-environment
interactions with the including of smoking as an environmental
risk factor). The analysis was implemented in the MDR program
(v.3.0.2) (http://sourceforge.net/projects/mdr (accessed on
25 February 2024)). The MDR method was used to assess the
mechanisms of interactions (synergy, antagonism, additive
interactions (independent effects)) and the strength of
interactions (the contribution of individual genes/
environmental factors as the purpose of the study, to the
entropy of a trait and the contribution of interactions,
calculated as a percentage). The results of the MDR analysis
were visualized as a graph.

We conducted a mediation analysis using the “statsmodels”
package for Python to assess whether rs17713054, identified as a
genetic risk factor in overall group in our study, influences SARS-
CoV-2 directly or indirectly through other clinical conditions such
as essential hypertension (EH), coronary artery disease (CAD),
cerebrovascular accident (CVA) in anamnesis, chronic
obstructive pulmonary disease (COPD), and diabetes mellitus
type 2 (T2D).

The functional effects of SNPs were examined using
bioinformatics resources, the methodologies and functionalities of
which were comprehensively described in our prior research
(Kobzeva et al., 2023; Shilenok et al., 2023; Stetskaya et al., 2024):

• The bioinformatic tool GTExportal (http://www.gtexportal.
org/ (accessed on 28 February 2024)) was used to analyze the
link of SNPs with expression quantitative trait loci (eQTLs) in
lungs, whole blood, blood vessels, and adipose tissue
(Consortium, 2020).

• For additional examination of binding SNPs to expression
quantitative trait loci (eQTL) in peripheral blood, the
eQTLGen resource available at https://www.eqtlgen.org/
(accessed on 28 February 2024) was employed (Võsa et al., 2018).

• HaploReg (v4.2), a bioinformatics tool available at https://pubs.
broadinstitute.org/mammals/haploreg/haploreg.php (accessed

on 28 February 2024), was utilized to assess the associations
between GWAS SNPs and specific histone modifications
marking promoters and enhancers. These modifications
included acetylation of lysine residues at positions 27 and
9 of the histone H3 protein, as well as mono-methylation at
position 4 (H3K4me1) and tri-methylation at position 4
(H3K4me3) of the histone H3 protein. Additionally, the tool
was applied to investigate the positioning of SNPs in DNase
hypersensitive regions (Ward and Kellis, 2012).

• The atSNP Function Prediction online tool (http://atsnp.
biostat.wisc.edu/search (accessed on 29 February 2024)) was
used to evaluate the impact of SNPs on the gene affinity to
transcription factors (TFs) depending on the carriage of the
reference/alternative alleles (Shin et al., 2019). TFs were
included based on the degree of influence of SNPs on the
interaction of TFs with DNA calculated on the basis of a
positional weight matrix.

• Using the Gene Ontology online tool (http://geneontology.
org/ (accessed on 29 February 2024)), it was feasible to analyze
the joint involvement of TFs linked to the reference/SNP
alleles in overrepresented biological processes directly
related to the pathogenesis of severe COVID-19
(Consortium, 2019). Biological functions controlled by
transcription factors associated with SNPs were used as
functional groups.

• The Lung Disease Knowledge Portal (LKP) (https://cd.
hugeamp.org/ (accessed on 29 February 2024)), which
combines and analyzes the results of genetic associations of
the largest consortiums for the study of lung diseases, was used
for bioinformatics analysis of associations of SNPs with
COVID-19 and intermediate phenotypes (such as FEV1,
FEV1 to FVC ratio, etc.).

3 Results

3.1 Genetic correlates between GWAS-
significant loci and the risk of severe
COVID-19

The genotype frequencies of SNPs within the study cohorts are
detailed in Supplementary Table S2. Because associations of genetic
markers with disease can lead to deviations from equilibrium, we
relied on the results of Hardy-Weinberg equilibrium analysis in the
control group. Within the control group, all studied SNPs exhibited
genotype frequencies consistent with Hardy-Weinberg equilibrium
(p > 0.05), except for rs12610495 DPP9 (Supplementary Table S2).
However, due to the fact that repeated genotyping of
rs12610495 showed 100% reproducibility of the primary results,
this SNP was included in the statistical analysis.

The analysis of the entire group (Table 1) revealed an association
between rs17713054 SLC6A20-LZTFL1 and the increased risk of
severe COVID-19 course, regardless of sex and age: risk allele A,
OR = 1.78, 95% CI = 1.22–2.6, p = 0.003. Sex-stratified analysis
(Supplementary Table S3) showed that rs17713054 SLC6A20-
LZTFL1 elevates the risk of severe COVID-19 both in males
(OR = 1.91, 95% CI = 1.12–3.26, p = 0.02) and females (OR =
1.63, 95% CI = 1.03–2.58, p = 0.04); additionally, we found that
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rs12585036 ATP11A lowers the risk of severe COVID-19 in males
(protective allele T; OR = 0.51, 95% CI = 0.32–0.83, p = 0.004).

Mediation analysis revealed that the indirect effect of
rs17713054 through T2D, CVA, and EH was insignificant,
accounting for 0%, 2.79%, and 5.48% respectively, in the
sequential analysis of these conditions. Adding these variables to
the logistic regression model did not render the influence of
rs17713054 on SARS-CoV-2 statistically insignificant.

Conversely, adding COPD or CAD to the model rendered the
influence of rs17713054 on SARS-CoV-2 insignificant (with the
model including COPD showing a weaker effect and the significance
level remaining within the statistical trend, p < 0.1). Mediation
analysis for these variables showed that the contribution of
rs17713054 to SARS-CoV-2, mediated through COPD and CAD,
was 18.57% and 71.54% respectively. This suggests that the influence
of rs17713054 on SARS-CoV-2 is likely mediated through other
clinical conditions, primarily through CAD
(Supplementary Table S4).

3.2 Gene-gene interactions associated with
severe COVID-19

Using the MB-MDR method, five most significant models of
intergenic interactions associated with the severe course of COVID-
19 were established: one two-locus model, three three-locus and one
four-locus models (pperm ≤ 0.001) (Table 2). In total, the best models of
G×G interactions included eight polymorphic loci, four of
which—rs67579710 THBS3, THBS3-AS1, rs17713054 SLC6A20-
LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2—were involved in 2 or

more of the most significant G×G interactions. We analyzed the
interactions of these genetic variants using the MDRmethod (Figure 2).

The MDR method, firstly, showed that the genetic variants
included in the best G×G models are characterized by antagonism/
additive (independent) effects. Secondly, the mono-effects of SNPs are
comparable to the effects of gene-gene interactions in terms of their
contribution to the entropy of COVID-19, with the exception of
rs17713054, which showed the most prominent mono-effect (1.15%).
Thirdly, combinations of genotypes of GWAS-significant SNPs
associated with severe COVID-19 are listed in Supplementary
Table S4. The combinations with the most pronounced
associations with severe COVID-19 are as follows:
rs67579710 THBS3, THBS3-AS1 G/G×rs17713054 SLC6A20-
LZTFL1 A/G (Beta = 0.15378, p = 0.0001); rs67579710 THBS3,
THBS3-AS1 G/G×rs17713054 SLC6A20-LZTFL1
A/G×rs143334143 CCHCR1 G/G (Beta = 0.16359, p =
0.0002 rs7949972 ELF5 T/C×rs67579710 THBS3, THBS3-AS1
G/G×rs12610495 DPP9 G/A) (Beta = 0.11149, p = 0.01);
rs9636867 IFNAR2 G/G×rs67579710 THBS3, THBS3-AS1
G/G×rs17713054 SLC6A20-LZTFL1 A/G (Beta = 0.215831, p =
0.0003); rs7949972 ELF5 T/C×rs9636867 IFNAR2
G/G×rs67579710 THBS3, THBS3-AS1 G/G×rs17713054 SLC6A20-
LZTFL1 A/G (Beta = 0.278009, p = 0.002) (Supplementary Table S5).

3.3 Environmental-associated correlates of
GWAS SNPs

GWAS SNPs were assessed for their potential contribution to
COVID-19 severity in combination with environmental risk factors

TABLE 1 Results of the analysis of associations between GWAS SNPs and severe COVID-19 risk in the entire group.

Genetic variant Effect allele Other allele N OR [95% CI]1 p2

rs143334143
CCHCR1

A G 752 1.07 [0.72–1.59] 0.74

rs111837807
CCHCR1

C T 751 0.98 [0.64–1.50] 0.94

rs17713054
SLC6A20-LZTFL1

A G 753 1.78 [1.22–2.60] 0.003

rs17078346
SLC6A20-LZTFL1

C A 754 1.41 [0.99–2.02] 0.059

rs12585036
ATP11A

T C 749 0.87 [0.65–1.18] 0.37

rs12610495
DPP9

G A 749 1.03 [0.79–1.34] 0.82

rs7949972
ELF5

T C 743 0.92 [0.71–1.21] 0.56

rs61882275
ELF5

A G 751 1.17 [0.91–1.51] 0.21

rs67579710
THBS3, THBS3-AS1

A G 749 0.65 [0.41–1.05] 0.072

rs9636867
IFNAR2

G A 751 0.85 [0.65–1.11] 0.24

All calculations were performed relative to the minor alleles (Effect allele) with adjustment for sex, age; 1 - odds ratio and 95% confidence interval; 2– p-value; statistically significant differences

are marked in bold.
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such as smoking, fresh fruit and vegetable consumption, and
physical activity level (Supplementary Table S5). SNP
rs17713054 SLC6A20-LZTFL1 was associated with an increased
risk of severe COVID-19 risk among nonsmokers (risk allele A;
OR = 1.65, 95% CI = 1.11–2.46, p = 0.02), patients with low fruit and
vegetable intake (OR = 1.72, 95% CI = 1.15–2.58, p = 0.01, pbonf =
0.02), and patients with low levels of physical activity (OR = 1.93,
95% CI = 1.26–2.94, p = 0.0035, pbonf = 0.007)
(Supplementary Table S6).

Using the MB-MDR approach, the eight most significant
models of gene-environment interactions associated with

severe COVID-19 were identified: two two-level model, two
three-order models, and four four-level models (pperm ≤ 0.01)
(Table 3). In total, the best G×E models included smoking in
interaction with seven loci, five of which—rs7949972 ELF5,
rs17713054 SLC6A20-LZTFL1, rs9636867 IFNAR2,
rs12585036_ATP11A, rs12610495_DPP9—were involved in
two or more of the most significant G×E interactions. In the
next step, we analyzed the interactions between these genetic
variants and smoking using the multivariate dimensionality
reduction (MDR) method (Figure 3).

Firstly, MDR revealed that smoking as an environmental risk
factor has the least mono-effect (0.04% contribution to the entropy of
severe COVID-19). Secondly, the mono-effects of SNPs/smoking
(0.04%–1.15%) are comparable to the effects of gene-environment
interactions (0.01%–0.53%). Thirdly, rs17713054 has the maximum
mono-effect among the SNPs involved in the most significant gene-
environment interactions. (1.15% contribution to entropy). Fourthly,
smoking is characterized by multidirectional effects in interaction
with SNPs included in the best G×E models: pronounced synergism
in interaction with rs12610495, moderate synergism in interaction
with rs9636867, additive (independent) effects in interaction with
rs17713054, rs12585036, rs7949972. Fifth, the interactions between
the genetic variants included in the most significant G×E models are
antagonistic/independent (additive effects), with the exception of the
interactions between rs7949972 and rs12610495, which exhibit
pronounced synergism in interaction with each other. Sixthly, the
list of models of gene-environment interactions between GWAS
SNPs’ genotypes and smoking is presented in Supplementary
Table S6. The following gene-smoking interactions show the
strongest correlation with severe COVID-19: non-smokers ×
rs17713054 SLC6A20-LZTFL1 G/G (Beta = 0.06466, p = 0.031);
smokers × rs9636867 IFNAR2 A/A (Beta = 0.179684, p = 0.049);
non-smokers ×rs67579710 THBS3, THBS3-AS1
G/G×rs17713054 SLC6A20-LZTFL1 A/G (Beta = 0.162513, p =
6.77 × 10−5); non-smokers ×rs7949972 ELF5
T/C×rs9636867 IFNAR2 G/G×rs17713054 SLC6A20-LZTFL1 A/G
(Beta = 0.3137824, p = 0.002); smokers ×rs9636867 IFNAR2

TABLE 2 Gene-gene interactions associated with severe COVID-19 (MB-MDR modeling).

Gene-gene interaction models NH beta H WH NL beta L WL Wmax pperm

The best two-locus models of intergenic interactions (for models with Pmin. < 0.001, 1,000 permutations)

rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-LZTFL1 1 0.1538 15.21 1 −0.05222 2.886 15.21 0.002

The best three-locus models of intergenic interactions (for models with Pmin. < 1 × 10−4, 1,000 permutations)

rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-
LZTFL1× rs143334143 CCHCR1

2 0.1673 17.60 1 −0.05878 4.001 17.60 0.005

rs7949972 ELF5 × rs67579710 THBS3, THBS3-AS1 ×
rs12610495 DPP9

3 0.1370 19.41 2 −0.08620 6.019 19.41 0.008

rs9636867 IFNAR2 × rs67579710 THBS3, THBS3-AS1 ×
rs17713054 SLC6A20-LZTFL1

2 0.2242 18.84 1 −0.05784 3.391 18.84 0.018

The best four-locus models of gene-gene interactions (for models with Pmin. < 1 × 10−5, 1,000 permutations)

rs7949972 ELF5 × rs9636867 IFNAR2 × rs67579710 THBS3,
THBS3-AS1 × rs17713054 SLC6A20-LZTFL1

4 0.1990 24.34 2 −0.11414 7.205 24.34 0.046

Note: NH, is the number of interacting high-risk genotypes; beta H—regression coefficient for high-risk interactions identified at the second stage of analysis; WH, Wald statistics for high-risk

interactions; NL, number of interacting low-risk genotypes; beta L—regression coefficient for low-risk interactions identified at the second stage of analysis; WL, Wald statistics for low-risk

interactions; pperm—permutational significance levels for models (all models are adjusted for gender and age); Loci included in 2 or more best G×G models are indicated in bold.

FIGURE 2
Graph reflecting the structure and strength of the most
significant G×G interactions of GWAS-significant loci associated with
severe COVID-19. (Note: the color of the lines reflects the nature of
the interaction: red and orange lines mean pronounced and
moderate synergism, brown means additive effect of genes
(independent effects); % reflects the strength and direction of the
phenotypic effect of gene interaction (% entropy)).
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A/A×rs12585036 ATP11A C/C×rs17713054 SLC6A20-LZTFL1 G/G
(Beta = 0.648395, p = 0.0003); smokers ×rs9636867 IFNAR2
A/A×rs12610495 DPP9 G/A×rs17713054 SLC6A20-LZTFL1 G/G

(Beta = 0.485735, p = 0.003); non-smokers ×rs7949972 ELF5
C/C ×rs12610495 DPP9 A/A×rs12585036 ATP11A C/T (Beta =
0.157332, p = 0.01) (Supplementary Table S7).

TABLE 3 Gene-environmental interactions, associated with severe COVID-19 (MB-MDR modeling).

Gene-gene interaction models NH beta H WH NL beta L WL Wmax pperm

The best two-order models of gene-smoking interactions (for G×E models with Pmin. < 0.005, 1,000 permutations)

SMOKE × rs17713054 SLC6A20-LZTFL1 2 0.10911 8.737 1 −0.06466 4.696 8.737 0.02

SMOKE × rs9636867 IFNAR2 2 0.11407 7.307 1 −0.08059 3.742 7.307 0.048

The best three-order models of gene-smoking interactions (for G×E models with Pmin. < 0.005, 1,000 permutations)

SMOKE × rs67579710 THBS3, THBS3-AS1 ×
rs17713054 SLC6A20-LZTFL1

2 0.17901 14.892 2 −0.06870 5.292 14.892 0.009

SMOKE × rs9636867 IFNAR2 × rs12585036 ATP11A 2 0.19410 13.116 0 NA NA 13.116 0.045

The best four-order models of gene-smoking interactions (for G×E models with Pmin. < 1 × 10−5, 1,000 permutations)

SMOKE × rs7949972 ELF5 × rs9636867 IFNAR2 ×
rs17713054 SLC6A20-LZTFL1

4 0.3663 25.92 2 −0.12671 8.166 25.92 0.018

SMOKE × rs9636867 IFNAR2 × rs12585036 ATP11A ×
rs17713054 SLC6A20-LZTFL1

6 0.2709 27.16 1 −0.12411 4.163 27.16 0.024

SMOKE × rs9636867 IFNAR2 × rs12610495 DPP9 ×
rs17713054 SLC6A20-LZTFL1

5 0.2858 25.01 2 −0.13819 8.247 25.01 0.039

SMOKE × rs7949972 ELF5 × rs12610495 DPP9 ×
rs12585036 ATP11A

7 0.2118 27.69 2 −0.14928 7.334 27.69 0.045

Note: NH, is the number of high-risk interactions; beta H—regression coefficient for high-risk interactions identified at the second stage of analysis; WH, Wald statistics for high-risk

interactions; NL, number of interacting low-risk interactions; beta L—regression coefficient for low-risk interactions identified at the second stage of analysis; WL, Wald statistics for low-risk

interactions; pperm—permutational significance levels for models (all models are adjusted for gender, age); Loci included in 2 or more best G× E models are indicated in bold.

FIGURE 3
Graph reflecting the structure and power of the most significant G×E interactions of GWAS loci associated with severe COVID-19. (Note: The color
of the lines reflects the nature of the interaction: red means strong synergism, brown means additive (independent) effects, and % reflects the strength
and direction of the phenotypic effect of gene-environmental interaction (% of entropy)).
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3.4Obesity-depended associations of GWAS
SNPs with severe COVID-19

Considering the potential impact of BMI, particularly obesity,
on the severity of COVID-19, we carried out an analysis of
associations of GWAS SNPs with severe COVID-19 in groups of
patients stratified by BMI. Among patients with a BMI less than 30
(non-obese patients), the rs7949972 ELF5 variant was associated
with a reduced risk of severe COVID-19 (protective allele T, OR =
0.67, 95% CI = 0.47–0.95, p = 0.02, pbonf = 0.04) (Table 4). However,
in patients with obesity (BMI ≥30), increased risk of severe COVID-
19 was observed for the rs17713054 SLC6A20-LZTFL1 (risk allele A,
OR = 2.31, 95% CI = 1.52–3.5, p = 0.0002, pbonf = 0.0004),
rs12610495 DPP9 (risk allele G, OR = 1.48, 95% CI = 1.09–2.01,
p = 0.01, pbonf = 0.02), and rs17078346 SLC6A20-LZTFL1 (risk allele
C, OR = 1.72, 95% CI = 1.15–2.58, p = 0.01, pbonf = 0.02) (Table 4).

3.5 Relationship between GWAS- significant
loci and the clinical characteristics of severe
COVID-19 patients

The results of the associations between GWAS SNPs and clinical
characteristics of severe COVID-19 patients are presented in
Figure 4 and Supplementary Table S8.

Upon the analysis of clinical characteristics among hospitalized
COVID-19 patients, it was observed that rs17713054 SLC6A20-
LZTFL1 (p = 0.006), rs12610495 DPP9 (p = 0.01), and
rs17078346 SLC6A20-LZTFL1 (p = 0.01) were found to be linked
with increased BMI (Supplementary Table S7; Figures 4A–C).

Additionally, rs12610495 DPP9 correlated with a reduction in the
duration of oxygen therapy (Figure 4D). The maximum optical
density of the formed clot (D) was associated with
rs17713054 SLC6A20-LZTFL1 (p = 0.02) (Figure 4E). SNP
rs12585036 ATP11A (p = 0.006) increased the count of platelets
(Figure 4F). Meanwhile, SNP rs7949972 ELF5 (p = 0.02) reduced in
stationary spatial clot growth rates (Vst, μm/minutes) (Figure 4G),
rs12610495 DPP9 (p = 0.01) increased the time to the start of clot
growth (Tlag, minutes) (Figure 4H), while rs17713054 SLC6A20-
LZTFL1 (p = 0.036) and rs7949972 ELF5 (p = 0.02) decreased the
clot size at 30 min post-coagulation activation (CS, μm) (Figure 4I, J
respectively). Notably, the time of appearance of spontaneous clots
(Tsp) was extended in the overall patient group with
rs17713054 SLC6A20-LZTFL1 (p = 0.0036) (Figure 4K). Given
the strong correlation between rs17713054 SLC6A20-LZTFL1,
rs12610495 DPP9, and rs17078346 SLC6A20-LZTFL1 with BMI,
we conducted a comparison of clinical characteristics between two
patient groups based on BMI status. In patients with a BMI ≥30, SNP
rs17713054 SLC6A20-LZTFL1 (Figure 4L) was associated with an
elevation in Tsp (p = 0.02), while among patients without obesity
(BMI <30) rs61882275 ELF5 (p = 0.003) was found to increase
Tsp (Figure 4M).

3.6 Functional annotation of severe COVID-
19-related SNPs

3.6.1 QTL-effects
The results of the cis-eQTL analysis (Table 5) shed light on the

impact of specific genetic variants on gene expression. According to

TABLE 4 Results of the analysis of associations between GWAS SNPs and severe COVID-19 in obese and non-obese patients.

Genetic variant Effect allele Other allele N OR [95% CI]1 p2 (pbonf) N OR [95% CI]1 p2 (pbonf)

BMI <30 BMI ≥30

rs143334143
CCHCR1

A G 657 0.82 [0.48–1.38] 0.44 (0.88) 658 1.12 [0.70–1.80] 0.63 (1.26)

rs111837807
CCHCR1

C T 656 0.65 [0.36–1.18] 0.14 (0.28) 657 1.09 [0.67–1.78] 0.73 (1.46)

rs17713054
SLC6A20-LZTFL1

A G 657 1.14 [0.69–1.88] 0.61 (1.22) 659 2.31 [1.52–3.50] 0.0002 (0.0004)

rs17078346
SLC6A20-LZTFL1

C A 657 1.02 [0.64–1.63] 0.93 (1.86) 660 1.72 [1.15–2.58] 0.01 (0.02)

rs12585036
ATP11A

T C 654 0.80 [0.55–1.16] 0.23 (0.46) 656 0.85 [0.60–1.22] 0.38 (0.76)

rs12610495
DPP9

G A 655 0.85 [0.61–1.19] 0.34 (0.68) 656 1.48 [1.09–2.01] 0.01 (0.02)

rs7949972
ELF5

T C 647 0.67 [0.47–0.95] 0.02 (0.04) 650 1.13 [0.82–1.55] 0.46 (0.92)

rs61882275
ELF5

A G 656 0.91 [0.66–1.26] 0.56 (1.12) 657 1.40 [1.02–1.91] 0.036 (0.072)

rs67579710
THBS3, THBS3-AS1

A G 653 0.79 [0.44–1.42] 0.42 (0.84) 657 0.75 [0.42–1.35] 0.33 (0.66)

rs9636867
IFNAR2

G A 655 0.82 [0.59–1.16] 0.26 (0.52) 657 1.02 [0.74–1.42] 0.91 (1.82)

All calculations were performed relative to the minor alleles (Effect allele); 1 - odds ratio and 95% confidence interval; 2– p-value; statistically significant differences are marked in bold.
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the eQTLGen Browser, rs17713054 SLC6A20-LZTFL1 and
rs17078346 SLC6A20-LZTFL1 were associated with a decrease in
the expression of FLT1P1, CCR3, CCR1, SACM1L, CCR5, CCR2,
RP11-24F11.2, and CXCR6, while these two SNPs were linked to an
increase in the expression of CCR9 in blood. Moreover, data from
the GTEx Portal indicated that rs17713054 SLC6A20-LZTFL1 was
associated with reduced expression levels of CXCR6 in tibial artery
and adipose tissues (subcutaneous), alongside an elevation in the
expression of LZTFL1 in adipose tissue (subcutaneous).

Additionally, rs12585036 ATP11A was correlated with
decreased expression levels of ATP11A in the blood and aorta, as
well as RP11-88E10.5 in coronary arteries. rs12610495 DPP9 showed
associations with reduced expression of DPP9 in blood, lung, and
arteries (tibial artery and aorta), while it was linked to an increase in
the expression levels of TNFAIP8L1 in blood. Notably,
rs7949972 ELF5 demonstrated a decrease in expression levels of
CAT in whole blood and artery (tibial), while ABTB2 expression was
reduced solely in whole blood by the influence of this SNP.

Furthermore, ELF5 expression was found to be decreased in the
lungs, indicating the effects of rs7949972.

3.6.2 Histone modifications
Using the bioinformatics tool HaploReg (v4.2), we analyzed

histonemodifications associated with SNPs identified in our study as
linked to an increased risk of severe COVID-19 (Table 6).

SNP rs17713054 SLC6A20-LZTFL1 is situated in a DNA-
binding region associated with histone H3 monomethylation at
the fourth lysine residue (H3K4me1) in lung, aorta, and adipose
tissue. Moreover, this SNP has further influence on H3K27ac,
which marks enhancers, particularly in lung tissues and
the aorta.

Similarly, rs12610495 DPP9 is located in a DNA-binding region
associated with H3K4me1 in both the lungs and blood. In lung
tissue, it also binds to H3K4me3. Additionally, the impact of these
histone modifications is further enhanced by the presence
of H3K27ac.

FIGURE 4
Associations of GWAS loci and clinical characteristics of severe COVID-19 patients. (A) BMI values for rs17713054 SLC6A20-LZTFL1 in the entire
group (p = 0.006), (B) BMI values for rs12610495 DPP9 in the entire group (p = 0.01), (C) BMI values for rs17078346 SLC6A20-LZTFL1 in the entire
group (p = 0.01), (D) oxygen therapy days for rs12610495 DPP9 in the entire group (p = 0.02), (E) maximum optical density of the formed clot (D)
values for rs17713054 SLC6A20-LZTFL1 in the entire group (p = 0.02), (F) platelets count for rs12585036 ATP11A in the entire group (p = 0.006),
(G) stationary spatial clot growth rates (Vst, μm/minutes) values for rs7949972 ELF5 in the group of patients with BMI <30 (p = 0.02), (H) time to the
start of clot growth (Tlag, minutes) for rs12610495 DPP9 in the group of patients with BMI <30 (p = 0.01), (I) clot size at 30 min post-coagulation
activation (CS, μm) values for rs17713054 SLC6A20-LZTFL1 in the group of patients with BMI <30 (p = 0.036), (J) clot size at 30 min post-coagulation
activation (CS, μm) values for rs7949972 ELF5 in the group of patients with BMI <30 (p = 0.02), (K) time of appearance of spontaneous clots (Tsp)
values for rs17713054 SLC6A20-LZTFL1 in the entire group of patients (p = 0.036), (L)—Tsp values for rs17713054 SLC6A20-LZTFL1 in the group of
patients with BMI<30 (p = 0.02), (M)—Tsp values for rs61882275 ELF5 in the group of patients with BMI <30 (p = 0.003).
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Finally, rs7949972 ELF5 falls within a region of DNA binding to
H3K4me1 exclusively in lung tissue.

3.6.3 Analysis of transcription factors
The risk allele A of rs17713054 SLC6A20-LZTFL1 is associated

with the generation of DNA binding sites for 48 transcription factors
(TFs) (Supplementary Table S9). These TFs are involved in four
overrepresented biological processes: integrated stress response
signaling (GO:0140467; FDR = 1.48 × 10−12), positive regulation
by host of viral transcription (GO:0043923; FDR = 4.68 × 10−2), fat
cell differentiation (GO:0045444; FDR = 3.45 × 10−4), transforming
growth factor beta receptor signaling pathway (GO:0007179; FDR =

4.94 × 10−2). The protective allele G of rs17713054 SLC6A20-
LZTFL1 creates binding sites for 24 TFs, jointly involved in
response to hypoxia (GO:0001666; FDR = 2.8 × 10−2).

The protective allele T rs12585036 ATP11A generates DNA
binding sites for 104 TFs (Supplementary Table S10) involved in
response to (GO:1990785; FDR = 8.08 × 10−3), response to
testosterone (GO:0033574; FDR = 4.09 × 10−11), androgen
receptor signaling pathway (GO:0030521; FDR = 8.49 × 10−3),
canonical Wnt signaling pathway (GO:0060070; FDR = 3.54 × 10−3).

As for the risk allele C rs17078346 SLC6A20-LZTFL1, it creates
DNA binding regions for 31 TFs (Supplementary Table S11), that
are involved in three overrepresented biological processes: epithelial

TABLE 5 Association of SNPs with cis-eQTL-Mediated Expression Profiles of GWAS Genes.

eQTLGen Browser data GTEx Portal data

SNP Effect
allele

Gene
expressed

Z-score p-value Gene
expressed

p-value Effect
(NES)

Tissue

rs17713054
SLC6A20-
LZTFL1

A CXCR6 ↓(−13.9294) 4.20 × 10−44 CXCR6 1.7 × 10−7 ↓(-0.42) Artery - Tibial

FLT1P1 ↓(−15.1094) 1.40 × 10−51

CCR3 ↓(−14.3393) 1.24 × 10−46

CCR9 ↑(5.1055) 3.30 × 10−7 CXCR6 6.7 × 10−5 ↓(-0.30) Adipose -
Subcutaneous

CCR1 ↓(−7.4173) 1.19 × 10−13

SACM1L ↓(−5.7667) 8.08 × 10−9 LZTFL1 1.0 × 10−4 ↑(0.21) Adipose -
Subcutaneous

CCR5 ↓(−5.206) 1.93 × 10−7

CCR2 ↓(−4.9694) 6.71 × 10−7 CCR9 1.6 × 10−4 ↑(0.33) Whole Blood

RP11-24F11.2 ↓(−4.6342) 3.58 × 10−6

rs17078346
SLC6A20-
LZTFL1

S CCR3 ↓(−13.0025) 1.18 × 10−38 -

FLT1P1 ↓(−12.847) 8.94 × 10−38

CXCR6 ↓(−11.6247) 3.08 × 10−31

CCR1 ↓(−6.5185) 7.10 × 10−11

CCR5 ↓(−5.5666) 2.59 × 10−8

SACM1L ↓(−5.4113) 6.25 × 10−8

CCR2 ↓(−5.3267) 9.99 × 10−8

CCR9 ↑(5.0282) 4.95 × 10−7

RP11-24F11.2 ↓(−4.5892) 4.44 × 10−6

rs12585036
ATP11A

T ATP11A ↓(−7.9284) 2.22 × 10−15 ATP11A 7.3 × 10−8 ↓(−0.18) Artery - Aorta

RP11-88E10.5 2.2 × 10−6 ↓(−0.34) Artery - Coronary

rs12610495
DPP9

G DPP9 ↓(−14.4364) 3.05 × 10−47 DPP9 4.50 × 10−9 ↓(−0.18) Lung

TNFAIP8L1 ↑(7.6938) 1.43 × 10−14 DPP9 8.90 × 10−8 ↓(−0.15) Artery - Tibial

DPP9 4.1 × 10−6 ↓(−0.17) Artery - Aorta

rs7949972
ELF5

T CAT ↓(−56.0274) 3.27 × 10−310 ELF5 2.50 × 10−15 ↓(−0.23) Lung

CAT 3.20 × 10−14 ↓(−0.25) Whole Blood

ABTB2 ↓(-15.164) 6.12 × 10−52 CAT 4.3 × 10−6 ↓(−0.15) Artery - Tibial

ABTB2 0.00007 ↓(−0.17) Whole Blood
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tube branching involved in lung morphogenesis (GO:0060441;
FDR = 7.59 × 10−4), Notch signaling pathway (GO:0007219;
FDR = 1.29 × 10−3).

Protective allele A rs12610495 DPP9 is associated with the
generation of DNA binding sites for 39 TFs (Supplementary
Table S12). These TFs jointly participate in positive regulation of
regulation of cytokine production (GO:0001817; FDR = 0.0475).

Finally, risk allele C rs7949972 ELF5 creates DNA binding sites
for 32 TFs (Supplementary Table S13), that are jointly involved in
the following overrepresented biological processes: positive
regulation of CD8-positive, alpha-beta T cell differentiation (GO:
0043378; FDR = 0.00247), negative regulation of CD4-positive,
alpha-beta T cell differentiation (GO:0043371; FDR = 0.0301),
defense response to virus (GO:0051607; FDR = 0.00177), positive
regulation of interferon-alpha production (GO:0032727; FDR =
0.0413), positive regulation of interferon-beta production (GO:
0032728; 0.00251).

3.6.4 Bioinformatic analysis of the associations of
GWAS SNPs with COVID-19-related phenotypes

According to the bioinformatic resource Lung Disease
Knowledge Portal, the GWAS SNPs rs17713054, rs12585036,
rs17078436, rs12610495 are linked to the higher risk of
hospitalization of COVID-19 patients and to the severe
respiratory confirmed COVID-19. Additionally, rs12585036 is
associated with a reduction in lung capacity parameters such as
forced vital capacity (FVC), forced expired volume in 1 s (FEV1),
FEV1 to FVC ratio, peak expiratory flow. Conversely, rs7949972 is
associated with a lower risk of hospitalization in COVID-19 patients
while increasing the lung capacity parameters (Table 7).

4 Discussion

In the present study, we replicated associations of the
rs17713054 SLC6A20-LZTFL1, rs17078346 SLC6A20-LZTFL1,
rs12610495 DPP9 and rs7949972 ELF5 with severe COVID-19
within the Caucasian population of Central Russia. For the first
time in the world, we assessed the impact of COVID-19 GWAS loci
on a wide range of clinical manifestations of the disease, primarily on

thrombodynamic parameters, identified the most significant
intergenic interactions, and also assessed how environmental risk
factors and obesity modify associations of GWAS loci with the risk
of severe COVID-19; conducted a comprehensive functional
annotation of severe COVID-19-associated SNPs to analyse their
involvement in the molecular mechanisms of the disease.

Figure 5 summarizes the principal molecular mechanisms
underlying the involvement of GWAS SNPs to severe COVID-19.

First of all, we identified that both studied polymorphic variants
located in the SLC6A20-LZTFL1 region are associated with COVID-
19: rs17713054 SLC6A20-LZTFL1 (risk allele A) increases the risk of
severe COVID-19 regardless of sex and age; however, this risk can be
modified by smoking status, intake of fresh fruit and vegetables, and
higher levels of physical activity. Moreover, rs17713054 (risk allele
A) was found to be associated with an increase in body mass index
and worsening thrombodynamic parameters, including an increase
in the maximum optical density of the formed clot (D), delayed
appearance of spontaneous clots (Tsp), and larger clot size 30 min
after coagulation activation (CS). It is noteworthy that
rs17713054 showed an association with severe COVID-19 in a
large number of replication studies conducted around the world
(Roberts et al., 2020; Downes et al., 2021; Roozbehani et al., 2023;
Udomsinprasert et al., 2023). However, the possible influence of
rs17713054 on both the development of COVID-19 and the
development of coronary artery disease is a topic of active
discussion in the literature (Wang et al., 2023). According to our
mediation analysis, the contribution of rs17713054 to SARS-CoV-
2 susceptibility may be mediated through comorbid disease in severe
COVID-19 patients, to a lesser extent by chronic obstructive
pulmonary disease, and to a greater extent by coronary
artery disease.

SNP rs17078346 SLC6A20-LZTFL1 (risk allele C) also was
associated with the increased the risk of severe COVID-19 in our
study, exclusively in obese patients. Possible molecular mechanisms
of the involvement of these genetic variants in the risk of developing
severe COVID-19 may be associated with their regulation of the
LZTFL1 gene (Leucine Zipper Transcription Factor Like 1), which
regulates protein trafficking to the ciliary membrane, the violation of
which may play an important role in weakened airway viral
clearance in a patient with COVID-19 (Robinot et al., 2021).

TABLE 6 The impact of GWAS SNPs on histone tags in various tissues.

SNP (Ref/Alt allele) Tissues
Marks

Lung Vessels—aorta Blood Adipose tissue

rs17713054 (G/A)
SLC6A20-LZTFL1

H3K4me1 Enh Enh - Enh

H3K4me3 - - - -

H3K27ac Enh Enh - -

rs12610495 (A/G)
DPP9

H3K4me1 Enh - Enh -

H3K4me3 Pro - - -

H3K27ac Enh - - -

rs7949972 (C/T)
ELF5

H3K4me1 Enh - - -

H3K4me1—mono-methylation at the fourth lysine residue of the histone H3 protein; H3K4me3—tri-methylation at the fourth lysine residue of the histone H3 protein; H3K9ac—the

acetylation at the ninth lysine residues of the histone H3 protein; H3K27ac—acetylation of the lysine residues at N-terminal position 27 of the histone H3 protein; effect alleles are marked in

bold. Enh—histone modification in the enhancer region; Pro—histone modification at the promoter region.
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Moreover, LZTFL1 regulates the transition of epithelial cells to
mesenchymal cells (https://www.genecards.org/cgi-bin/carddisp.
pl?gene=LZTFL1), thereby participating in the regulation of the

viral response pathway associated with epithelial-mesenchymal
transition (Downes et al., 2021), an important regulator of the
innate immune response.

TABLE 7 Results of aggregated bioinformatic analyzes of associations between GWAS SNPs and the risk of severe COVID-19 course.

No SNP Phenotype p-value Beta (OR) Sample size

1 rs17713054
SLC6A20-LZTFL1 (G/A)

Very severe respiratory confirmed COVID-19 vs. population 1.15 × 10−80 OR▲1.8111 7,252

2 Hospitalized COVID-19 vs. population 1.09 × 10−51 OR▲1.8134 908,494

3 Hospitalized vs. non-hospitalized COVID-19 2.04 × 10−28 OR▲1.3555 10,216

4 COVID-19 vs. population 4.80 × 10−26 OR▲1.3121 1,299,010

5 Very severe respiratory confirmed vs. non-hospitalized COVID-19 1.43 × 10−5 OR▲2.8766 957

6 COVID-19 vs. no COVID-19 3.12 × 10−5 OR▲1.1324 127,879

7 rs12585036
ATP11A (C/T)

Idiopathic pulmonary fibrosis 2.36 × 10−16 OR▼0.9994 57,913

8 FEV1 to FVC ratio 1.97 × 10−6 Beta▼-0.0141 793,368

9 Very severe respiratory confirmed COVID-19 vs. population 8.12 × 10−6 OR▲1.1025 7,376

10 Forced expired volume in 1 s (FEV1) 8.26 × 10−6 Beta▼-0.0128 793,442

11 Peak expiratory flow 5.68 × 10−4 Beta▼-0.0105 690,530

12 Hospitalized vs. non-hospitalized COVID-19 0.002 OR▲1.0604 10,013

13 Hospitalized COVID-19 vs. population 0.004 OR▲1.0604 908,494

14 Forced vital capacity (FVC) 0.025 Beta▼-0.0063 792,938

15 Airway wall area in COPD 0.029 Beta▼-0.0334 12,031

16 rs17078346
SLC6A20-LZTFL1 (A/C)

Very severe respiratory confirmed COVID-19 vs. population 2.96 × 10−39 OR▲1.5011 5,855

17 Hospitalized COVID-19 vs. population 1.08 × 10−18 OR▲1.4711 898,438

18 Hospitalized vs. non-hospitalized COVID-19 1.01 × 10−16 OR▲1.2208 10,256

19 COVID-19 vs. population 3.57 × 10−9 OR▲1.1637 1,288,650

20 COVID-19 vs. no COVID-19 8.72 × 10−5 OR▲1.1040 127,879

21 Very severe respiratory confirmed vs. non-hospitalized COVID-19 2.42 × 10−4 OR▲2.2105 957

22 rs12610495
DPP9 (A/G)

Very severe respiratory confirmed COVID-19 vs. population 1.64 × 10−15 OR▲1.2015 5,642

23 Idiopathic pulmonary fibrosis 4.11 × 10−15 OR▲1.0003 58,925

24 Hospitalized COVID-19 vs. population 4.84 × 10−8 OR▲1.1914 895,822

25 Hospitalized vs. non-hospitalized COVID-19 1.73 × 10−5 OR▲1.0769 9,939

26 COVID-19 vs. population 1.64 × 10−4 OR▲1.0704 1,274,140

27 COVID-19 vs. no COVID-19 0.0025 OR▲1.0603 101,592

28 rs7949972
ELF5 (C/T)

Very severe respiratory confirmed COVID-19 vs. population 6.47 × 10−7 OR▼0.9079 7,225

29 FEV1 to FVC ratio 3.9 × 10−6 Beta▼-0.0112 808,254

30 Hospitalized vs. non-hospitalized COVID-19 7.01 × 10−5 OR▼0.9392 10,256

31 Hospitalized COVID-19 vs. population 0.0021 OR▼0.9254 905,878

32 Forced vital capacity (FVC) 0.0034 Beta▲0.0071 807,822

33 COVID-19 vs. population 0.022 OR▼0.9642 1,289,590

34 Emphysema in COPD (percentage low attenuation area −950 HU) 0.024 Beta▲0.0375 12,031

35 Emphysema in COPD (15th percentile HU) 0.048 Beta▼-0.0245 12,031

data obtained using the bioinformatic resource Lung Disease Knowledge Portal https://lung.hugeamp.org/

Effect alleles are marked in bold.
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Our bioinformatic analysis revealed that allele A
rs17713054 SLC6A20-LZTFL1 and allele C rs17078346 SLC6A20-
LZTFL1 influence the expression of other genes through cis-eQTL-
effects: these SNPs are associated with a decrease in the expression of
FLT1P1 in blood, potentially resulting in dysregulation of vascular
endothelial growth factor receptor 1 (VEGFR1) expression (Ye et al.,
2015). Numerous studies have demonstrated a correlation between
elevated VEGFR1 levels and COVID-19 severity, as well as the ICU
admission of COVID-19 patients (Krock et al., 2011; Ackermann
et al., 2020; Nagashima et al., 2020; Pine et al., 2020; Miggiolaro et al.,
2023; Pius-Sadowska et al., 2023). In addition, we noted eQTL effects
of rs17713054 and rs17078346 on the expression levels of
chemokine receptors (CCR1, CCR2, CCR3, CCR5, CCR9, and
CXCR6). Previous studies have implicated these chemokine
receptors in virus infections and COVID-19 pathogenesis,
suggesting their role in lung infiltration by monocytes and
macrophages during viral infection, contributing to the
hyperinflammation observed in severe COVID-19 cases
(Coperchini et al., 2020; Khalil et al., 2021; Mahmoodi et al.,
2024). Among other genes with altered expression levels caused
by rs17713054 and rs17078346 is SACM1L, which was previously
identified as a putative causal gene for COVID-19 severity (Wu et al.,
2021). SACM1L mediates lipid transfer between closely opposed ER
and endosomal membranes with several other lipid transfer proteins
(Reinisch and Prinz, 2021). It was found that SACM1L concentrated
at the viral factories in infected cells, contrasting its typical
distribution in uninfected cells, where it is primarily found in the
ER and Golgi apparatus (García-Dorival et al., 2023) (Figure 5).

TFs binding to the risk allele A rs17713054 are associated with
positive regulation by host of viral transcription (GO:0043923),

integrated stress response signaling (GO:0140467), the
transforming growth factor beta receptor signaling pathway (GO:
0007179), and fat cell differentiation (GO:0045444), while also
resulting in a loss of function in response to hypoxia (GO:
0001666). These findings provide insights into the association of
rs17713054 with severe COVID-19 and obesity, a known risk factor
for severe COVID-19 progression. Risk allele C
rs17078346 SLC6A20-LZTFL1 affects DNA binding to TFs jointly
involved in epithelial tube branching involved in lung
morphogenesis (GO:0060441), and the Notch signaling pathway
(GO:0007219) (Figure 5). These findings suggest its potential role in
COVID-19 severity by regulating immune response, and apoptosis.

The correlation between rs17713054 SLC6A20-LZTFL1 and
obesity is supported by previous research indicating that LZTFL1
may regulate leptin signaling, and participate in the LepRb signaling
pathway in the hypothalamus, which controls energy homeostasis
(Wei et al., 2018). Elevated levels of circulating leptin are generally
attributed to the development of leptin resistance (Zieba et al., 2020),
a hallmark of obesity, which is already recognized as a risk factor for
severe COVID-19 (Rebello et al., 2020; Maurya et al., 2021). Notably,
Lztfl1 knockout mice exhibit hyperphagia, leptin resistance, and
obesity (Tomlinson, 2024). Moreover, polyphenolic compounds
found in fruits and vegetables, along with regular exercise, have
been shown to enhance sensitivity to leptin (Aragonès et al., 2016;
Fedewa et al., 2018). Based on these findings, we hypothesize that
individuals carrying the allele A of rs17713054 SLC6A20-LZTFL1,
who consume higher levels of fruit and vegetables and engage in
more physical activity, may experience reduced inflammation by
lowering serum leptin levels, potentially leading to a less severe
course of COVID-19. Additionally, the manifestation of the risk

FIGURE 5
Overview of the results of an integrated bioinformatics investigation of severe COVID-19-associated SNPs.
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effects of rs17713054 SLC6A20-LZTFL1 in patients with low levels of
physical activity may be explained by the significant suppression of
Slc6A20 expression observed in mouse models following exercise
(Walz et al., 2021). Considering that SLC6A20 expression is
positively associated with infiltrating neutrophils and immune-
related signatures (Acar, 2023), the downregulation of this gene
through exercise may further contribute to the mitigation of
COVID-19 severity. The presence of the rs17713054 SLC6A20-
LZTFL1 association in patients with low consumption of fresh
vegetables and fruits—one of the main environmental risk factors
for oxidative stress—may be associated with the effect of reactive
oxygen species on the expression level of the SLC6A20 and LZTFL1
genes. In particular, it was found that hydrogen peroxide, along with
plant extracts, may affect the expression of SLC6A20 mRNA and
LZTFL1 mRNA (Briedé et al., 2010; Tomé-Carneiro et al., 2013).

The association of rs17713054 SLC6A20-LZTFL1 with severe
COVID-19 in non-smoking individuals can be explained; on the one
hand, smoking itself is a known risk factor for severe COVID-19 due
to its upregulation of ACE-2 expression in the lungs, the host
receptor for SARS-CoV-2, making smokers more susceptible to
the disease (Reddy et al., 2021). This increased susceptibility to
COVID-19 in smokers may exceed the effect of rs17713054, leading
to the observed association specifically in non-smokers. On the other
hand, previous research has shown that smoking affects the
expression of genes located near rs17713054, the level of
SLC6A20 mRNA, and the decreased expression of LZTFL1
(Xiong et al., 2021). Another study showed that benzopyrene,
one of the main components of cigarette smoke, increases
methylation of the LZTFL1 gene promoter and exon SLC6A20
(Jiang et al., 2017) and also reduces the expression of SLC6A20
mRNA (Qiu et al., 2011; Kreuzer et al., 2020). Considering that
increased methylation is a significant regulatory mechanism for
decreased gene expression, this finding can be interpreted as further
evidence that smoking influences the decreased expression of
LZTFL1 and SLC6A20.

Furthermore, our study showed that rs12610495 DPP9 (risk
allele G) is associated with a higher risk of severe COVID-19 in
patients with obesity and also affects BMI in patients with severe
COVID-19. Additionally, a significant association was found
between rs12610495 and thrombodynamic parameters, in
particular with prolongation of the time to the start of clot
growth (Tlag). Several studies have already pointed to
rs12610495 DPP9 as a risk polymorphic variant for severe
COVID-19 (Degenhardt et al., 2022; Horowitz et al., 2022;
Thibord et al., 2022; Pairo-Castineira et al., 2023). DPP9 plays a
diverse role in immune regulation: it participates in the activation of
inflammasomes (Okondo et al., 2018), its inhibition induces pro-
caspase-1-dependent monocyte and macrophage pyroptosis
(Okondo et al., 2017). Knockdown of Dpp9 significantly impairs
preadipocytes differentiation (Han et al., 2015), supporting our
findings that rs12610495 DPP9 associates with BMI. This SNP
has a high regulatory potential in lung tissue, being marked by
the enhancer tags H3K4me1 and H3K27ac as well as by the
promoter tag H3K4me3. The risk allele G rs12610495 DPP9
disrupts the regulation of cytokine production (GO:0001817),
potentially leading to dysregulated production of
proinflammatory cytokines. This dysregulation may cause
excessive immune cell infiltration in pulmonary tissues, leading

to tissue damage (Nagashima et al., 2020). In blood,
rs12610495 DPP9 alters the expression through cis-eQTL effects
of TNFAIP8L1, a member of the TNFAIP family, which plays a
modulating role in immune response (Li et al., 2018; Hua et al.,
2021). Additionally, Pahl et al. reported that TNFAIP8L1 levels were
significantly downregulated in monocytes from COVID-19 patients
compared to healthy controls (Pahl et al., 2022) (Figure 5).

We determined that rs7949972 ELF5 (effect allele T) had a
protective effect only in COVID-19 patients with a BMI <30. In this
subgroup, we observed that the protective allele T reduces the clot
size at 30min after coagulation activation (CS) and stationary spatial
clot growth rates (Vst). ELF5, a member of the erythroblast
transformation-specific (Ets) transcription factor family, has been
extensively studied in breast cancer contexts (Chakrabarti et al.,
2012; Kalyuga et al., 2012). However, recent research has highlighted
its role in COVID-19, revealing that key host factors for SARS-CoV-
2 (Ace2 and Tmprss4) are upregulated in Elf5-overexpressing
AT2 cells (Pietzner et al., 2022). ELF5, through cis-eQTL effects,
also regulates the expression of CAT, an antioxidant enzyme, in
whole blood and in the tibial artery. Levels of catalase, along with
other markers of oxidative stress, were found to be elevated in
COVID-19 patients (Martín-Fernández et al., 2021). Oxidative
stress may not only pose a risk for severe COVID-19 but also
contribute to the development of atherosclerosis (Sorokin et al.,
2015; Sorokin et al., 2016)and atherosclerosis-associated
cardiovascular diseases (Vialykh et al., 2012; Bushueva OY. et al.,
2015; Bushueva et al., 2021), exacerbating patient prognosis
(Hessami et al., 2021). Upon analyzing the impact of the risk
allele C rs7949972 ELF5 on TFs binding sites, we hypothesize
that this allele may result in a more severe COVID-19 course.
This could be due to its positive regulation of CD8-positive,
alpha-beta T cell differentiation (GO:0043378), and negative
regulation of CD4-positive, alpha-beta T cell differentiation (GO:
0043371), as well as its involvement in the defense response to
viruses (GO:0051607) (Figure 5). These processes may contribute to
excessive inflammation and worsen the course of COVID-19.
Additionally, data from the Lung Knowledge Portal indicates that
protective allele T rs7949972 correlates with an increase in
parameters such as forced vital capacity (FVC), forced expired
volume in 1 s (FEV1), FEV1 to FVC ratio, and peak expiratory flow.

Finally, allele T rs12585036 ATP11A exhibited a protective effect
against severe COVID-19, but exclusively in men. The ATPase
phospholipid transporting 11A (ATP11A) gene encodes a
membrane ATPase responsible for translocating
phosphatidylserine (PtdSer) (Segawa et al., 2021). Phagocytosis
associated with PtdSer translocation could serve as an early event
linked to viral infections (Takizawa et al., 1993; Banki et al., 1998).
Moreover, PtdSer has been implicated as a potential mechanism or
participant in inflammation and coagulation abnormalities in
COVID-19 patients (Argañaraz et al., 2020; Wang et al., 2022).
We hypothesize that the protective effect of the T allele of
rs12585036 ATP11A regarding the risk of severe COVID-19
specifically in men is due to the fact that female sex hormones,
in particular estradiol, lead to increased expression of ATP11A
(Logan et al., 2010; Vydra et al., 2019). Considering the fact that
the protective T allele is associated with a decrease in ATP11A
expression through cis-eQTL effects, it can be assumed that the
influence of female sex hormones can neutralize this effect by
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increasing the level of ATP11A. Moreover, bioinformatics analysis
revealed that the protective T allele rs12585036 creates DNA binding
sites for TFs involved in overrepresented biological processes related
to male sex hormone metabolism (response to testosterone (GO:
0033574) and androgen receptor signaling pathway (GO:0030521))
and regulation of canonical Wnt signaling pathway (GO:0060070;
FDR = 3.54 × 10−3), which has been shown to inhibit the replication
of SARS-CoV-2 in vitro, and reduce viral load, inflammation and
clinical symptoms in a mouse model of COVID-19 (Xu et al., 2024).
This finding suggests a potential explanation for why SNP
rs12585036 ATP11A protects against COVID-19 in men.

5 Study limitations

Firstly, our study was limited in its scope, as we were unable to
investigate other genes implicated in the progression of severe COVID-
19. Secondly, we lacked data on the vaccination status of the control
group, as well as laboratory parameters, including venous blood for
thrombodynamics testing, which could only be obtained during
hospitalization. This limitation prevented us from conducting a
formal comparative analysis of laboratory parameters, incl.
thrombodynamic parameters between control group patients and
patients with severe COVID-19. Additionally, the effectiveness of
different types of vaccines remains controversial, adding further
complexity to the analysis of data and the role of vaccination in
protecting against severe COVID-19. Thirdly, essential
environmental factors such as vegetable intake and physical activity
levels were not available for the control group, preventing their
inclusion in the MB-MDR analysis of gene-environmental interactions.
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